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We propose an approach to study small limit cycle bifurcations on a center manifold in analytic
or smooth systems depending on parameters. We then apply it to the investigation of limit cycle
bifurcations in a model of calcium oscillations in the cilia of olfactory sensory neurons and show
that it can have two limit cycles: a stable cycle appearing after a Bautin (generalized Hopf)
bifurcation and an unstable cycle appearing after a subcritical Hopf bifurcation.
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1. Introduction

In this paper, we consider the mathematical model for calcium oscillations in the cilia of olfactory sensory
neurons proposed in [Reidl et al., 2006].

∗Author for correspondence

1

ar
X

iv
:1

81
0.

11
71

5v
1 

 [
m

at
h.

D
S]

  2
7 

O
ct

 2
01

8



July 28, 2021 6:42 ws-ijbc

2 Y. Xia, M. Grašič, W. Huang and V. Romanovski

The model involves three species, a cyclic-nucleotide-gated (CNGo) channel, calcium Ca2+, and
calmodulin CaM4, which we denote by A1, A2 and A3, respectively, and six reactions:

0
K1−−→ A1, A1

K2−−→ A1 +A2, 4A2
K3−−→ A3,

A3
K4−−→ 4A2, A1 +A3

K5−−→ A3, A2
K6−−→ 0,

(1)

where K1, . . . ,K6 are the reaction rates. As is usual in such schemes, zero on the left-hand side means that
the reaction is a source, where certain substances are introduced into the system. Zero on the right-hand
side means that the reaction is a sink, where certain substances are removed from the system. Let us denote
the concentrations of A1, A2 and A3 by X, Y and Z, respectively.

In [Reidl et al., 2006] by using the mass action kinetics (see e.g. [Feinberg, 1987]) and the generalized
mass action kinetics, the three-dimensional system of differential equations

Ẋ =K1 −K5XZ,

Ẏ =K2X − 4K3Y
2 + 4K4Z −K6Y

ε

Ż =K3Y
2 −K4Z,

(2)

associated with the network (1) is derived. Since the generalized mass action kinetics were used for the
last reaction, the corresponding term in the second equation is not −K6Y , but −K6Y

ε, where the effective
exponent ε corresponds to the extrusion of Ca2+ from cilium by pumps and exchangers.

In practice, the rate constants Ki are not usually known, so one of the main tasks in the investigation
of chemical reaction networks is to ask whether the resulting differential system has the capacity to admit
certain kinds of qualitative behavior, among them, the most important are the behavior near steady states
and the oscillatory behavior. That is, it is important to know whether rate constant values such that the
differential system resulting from a presumed chemistry admits behavior of a specified kind can even exist.
In this way, one can determine whether a postulated chemistry taken with mass action kinetics can be
observed (see [Feinberg, 1987] for more details).

Since biochemical reaction models derived using the mass action law are represented by polynomial
or analytical differential equations involving many parameters (reaction rates), even the determination
of stationary states and their stability analysis become extremely difficult problems, which are usually
unfeasible for general values of parameters, even in the case of polynomial models. The search for limit
cycles, which describe auto-oscillatory regimes, is a much more difficult problem than the investigation of
singular points. Because of the complexity of the biochemical reaction models, the study of limit cycles in
such models seldom goes beyond the determination of possible Hopf bifurcations (even without verifying the
transversality, or crossing, condition) and mostly such bifurcations are found numerically for heuristically
chosen values of parameters, although in recent years some symbolic computation algorithms for detection
of Hopf bifurcations have been developed (see e.g. [Errami et al., 2013, 2015; Niu & Wang, 2008, 2012;
Sturm et al., 2009]).

If a smooth system of autonomous differential equations admits a two-dimensional center manifold, then
it is possible to study not only Hopf bifurcations, but also the so-called Bautin bifurcations, or degenerated
Hopf bifurcations on the center manifolds, see e.g. [Kuznetsov, 1995; Farr et al., 1989]. To perform the
study of such bifurcations one can use one of the following six methods known in the literature: The
method of Poincaré-Birkhoff normal forms, the method of Lyapunov quantities (constants), the method
of the succession function, the method of averaging, the method of intrinsic harmonic balancing, and the
Lyapunov-Schmidt method (see e.g. [Farr et al., 1989] for a nice review of the methods). Although from
a theoretical point of view all of them allow performing a complete bifurcation analysis, in practice, they
require extremely laborious computations, so the computational efficiency becomes an important issue. It
appears that the most efficient method from the computational point of view is the method of Lyapunov
quantities, used in [Bonin & Legault, 1988; Songling, 1980], since it involves only collection of similar terms
in polynomial expressions and solving systems of linear algebraic equations.

However, the method of Lyapunov quantities used in [Songling, 1980] and other works involves the
search for positively defined Lyapunov functions. In this paper, we propose a generalization of the method
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for the case when the Lyapunov function is semi-positively defined, that is, the quadratic form defined by
the lowest part of the Lyapunov function has one zero eigenvalue and the other eigenvalues are positive.
We then apply the method to study the degenerate Hopf bifurcations in the system (2) and show that the
system can have two limit cycles as the result of such bifurcations.

The paper is organized as follows. In Section 2, we describe an approach to study limit cycle bifurcations
using a Lyapunov function on the center manifold. In Section 3, we study singular points of system (2).
In the last section, we use the approach proposed in Section 2 to study limit cycles of system (2). In
particular, it is shown there that the system can have two limit cycles bifurcating from a singular point,
and numerical examples are provided confirming the existence of two limit cycles.

2. Limit cycle bifurcations on the center manifold

Consider a three-dimensional system of the form

ẋ = Ax + F (x) = G(x), (3)

where x = (x, y, z), the matrix A has the eigenvalues λ1, λ2, λ3 and λ1 < 0, λ2 = iω, λ3 = −iω, F is a
vector-function, which is analytic in a neighborhood of the origin, and such that its series expansion starts
from quadratic or higher terms, and G(x) = (G1(x), G2(x), G3(x))T .

Since two eigenvalues of system (3) are purely imaginary and the third one has the real part different
from zero, according to the Center Manifold Theorem [Chicone, 1999], the system has a center manifold
defined by a function x = f(y, z). After a linear transformation and rescaling of time, system (3) can be
written in the form

u̇ = −v + P (u, v, w) = P̃ (u, v, w)

v̇ = u+Q(u, v, w) = Q̃(u, v, s)

ẇ = −λw +R(u, v, w) = R̃(u, v, w),

(4)

where λ is a positive real number and P,Q,R, are power series without constant and linear terms which
are convergent in a neighborhood of the origin.

Since system (4) is analytic, for every r ∈ N there exists in a sufficiently small neighborhood of the
origin a Cr invariant manifold W c, the local center manifold, that is tangent to the (u, v)-plane at the
origin, and which contains all the recurrent behavior of system (4) in a neighborhood of the origin in R3

([Chicone, 1999, §4.1], [Sijbrand, 1985]). For system (4), the phase portrait in a neighborhood of the origin
on W c can be, depending on the nonlinear terms P , Q and R, either a center, in which case every trajectory
(other than the origin itself) is an oval surrounding the origin, or a focus, in which case, every trajectory
spirals towards the origin or every trajectory spirals away from the origin as the time increases.

According to the Lyapunov theorem, for system (4) with the corresponding vector field

X = P̃ ∂
∂u + Q̃ ∂

∂v + R̃ ∂
∂w

the origin is a center for X|W c if and only if X admits a real analytic local first integral of the form

Φ(u, v, w) = u2 + v2 +

∞∑
j+k+`=3

φjk`u
jvkw` (5)

in a neighborhood of the origin in R3. Moreover, when a center exists, the local center manifold W c is
unique and analytic (see [Bibikov, 1979, §13]).

For system (4), one can look for a function Φ(u, v, w) of the form (5) such that

XΦ =

∞∑
i=1

gi(u
2 + v2)i+1. (6)

In the case of the two-dimensional system (when in (4) R̃ ≡ 0) it is well-known that it is possible to find
functions Φ and gi satisfying (6). If the right hand-sides of (4) are functions depending on parameters,
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then φjk` and gi also depend on the parameters of the system. If, for some values of parameters, all gi
vanish, then the corresponding system (4) has a center at the origin, but if, for some values of parameters,
not all gi vanish,then by the Lyapunov stability theorem (see e.g. [Bibikov, 1979; Romanovski & Shafer,
2009]), the singular point at the origin is a stable focus if the first non-zero gi is negative, and it is an
unstable focus if the first non-zero gi is positive (since Φ is a positively defined Lyapunov function with
negatively and positively defined derivatives, respectively). If the first non-zero coefficient in (6) is gi, then
perturbing the systen in such way that |gk−1| � |gk| and the signs of gs alternate we obtain i − 1 limit
cycles bifurcated from the origin of the system [Songling, 1980].

In the following theorem, we show that a similar approach can be applied to study bifurcations of limit
cycles on the center manifold of three-dimensional systems (3). Although it is possible to transform system
(3) to a system of the form (4), in the case when the matrix A in system (3) depends on parameters,
such transformation usually involves expressions containing radicals, so then the radicals will also appear
in the coefficients of system (4). It will slow down computations of function (5) and focus quantities gi in
(6) sharply. For this reason, we do not transform system (3) to system (4), but work with system (3), for
which we assume that the function G depends on parameters α, α = (α1, . . . , αm).

Theorem 1. Suppose that for system (3) there exists a polynomial

Ψ(x) =
s∑

j+l+m=2

ajlmx
jylzm (7)

such that

X(Ψ) := ∂Ψ(x)
∂x G1(x) + ∂Ψ(x)

∂y G2(x) + ∂Ψ(x)
∂z G3 =

g1(y2 + z2)2 + g2(y2 + z2)3 + · · ·+ gn−1(y2 + z2)n +O(||x||2n+1). (8)

Let

x = f(y, z, α∗) (9)

be the center manifold of system (3) corresponding to the value α∗ of parameters of the system and

q(x, α∗) =
∑

j+l+m=2

ajlmx
jylzm (10)

be the quadratic part of (7). Let q1(y, z, α∗) be q(x, α∗) evaluated on (9). Assume that q1(y, z, α∗) is a
positively defined quadratic form and

g1(α∗) = g2(α∗) = · · · = gk(α
∗) = 0, gk+1(α∗) 6= 0, (11)

where k < n− 1. Then,
1) If gk+1(α∗) < 0, the corresponding system (3) has a stable focus at the origin on the center manifold,
and if gk+1(α∗) > 0, then the focus is unstable.
2) If it is possible to choose perturbations of the parameters α in the system (3), such that

|g1(αk)| � |g2(αk−1)| � · · · � |gk(α1)| � |gk+1(α∗)|, (12)

αj+1 is arbitrarily close to αj and the signs of gs(αm) in (12) alternate, then system (3) corresponding to
the parameter αk has at least k limit cycles on the center manifold.

Proof. 1) Since q1 is positively defined, the function Ψ restricted to the center manifold is positively defined
in a small neighborhood of the origin. The derivative of Ψ with respect to the vector field on the center
manifold has the same sign as gk+1(α∗). Thus, by the Lyapunov theorem, the origin is a stable focus on
the center manifold if gk+1(α∗) < 0, and an unstable focus if gk+1(α∗) > 0.

2) Assume for determinacy that gk+1(α∗) < 0. Under the condition of the theorem, the equality
Ψ(x, α∗) = c (c ∈ (0, c1]) defines, in a small neighborhood of the origin near the center manifold (9),
a family of cylinders which are transversal to the center manifold. Let C1 be the curve formed by the
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intersection of the cylinder Ψ(x, α∗) = c1 and the center manifold M(α∗) of system (3), defined by (9). If
c1 is sufficiently small, then C1 is an oval on M(α∗) and the vector field is directed inside C1, since

X(Ψ(x, α∗)) = gk+1(α∗)(y2 + z2)k+2 + h.o.t

and gk+1(α∗) < 0. By the assumption of the theorem, there is an α1 arbitrarily close to α∗ and such that
gk(α1) > 0. Then, for some c2 < c1 the intersection of the cylinder Φ(x, α1) = c2 (c2 ∈ (0, c1]) defines a
curve C2 on the center manifold x = f(y, z, α1), such that the vector field of system (3) is directed outside
of C2 (since gk(α1) > 0). Since the perturbation is arbitrarily small, the curve C1 is transformed to a curve

C
(1)
1 , such that the vector field on C

(1)
1 is still directed inside the curve. Then, according to the Poincaré-

Bendixson theorem, there is a limit cycle on the center manifold x = f(y, z, α1) in the ring bounded by C2

and C
(1)
1 . Continuing the procedure on the center manifold corresponding to a parameter αk we obtain k

curves C
(k)
1 , C

(k−1)
2 , . . . , Ck, such that the vector field on C

(k)
1 is directed inside the curve, the vector field

on C
(k−1)
2 is directed outside of the curve, the vector field on C

(k−2)
3 is directed inside the curve, and so

on. Then, in each ring bounded by the curves C
(j)
i , system (3) corresponding to the parameter αk has at

least one limit cycle on the center manifold x = f(y, z, αk). �

Corollary 2.1. If condition (11) holds, then the origin of system (15) is asymptotically stable if gk+1(α∗) <
0, and it is unstable if gk+1(α∗) > 0.

Proof. By the Reduction Principle [Pliss, 1964; Guckenheimer & Holmes, 1990], the stability of the origin
of a system (15) is the same as the stability of the singular point at the origin on the center manifold. �

3. Singular points of system (2)

To simplify the study of singular points and limit cycles of system (2), we introduce dimensionless variables
performing the substitution

X1 = K2X, Y1 = Y, Z1 = K5Z,

which transforms (2) into the system

Ẋ1 = k1 −X1Z1,

Ẏ1 = X1 − 4k3Y
2

1 +
4k4

k5
Z1 − k2Y

ε
1

Ż1 = k3k5Y
2

1 − k4Z1,

(13)

where k1 = K1K2, k2 = K6, k3 = K3, k4 = K4 and k5 = K5.
Thus, without loss of generality, instead of system (2) we will study system (13). Since X, Y , Z in (2)

are concentrations of the species and Ki are reaction rates, all parameters ki in (13) are positive, and we
are interested in the behavior of trajectories of (13) in the domain X1 > 0, Y1 > 0, Z1 > 0.

In order to simplify computations, we assume that system (13) has a stationary point in the plane
y = 1. It happens when

k1 =
k2k3k5

k4
, (14)

and then the unique stationary point of system (13) is the point P (X
(0)
1 , Y

(0)
1 , Z

(0)
1 ) with the coordinates

X
(0)
1 = k2, Y

(0)
1 = 1, Z

(0)
1 = k3k5

k4
. Moving the origin to the point P using the substitution x =
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X1 −X(0)
1 , y = Y1 − Y (0)

1 , z = Z1 − Z(0)
1 we obtain the system

ẋ =− k3k5

k4
x− k2z − xz,

ẏ = k2 + x− 8k3y − 4k3y
2 − k2(1 + y)ε +

4k4

k5
z,

ż = 2k3k5y − k4z + k3k5y
2.

(15)

The Jacobian of the matrix of the linear approximation of system (15) at the origin is

A =

−k3k5
k4

0 −k2

1 −εk2 − 8k3
4k4
k5

0 2k3k5 −k4

 .

The eigenvalues of A are roots of a cubic polynomial and have rather complicated expression. To simplify
calculations, we impose the condition that one of the eigenvalues is −1. To find this condition, we calculate
the characteristic polynomial of A obtaining

p = − 1

k4
(2k2k3k4k5 + εk2k3k4k5 + εk2k

2
4u+ εk2k3k5u+ 8k2

3k5u+

k3k4k5u+ εk2k4u
2 + 8k3k4u

2 + k2
4u

2 + k3k5u
2 + k4u

3).

Then, the condition p|u=−1 = 0 gives

k2 =
(−1 + 8k3 + k4)(−k4 + k3k5)

2k3k4k5 − ε(−1 + k4)(k4 − k3k5)
. (16)

Proposition 1. Assume that for system (15) ε > 0 and condition (16) is fulfilled. Then, the system has a
center manifold passing through the origin O, with the stationary point O being a center or a focus at the
center manifold if and only if

k3 > 0 ∧ k4 > 0 ∧ k5 > 0 ∧ 8k3 < 1 ∧ 8k3 + k4 < 1 ∧ 8k3k4 + k3k5 + k2
4 < k4. (17)

Proof. Computing the eigenvalues of matrix A we find that they are λ1 = −1, λ2,3 = α± β, where

α =− a

2k4(−εk4 + εk2
4 + εk3k5 − 2k3k4k5 − εk3k4k5)

, (18)

β =

√
b

2k4k5(−εk4 + εk2
4 + εk3k5 − 2k3k4k5 − εk3k4k5)

(19)

with

a =− εk3
4 + 8εk3k

3
4 + εk4

4 − εk3k4k5 + 2k3k
2
4k5 + 2εk3k

2
4k5 − 16k2

3k
2
4k5−

8εk2
3k

2
4k5 − 2k3k

3
4k5 − εk3k

3
4k5 + εk2

3k
2
5 − 2k2

3k4k
2
5 − εk2

3k4k
2
5

and

b = k2
5(4k2

3k
2
4k

2
5(2(1 + 8k3)k3

4 + k4
4 + k2

4(−3 + 64k2
3 − 2k3(−8 + k5))+

2(1− 8k3)k3k4k5 + k2
3k

2
5) + ε2(k4

4 − k3
4(1 + k3(−8 + k5))− 8k2

3k
2
4k5−

k2
3k

2
5 + k3k4k5(1 + k3k5))2 + 4εk3k4k5(−k6

4 + k3k
5
4(−16 + k5)− k3

3k
3
5+

k3
3k4k

2
5(8 + k5)− k3(−1 + 8k3)k2

4k5(3 + 2k3k5) + k4
4(3 + 16k2

3(−4 + k5)+

2k3k5) + 2k3
4(−1 + k3(8− 3k5) + 32k3

3k5 − k2
3(−8 + k5)k5))).

Thus, the matrix A can have a pair of purely imaginary eigenvalues if and only if α = 0. Solving the
latter equation for ε we obtain

ε = − 2k3k4k5(−k4 + 8k3k4 + k2
4 + k3k5)

(−k4 + k3k5)(−k2
4 + 8k3k2

4 + k3
4 − k3k5 + k3k4k5)

. (20)
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Now, solving the semialgebraic system

k1 > 0 ∧ k2 > 0 ∧ k3 > 0 ∧ k4 > 0 ∧ k5 > 0 ∧ b < 0 ∧ ε > 0

with Reduce of Mathematica, we obtain that the solution is given by inequalities (17). �

4. Limit cycles of system (2)

In this section we study the limit cycle bifurcations of system (15). The system (15) is not a polynomial
system, so we expand the function on the right-hand side of the second equation of (15) into a power series
up to the third order, obtaining the system

ẋ =− k3k5

k4
x− k2z − xz,

ẏ = x− (εk2 + 8k3)y +

(
εk2

2
− ε2k2

2
− 4k3

)
y2

+

(
−εk2

3
+
ε2k2

2
− ε3k2

6

)
y3 +

4k4z

k5
+ . . . ,

ż = 2k3k5y − k4z + k3k5y
2,

(21)

where the dots stand for terms of the order higher than three.
Using a linear transformation, it is possible to transform system (13) to a system of the form (4)

(with λ = −1) and then study its limit cycle bifurcations using the normal form theory. However, then the
coefficients of the obtained system will contain radical expressions, which will essentially slow down symbolic
computations with Mathematica (or another computer algebra system). So, instead of transforming (15)
to a system of the form (4) and then applying the normal form theory, we use the way provided by Theorem
1. Using this approach, we look for function (7) satisfying (8), where now G1, G2, G3 are the right-hand
sides of (21).

The computational procedure to find the first m polynomials gi is as follows.
1. Write down the initial string of (7) up to order 2m, Ψ2m(x, y, z) = q(x) +

∑2m
j+k+`=3 ajklx

jykzl.
2. For each i = 3, . . . , 2m equate coefficients of terms of order i in the expression

F2m =
∂Ψ2m

∂x
G1 +

∂Ψ2m

∂y
G2 +

∂Ψ2m

∂z
G3 − g1(y2 + z2)2 − · · · − g2m(y2 + z2)2m (22)

to zero, obtaining 2m− 1 systems of linear variables in unknown variables ajkl, and g1, . . . , gm.
3. Look for solutions of the obtained linear systems consequently, starting from systems that correspond

to i = 2. Each linear system that corresponds to odd i = 2i0 − 1 has a unique solution with respect
to unknown ajk`. After solving the system (for instance, with the command Solve in Mathematica),
substitute the obtained values of ajkl to the linear systems that correspond to i > 2i0−1. For systems that
correspond to even i = 2i0, consider the linear system as a system in unknowns ajkl and gi0 . In this case,
one of ajkl can be chosen arbitrarily. After solving the system, assign the value 1 to the undefined ajkl if
i0=2, or assign the value 0 for the undefined ajkl if i0 > 2, then substitute the obtained values of ajkl to
the linear systems that correspond to i > 2i0. In this step the quantity gi0−1 is computed.

The calculations using the procedure described above (we did them with Mathematica) yield the
polynomial g1 given in Appendix 1.

Let us denote k = (k3, k4, k5).

Theorem 2. If for system (15) conditions (16) and (20) are fulfilled, and for some fixed values k∗ =
(k∗3, k

∗
4, k
∗
5) satisfying (17) g1(k∗) < 0, then the system has a stable focus at the origin on the center manifold,

and if g1(k∗) > 0, then the focus is unstable. Moreover, if at least one of the functions ∂g1(k)
∂k3

, ∂g1(k)
∂k4

, ∂g1(k)
∂k5

is different from zero for k = k∗, then the system undergoes a subcritical Hopf bifurcation if g1(k∗) < 0,
and a supercritical Hopf bifurcation if g1(k∗) > 0.
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Proof. Calculations using the procedure described above yield that, for system (21), the quadratic part of
function (7) is

q(x, y, z) =− k4

(−1 + 8k3)k2
4 + k3

4 − k3k5 + k3k4k5
x2−

2k3k5

(−1 + 8k3)k2
4 + k3

4 − k3k5 + k3k4k5
xy + y2−

k2
4(−1 + 8k3 + k4)

k3k5((−1 + 8k3)k2
4 + k3

4 − k3k5 + k3k4k5)
xz−

−k4 + k2
4 + k3k5

k3k4k5
yz +

k4 − (1 + 8k3)k2
4 − k3k5 + k3k4k5

4k2
3k4k2

5

z2.

(23)

We look for the center manifold in the form

x = h(y, z) (24)

Then the function h is computed from the equation

ẋ− ẏ ∂h
∂y
− ż ∂h

∂z
= 0,

where the left-hand side is evaluated for x, defined by (24).
Computing the first two terms of the series expansion of the center manifold we find

x =
k4 − k3k5

k4
y − (k4 − k3k5)(k2

4 + k3k5)

2k3k2
4k5

z + h.o.t.

We substitute the obtained expression into (23), and using the Sylvester criterion with Reduce of Mathe-
matica, verify that, if condition (17) holds, then the quadratic approximation of the obtained expression is
a positively defined quadratic form. Thus, from the Hopf theorem (see e.g. Theorem 3.4.2 in [Guckenheimer
& Holmes, 1990]) and Theorem 1 we obtain that the conclusion of the theorem holds. �

Since we were unable to compute the quantity g2 for general parameters k3 and k4 at our computational
facilities, in order to simplify the further analysis we set

k3 = k4 =
1

10
. (25)

Then, from (17), we obtain that 0 < k5 < 0.1. The only root of the polynomial g1 in this interval is
k̄5 ≈ 0.05147292, and g1 is strictly increasing on this interval. The plot of g1 on this interval is given in
Fig. 1.

The quantity g2 computed for the values of parameters given by (25) is given in Appendix 2.

Theorem 3. There are systems (15) with two limit cycles in a neighborhood of the singular point at the
origin.

Proof. Since g1(k5) is an increasing function on (0, 0.1), if 0 < k5 < k̄5, then the singular point at the
center manifold is a stable focus, and if k̄5 < k5 < 0.1, then it is an unstable focus. If k5 = k̄5 then
g2(k̄5) ≈ −0.554882 < 0 and, therefore, the singular point is a stable focus. Thus, according to Theorem 1,
after the perturbation of k5 in a neighborhood of k5 = k̄5 in such a way that g1 becomes positive, a stable
limit cycle is born at the center manifold.

Since, after such perturbation, the real part of the eigenvalue is still zero and the transversality con-
dition for α defined by (18) is satisfied, one more limit cycle is born as the result of the Hopf bifurcation.
�

Example 1. The existence of a stable limit cycle of system (13) for the values of parameters

k∗ = (k1, k2, k3, k4, k5, ε) = (0.320238, 4.92673, 0.1, 0.1, 0.065, 0.0071041) (26)
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Fig. 1. Solutions X1(t), Y1(t) and Z1(t) of the initial problems X1(0) = 3.9267, Y1(0) = 0.5, Z1(0) = 0.085 and X1(0) =
4.7267, Y1(0) = 0.8, Z1(0) = 0.085 of the system (13) for parameters k∗ given in (26) converge to a stable limit cycle when
t→∞.

is evident from Figure 1. Since for these values of parameters the real part of the eigenvalues of the singular
point at the origin of system (15) is zero and

∂α

∂k4
|k∗ 6= 0,

where α is defined by (18), an unstable limit cycle can appear from the singular points after the Hopf
bifurcation.

Example 2. In Figure 2 we observe 2 limit cycles in system (13) for the values of parameters

k∗ = {k1, k2, k3, k4, k5, ε} = {0.320238, 4.92673, 0.1, 0.1, 0.065, 0.0072041} . (27)

The outer stable limit cycle is clearly visible. Since for these values of parameters α defined by (18) is
negative, the singular point is stable. Thus, the trajectories corresponding to the smallest ring in Figure
2 tend to zero when time increases. It means that there is an unstable limit cycle in the area between the
smallest and middle rings in Figure 2.

Fig. 2. Two limit cycles in system (13) with parameters (27) and the initial conditions (X1, Y1, Z1) = (, , ), (, , ) and (, , ).

To conclude, we have shown that for some values of parameters in system (2) not only a Hopf bifurcation
occurs, but also degenerate Hopf bifurcations occur, so there are systems in the family with two limit cycles.
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5)

(98209 + 739620k5 − 748900k2
5 − 162000k3

5 + 90000k4
5)

(−5− 675k5 − 29643k2
5 − 389205k3

5 + 1470264k4
5 − 1661040k5

5 + 610560k6
5)

(3 + 540k5 + 30683k2
5 + 561150k3

5 − 34888k4
5 − 2005920k5

5 + 1462400k6
5)
)
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