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This paper constructs a new class of two-dimensional maps with closed curve fixed points.
Firstly, the mathematical model of these maps is formulated by introducing a nonlinear func-
tion. Different types of fixed points which form a closed curve are shown by choosing proper
parameters of the nonlinear function. The stabilities of these fixed points are studied to show
that these fixed points are all non-hyperbolic. Then a computer search program is employed to
explore the chaotic attractors in these maps, and several simple maps whose fixed points form
different shapes of closed curves are presented. Complex dynamical behaviours of these maps are
investigated by using the phase-basin portrait, Lyapunov exponents, and bifurcation diagrams.

Keywords: Two-dimensional map; fixed point; stability; non-hyperbolic fixed point; chaotic at-
tractor.

1. Introduction

Chaotic attractors with a special structure of equilibria in continuous dynamical systems have attracted
great attention from many researchers, since these attractors are associated with hidden attractors [Leonov
& Kuznetsov, 2013; Dudkowski et al., 2016; Pham et al., 2017] which cannot be found using traditional
computational methods. Attractors with no equilibrium or with only one stable equilibrium are considered
as “hidden”, because their basins of attraction do not intersect with small neighborhoods of the equilibria.

* Author for correspondence.



2 H.B. Jiang et al.

Due to their “hidden” feature, which is difficult to be found in systems, researchers have extensively explored
chaotic attractors with no equilibria [Wei, 2011; Wang et al., 2012; Jafari et al., 2013; Pham et al., 2014;
Wei et al., 2014; Lin et al., 2016; Pham et al., 2016a; Wang et al., 2016; Yu et al., 2016; Dantsev, 2018; Zhan
et al., 2018] and with only one stable equilibrium [Wei & Yang, 2011; Wang & Chen, 2012; Molate et al.,
2013; Wei & Zhang, 2014]. Some elementary quadratic chaotic flows with no equilibria were studied firstly
[Wei, 2011; Jafari et al., 2013; Pham et al., 2014; Dantsev, 2018]. Then some hyper-chaotic attractors with
no equilibria were investigated [Wang et al., 2012; Wei et al., 2014; Pham et al., 2016a] and multi-wing
non-equilibrium attractors were considered [Yu et al., 2016; Wang et al., 2016; Lin et al., 2016; Zhan et
al., 2018]. Furthermore, some chaotic flows with one stable equilibrium [Wei & Yang, 2011; Wang & Chen,
2012; Molate et al., 2013] and hyper-chaotic flows with one stable equilibrium [Wei & Zhang, 2014] were
investigated. Recently, many works have focused on the attractors with various types of infinite equilibria.
For example, Jafari & Sprott [2013] presented some simple flows with a line equilibrium, and then some
hyper-chaotic attractors with a line equilibrium were studied [Li & Sprott, 2014; Li et al., 2014a,b, 2015;
Ma et al., 2015; Pham et al., 2016b]. Researchers also investigated chaotic attractors with the equilibria
in different shapes, including circular curve [Chen & Yang, 2015; Gotthans & Petrzela, 2015; Pham et
al., 2016¢; Kingni et al., 2016; Barati et al., 2016; Singh & Roy, 2017; Wang et al., 2017], square curve
[Gotthans et al., 2016], and rounded square curve [Pham et al., 2016d]. Jafari et al. [2016a] investigated
simple chaotic flows with a plane of equilibria, and then with many surfaces of equilibria [Jafari et al.,
2016b; Singh et al., 2018]. In addition, Wang & Chen [2013] developed a method to construct a chaotic
system with any number of equilibria. Based on the three-dimensional Lii chaotic system, Zhou & Yang
[2014] introduced a four-dimensional nonlinear system with infinite equilibrium points, and verified the
existence of hyperchaos by means of topological horseshoe theory and numerical computation.

More recently, chaotic attractors with a special structure of fixed points in discrete-time maps have
received much attention, and the research in this area is still immature and there are many unexplored
openings, e.g. [Heatha et al., 2015; Jafari et al., 2016¢; Dudkowski et al., 2016; Jiang et al., 2016a,b; Liu
et al., 2017; Chen et al., 2017; Panahi et al., 2018; Zhang & Jiang, 2018; Wang et al., 2018]. Jiang et
al. [2016a,b] studied hidden chaotic attractors with no fixed point and a single stable fixed point in a
class of two-dimensional maps and three-dimensional maps, respectively. Liu et al. [2017] put forward a
new high-dimensional hyperchaotic map with infinite equilibria, which can exhibit complex behaviours,
including chaos, hyperchaos, multiple coexisting attractors, and three typical bifurcations. Chen et al.
[2017] introduced some four-dimensional discrete chaotic maps with one-line equilibria. Panahi et al. [2018]
proposed two simple chaotic maps without equilibria and investigated their dynamical properties. Zhang &
Jiang [2018] presented some elementary quadratic chaotic maps with a single non-hyperbolic fixed point.
Wang et al. [2018] proposed a new two-dimensional chaotic map with hidden attractors by following the
Arnolds cat map. On the other hand, multistability in dynamical systems has been extensively investigated
as it widely exists in dynamical systems [Li & Sprott, 2013; Lai & Chen, 2016; Li et al., 2017; Lai et al.,
2017, 2018a,b]. For example, Li & Sprott [2013] studied multistability in a butterfly flow. Li et al. [2017]
proposed a method to diagnose multistability by offset boosting. By constructing new chaotic systems,
various types of coexisting attractors have been shown in [Lai & Chen, 2016; Lai et al., 2017, 2018a,b].

This paper aims to explore some elementary quadratic chaotic maps with closed curve fixed points
by performing an exhaustive computer search [Sprott, 2000, 2010]. As shown in [Jafari & Sprott, 2013;
Chen & Yang, 2015; Jafari et al., 2016a,b], the chaotic maps with closed curve fixed points belong to the
category of chaotic maps with hidden attractors, since the knowledge about fixed points does not help
in the localization of attractors. It is interesting that all the fixed points to be studied in this paper are
non-hyperbolic, and chaotic attractors will be presented using phase-basin portrait and will be numerically
analyzed using the Lyapunov exponents and the Kaplan-Yorke dimension. Our investigation will show that
there is no repelling fixed point in these maps, so the Marotto’s theorem is invalid [Zhang & Jiang, 2018].
Multistability in the quadratic chaotic maps with closed curve fixed points will be shown, including: (i)
chaotic attractor, period-2 solution and fixed point coexist; (ii) quasi-periodic solution, period-2 solution
and fixed point coexist; (iii) high-periodic solution, period-2 solution and fixed point coexist. Findings of
this paper are useful for researchers to get insight into the dynamical mechanisms of discrete-time maps.

The rest of this paper is organized as follows. In Section 2, the mathematical model of this class of
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two-dimensional maps with closed curve fixed points will be introduced, and the existence and stability
of their fixed points will be studied. In Section 3, chaotic attractors with closed curve fixed points will be
explored, and finally, some conclusions are drawn in Section 4.

2. System model and fixed points

During the search of hidden attractors in maps, we found a new class of two-dimensional maps which can
be written using the following difference equation.

Tpr1 = Tk + a1 f(Tr, Yk ), (1)
Yrr1 = Yk + [ (@, yr) (a22k + azyp + sz + asyy + aseryr + az),
where z and yi (kK =0,1,2,---) are system states, a; (i = 1,---,7) are system parameters, f(x,y) is a

nonlinear function which is chosen as
—(Ey (Y2 2
flay) = (4 (L =2, 2)

where m > 0, n > 0, p > 2 and r > 0 are real parameters which can be specified by researcher, and p is a
properly selected integer, e.g. f(z,y) = 0 represents a closed curve.
The fixed points (z*,y*) of the map (1) must satisfy the following conditions

x* Zx*+a1f($*,y*)7 (3)
y* =y + f(a*y) (aea® + azy® + aa(e*)? + as(y*)® + asry* + ar).

By solving Eq. (3), fixed points are (z*,y*) which satisfy f(x*,y*) = 0. So the fixed points of the map (1)
form a closed curve. A summary of different shapes of fixed points based on the nonlinear function f(z,y)
is given in Table 1 [Pham et al., 2017].

Table 1. Different shapes of fixed points based on the nonlinear function f(z,y)

Cases Parameters flz,y) Fixed points types
A m=1ln=1Lp=2r=1 2 + y2 -1 Circular fixed points
B p=2r=1 (%)2 + (%)2 -1 Ellipse fixed points
C m=1n=1p=12;r=1 1?4 y12 -1 Square-shaped fixed points
D p=12,r=1 (%)12 + (%)12 — 1 | Rectangle-shaped fixed points
E m=1n=1p=4 =t + y4 —r? Rounded-square fixed points

The Jacobian matrix of the map (1) at the fixed points (z*,y*) can be written as

L+ ay fe(z*,y%) a1 fy(z™, y*)
J = 4
Jo1 J22 ’ (4)

where Jo1 = fo (2%, y*) (agx* + asy* +as(z*)? +a5(y*)? + asx*y* +ar) and Jag = 1+ f, (z*, y*) (a2x* +azy* +
as(x*)? + as(y*)? + agx*y* + ar), fu(x,y) and fy(z,y) are the partial derivative of f(z,y) with respect to
x and y, respectively. The characteristic equation of the Jacobian matrix can be calculated using

det(M — J) = A2 — tr(J)A + det(J) = 0, (5)

where det(J) and tr(J) represent the determinant of the Jacobian matrix and the trace of the Jacobian
matrix, respectively. From the theory of matrices, the sum of eigenvalues of the Jacobian matrix equals to
tr(J), and the product of eigenvalues of the Jacobian matrix equals to det(.J).

Figenvalues Aq, Ao of J are called multipliers of the fixed point. Let n_, ng and ny be the numbers
of multipliers of the fixed point (z*,y*) lying inside, on and outside the unit circle {\ € C : |A| = 1},
respectively. So the following definition is given.

Definition 2.1. ([Kuznetsov, 1998]) A fixed point (z*,y*) is called hyperbolic if ng = 0, that is, if there is
no eigenvalue of the Jacobian matrix evaluated at this fixed point on the unit circle. Otherwise, the fixed
point is called non-hyperbolic, that is, there is at least one eigenvalue of the Jacobian matrix evaluated at
the fixed point on the unit circle.
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A fixed point (z*,y*) of the map (1) is stable if the roots A1, A2 of the characteristic equation satisfy
that |\ 2] < 1. It is easy to check that 1 — tr(J) 4 det(J) = 0, so there is a real root A = +1. Therefore,
from Definition 2.1, all the fixed points of the map (1) are non-hyperbolic.

Remark 2.1. The map (1) has fixed points which form a closed curve. However, we cannot determine the
stability from the definition. So, some fixed points may be stable, while others may be unstable. In the map
(1), other types of attractors may also exist, e.g. chaotic attractors, quasi-periodic solutions and periodic
solutions. Thus, multistability can be observed.

3. Dynamical behaviours of chaotic maps with closed curve fixed points

In this study, a computer search program [Sprott, 2010] was used to explore the strange chaotic attractors
with closed curve fixed points, and many chaotic maps were found. In this section, several simple chaotic
maps with closed curve fixed points will be chosen to show the complex dynamics of this class maps.

Five typical examples of the maps with different types of closed curve fixed points are presented in
Table 2, where initial value (zg,y0), Lyapunov exponents (Les), and Lyapunov (Kaplan-Yorke) dimension
(Dky) of these maps are given. It can be verified that the fixed points of the maps listed in Table 1 locate
in closed curves. It also can be seen from Table 2 that all the maximal Lyapunov exponents are positive,
so the maps with the given initial values are all chaotic. In addition, the phase portraits of these simple
chaotic maps with closed curve fixed points are presented in Fig. 1, where the chaotic attractors are marked
by black dots and the red curves represent fixed points of these maps.

Table 2. Several simple chaotic maps with closed curve fixed points

Cases Maps , , (z0,v0) Les Dky Fixed points types

CFq { ;’:111 : ;: :;yi:(;’;; —’J;?ZJJ% _g 11)) (0.27,0.28) —00113?}??6 1.9865 Circular fixed points

CFy, ;C:ill i ;: __yskig(xz)% _:_521,1)% __1? (—4.91,-0.33) 7001115;17 1.4260 Ellipse fixed points

CF. :’;:1—11 : ;:j(%;é;zi%gigygi— 3 (0.26,—0.14) _2012272(?7 1.6152 Square-shaped fixed points
Thy1 = Tk z e — . .

CFy { Yor 1 = yiJF 2.22(;6(8(3554)11% +4(%)112 _) (4.93,—0.8) —001?;(;)8 1.5406 | Rectangle-shaped fixed points

CF. ;::11 - ;: - o 8;: (mj_?i " _)1) (0.81,-014) | 20 | 15665 | Rounded-square fixed points

In the following, the map CF, (when a; = 1.2, a2 = a4 = a5 =as = a7y =0,a3 =2, m=1,n =1,
p =2, r = 1) is chosen to study the dynamics of the map with closed curve fixed points. Since the fixed
points of this map are all non-hyperbolic, one cannot determine their stabilities from eigenvalues of the
Jacobian matrix evaluated at the fixed points of the map CF, directly. So, the basins of attraction of the
map CF, as shown in Fig. 2 were used to evaluate their stabilities, where unbounded basin of attraction is
displayed in cyan, chaotic attractors are denoted by black dots with white basin, asymptotically stable fixed
points are marked by blue dots with orange basin, period-2 solution is shown by purple dots with green
basin, and unstable fixed points are presented using red dots. Here, some of the non-hyperbolic fixed points
are stable, while the others are unstable. When y; = 0, the map CF,, is reduced to xx1+1 = 2+ 1.2(3:% —1).
In this case, there exists a stable period-2 solution, i.e. (—1.3861,0) and (—0.28056,0). The Lyapunov
exponent of the stable period-2 solution of the difference equation xj1 = x) + 1.2(z3 — 1) is —0.1732,
which was computed by using the definition of Lyapunov exponent of one-dimensional map. It should be
noted that the basin of attraction of this period-2 solution is a line of y = 0 where = € (—1.9,1.0).

In order to show the complex dynamical behaviours of the chaotic map with circular fixed points,
random bifurcation and Lyapunov exponent diagrams of the map CF, were plotted in Fig. 3 by using ag as
a branching parameter, where 5000 random initial conditions for each value of the parameter a3 were used.
In Fig. 3 (a) and (b), attractors are denoted by black dots, and in Fig. 3 (c¢) and (d), the largest Lyapunov
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Fig. 1. (Colour online) Phase portraits of chaotic attractors of (a) CFq4: Circular fixed points, (b) CFy: Ellipse fixed points,
(¢) CF¢: Square-shaped fixed points, (d) CF4: Rectangle-shaped fixed points, and (e) CFe: Rounded-square fixed points listed
in Table 2. Chaotic attractors are marked by black dots, and red curves represent fixed points of the map.

exponent (Lel) and second Lyapunov expoent (Le2) are shown, respectively. The Lyapunov exponent of
the period-2 solution is shown by a red line. Since all the fixed points of the map CF, are non-hyperbolic,
i.e. one eigenvalue of the Jacobian matrix evaluated at the fixed point is 1, the largest Lyapunov exponent
(Lel) of the stable fixed point is 0, which is shown by a blue line. The second Lyapunov expoents (Le2)
of fixed points are denoted by blue dots. The Lyapunov exponents of other solutions are denoted in black.
Representative random phase portraits of the map CF, with different parameter a3 are shown in Fig. 4,
where 5000 random initial conditions were used. In Fig. 4, attractors are denoted by black dots, and the
unstable fixed points are shown by red dots. From Fig. 3 and Fig. 4, the evolution of complex dynamical
behaviours can be described as follows.

When a3 = 0, the map CF, becomes x4 = x + 1.2(1‘% + yl% —1), yp+1 = yr and y can be considered
as an external force of the first difference equation with respective to x. Here the phase portrait is shown
in Fig. 4(h). As the parameter a3 decreases from zero, there are two attractors, the stable fixed points
from the unit circle and the stable period-2 solution of the difference equation xyi1 = zp + 1.2(z7 — 1).
At a3 = —1.55, a period-4 solution emerges and then becomes a quasi-periodic solution which is shown as
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Fig. 2. (Colour online) Basins of attraction of the map CF,. Unbounded basin of attraction is shown in cyan, the chaotic
attractors shown in black dots have a white basin, the asymptotically stable fixed points shown in blue dots have yellow basin,
the period-2 solution denoted by purple dots has a green basin, and unstable fixed points are marked by red dots.

four circles in Fig. 4 (e-f) via Neimark-Sacker (NS) bifurcation. These four circles gradually become larger
(see Fig.4 (c-d)), and at ag = —1.59, chaotic attractors are observed for a very tiny range (see Fig.4 (b)).
Then the chaotic attractors disappear via chaotic crisis, and the attractors become the fixed points from
the unit circle and the stable period-2 solution (see Fig. 4 (a)).

As the parameter ag increases from zero, there are two types of attractors, the stable fixed points from
the unit circle and the stable period-2 solution of the difference equation zpy1 = x + 1.2(:(}% —1). At
as = 1.58, a period-4 solution emerges and then changes to a quasi-periodic solution via NS bifurcation at
a3 = 1.80 (see Fig. 4 (j-1)). These four circles gradually become larger, and thereafter chaotic attractors
are observed for a small range (see Fig. 4 (n-0)) at where periodic windows exist (see Fig. 4 (m)). Then
the chaotic attractors disappear due to chaotic crisis, and the attractors change to the stable fixed points
from the unit circle and the stable period-2 solution (see Fig. 4 (p)).

From the bifurcation analysis of the map CF,, the map with closed curve fixed points can exhibit dif-
ferent dynamical behaviours, including fixed points, periodic solutions, quasi-periodic solution, and chaotic
attractors. Some circular fixed points are stable, while others are unstable. On the other hand, many at-
tractors may coexist in the map with closed curve fixed points, e.g. (i) chaotic attractor, period-2 solution
and fixed point coexist; (ii) quasi-periodic solution, period-2 solution and fixed point coexist; (iii) high-
periodic solution, period-2 solution and fixed point coexist. The appearance and disappearance of chaotic
attractors has illustrated the generation mechanisms of the chaotic attractors in the maps.

4. Conclusions

Chaotic dynamics of a class of two-dimensional maps with closed curve fixed points, which belong to
hidden attractor category, was studied in this paper. A computer search program was used to explore
simple chaotic attractors with closed curve fixed points which were presented by using phase portraits.
Numerical methods, including computations of basins of attraction and Lyapunov exponents, and random
bifurcation analysis, were used to demonstrate the complex dynamical behaviours of these maps. Future
works will focus on the investigation of the high dimensional maps with a special structure of fixed points.
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