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The long-term mean-field dynamics of coupled underdamped Duffing oscillators driven by an 

external periodic signal with Gaussian noise is investigated. A Boltzmann-type H-theorem is proved 

for the associated nonlinear Fokker-Planck equation to ensure that the system can always be relaxed 

to one of the stationary states as time is long enough. Based on a general framework of the linear 

response theory, the linear dynamical susceptibility of the system order parameter is explicitly 

deduced. With the spectral amplification factor as a quantifying index, calculation by the method of 

moments discloses that both mono-peak and double-peak resonance might appear, and that noise 

can greatly signify the peak of the resonance curve of the coupled underdamped system as compared 

with a single-element bistable system. Then, with the input signals taken from laboratory 

experiments, further observations show that the mean-field coupled stochastic resonance system can 

amplify the periodic input signal. Also, it reveals that for some driving frequencies, the optimal 

stochastic resonance parameter and the critical bifurcation parameter have a close relationship. 

Moreover, it is found that the damping coefficient can also give rise to nontrivial non-monotonic 

behaviors of the resonance curve, and the resultant resonant peak attains its maximal height if the 

noise intensity or the coupling strength takes the critical value. The new findings reveal the role of 

the order parameter in a coupled system of chaotic oscillators. 

Keywords: Duffing oscillator, order parameter, Boltzmann-type H-theorem, pitchfork 

bifurcation, stochastic resonance 

1. Introduction 

Stochastic resonance (SR) was originally proposed for explaining the periodic recurrence 

of the warm and the cold climates [Benzi et al., 1981]. Although SR could not be verified in 

paleoclimatology, it was subsequently verified by various experiments using, for example, 

Schmidt trigger circuits [Fauve & Heslot, 1983], bistable ring lasers [Mcnamara et al., 1988], 

nanomechanical systems [Douglass et al., 1993] and mammalian neuronal networks [Badzey 

& Mohanty, 2005]. Such experiments were proven successful in explaining the SR phenomenon. 

A special characteristic of SR lies in that a suitable amount of noise can lead to a distinctive 

enhancement of a weak input component to a nonlinear system [Jung, 1993; Gammaitoni et al., 

1998; Cherubini et al., 2017], similarly to the periodic recurrence of the warm and the cold 

climates. To date, SR has been widely applied to various engineering fields, ranging from signal 

processing and detection [Lee et al., 2003; Sun & Kwong, 2007; Fu et al., 2018], early fault 

diagnosis [Vania & Pennacchi, 2004; Leng et al., 2006; Qiao et al., 2017; Ma et al., 2018], 

energy harvesting [Harne & Wang, 2013], to image processing [Singh et al., 2017]. Fig. 1 shows 

an application example of SR in image detection. 

 

http://xueshu.baidu.com/s?wd=author%3A%28Jingling%20Zhang%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson
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(a) Original image                 (b) Thresholded image with little noise 

  

(c) Thresholded image with moderate noise  (d) Thresholded image with superfluous noise 

Fig.1. Application example of SR in image detection. The original image in (a) is taken in darkness. The 

images in (b), (c) and (d) are obtained through a threshold transform of the original picture added 

Gaussian noise of three different noise intensities. It is clear from (b) to (d) that a suitable amount of 

noise reveals the hidden keyboard image but superfluous noise conceals it again. 

 

Several methods have been presented to enhance the resonance effects for various 

applications, for instance, altering the shape of the potential and periodic forces of a single 

system [Wio & Bouzat, 1999; Gandhimathi et al., 2008; Arathi et al., 2011] or coupling several 

subsystems to obtain an enhanced collective response [Jung et al., 1992; Lindner et al., 1995; 

Morillo et al., 1995; Kang & Jiang, 2009; Nicolis & Nicolis, 2017]. Specifically, the earliest 

investigation on the collective response can be dated back to the work based on nonlinear master 

equations [Jung et al., 1992]. Later on, enhanced SR was applied to a nearest-neighbor coupled 

system of overdamped nonlinear oscillators [Lindner et al., 1995]. Further on, in the mean-field 

coupling limit of overdamped oscillators, Gaussian white noise-induced SR of the order 

parameter was investigated in [Morillo et al., 1995; Kang & Jiang, 2009]. Very recently, it was 

found in [Nicolis & Nicolis, 2017] that the presence of spatial degrees-of-freedom modifies the 

transition mechanism of the finite-size mean-field coupled model of overdamped oscillators. 

All these investigations revealed that coupling is a very effective way to enhance the effects of 

SR. 

The prototypical system for SR is the noisy overdamped bistable oscillator model. And 

yet it was found that the underdamped bistable oscillator model is more effective in the early 

detection of mechanical defaults [Rebolledo-Herrera & Fv, 2016; López et al., 2017]. This 

motivates the present study to investigate the resonance enhancement using coupling 

underdamped bistable units, specifically Duffing oscillators, thus providing some reference for 

relevant engineering applications. In fact, in the underdamped case, several interesting results 

were reported [Lindner et al., 2001; Ngouongo et al., 2017]. For instance, a local coupled 
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system of nonlinear underdamped oscillators was demonstrated in [Lindner et al., 2001], which 

exhibits multiple distinctive SR peaks by modifying the natural frequency of each subsystem.  

In this paper, a diffusively coupled system of N   identical underdamped Duffing 

oscillators is considered, where the evolution of each oscillator is governed by the Langevin-

type stochastic differential equation 
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where the constants a  and b are positive, so that the deterministic autonomous subsystem 

is bistable, )(t   represents an external periodic signal, with white Gaussian noise ( )i t

satisfying 0)( ti   and )(2)()(  ijji Dtt   , Nji ,,2,1,   , which models the 

environmental fluctuations,   is the damping coefficient and   is the coupling strength of 

the mean-field interactions among subsystems. Usually, the mean output response defined by 
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)( , also referred to as the order parameter, is adopted to describe the collective 

response of the system.  

    It is noted that model (1) was used to describe the dynamics of muscle contraction 

[Kometani & Shimizu, 1975; Desai & Zwanzig, 1978; Dawson, 1983] when the external 

perturbation is absent, i.e. 0)( t . In the present paper, the focus is on the case with a 

sufficiently large value of N. In this case, with the law of large numbers, all the subsystems of 

model (1) can be simplified to the same evolution equation: 

)()()()( 3 tttXbxxaxx    .               (2) 

Let ),,( tvxP  be the coordinate-velocity probability density function at time t  of model (2). 

Then, the nonlinear Fokker-Planck (FP) equation governing the probability density evolution 

reads [Cardiner, 1985] 
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where 
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with a normalization constant Z   satisfying 1),(
2 0  dxdvvxP

R
 . Here, the equilibrium 

order parameter 0X  is implicitly determined by
20 0 ( , )

R
X xP x v dxdv  . 

In Sec. 2 next, it will be proven that a Boltzmann H-theorem holds for the nonlinear FP 
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Eq. (3). Then, bifurcation diagrams of the equilibrium order parameter are depicted and 

analyzed. In Sec. 3, under the framework of the general linear response theory, applied to the 

nonlinear FP equation, an explicit relation between the order parameter and the linear 

susceptibility is derived. To that end, a procedure for calculating the order parameter in terms 

of the linear mean response is devised. Furthermore, the mono- or double-resonance behavior 

of the order parameter is discussed. In Sec. 4, the connection between the resonance peak and 

the order parameter bifurcation is revealed. Finally, conclusions are drawn in Sec. 5. 

2. A Boltzmann-type H-theorem 

The classical Boltzmann H-theorem states that the transient solution starting from any 

initial condition of an autonomous nonlinear evolutionary equation converges to one of the 

asymptotical solutions as time approaches infinity. It was developed to capture the tendency for 

a gas to return to an equilibrium of the evolution equation [Huang, 1963]. A Boltzmann-type 

H-theorem for the nonlinear FP equation corresponding to the mean-field coupling limit of 

overdamped oscillators was developed in [Shiino, 1985, 1987]. Here, the H-theorem is 

generalized from the overdamped setting to the underdamped setting when 0)( t . 

Assume that ),,( tvxP  
is an arbitrary solution of Eq. (3) with 0)( t  therein. Then, 

inspired by the work in [Shiino, 1985, 1987], define a new H functional by 
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yields a stationary condition, 

   0)( 3

2

2
















x

Q
vQXbxxav

vv

Q
D  .          (6) 

Moreover, it is easy to verify that 
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Then, based on Eqs. (6) and (7), the following Boltzmann-type H-theorem can be 

established. 

H-Theorem The H functional )),(( tPH   defined in (5) has the following properties:  
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function of time is monotonically decreasing. 

Proof: (i) Let ),,(1 tvxQ  and ),,(2 tvxQ  be any time-dependent solutions of the unperturbed 

nonlinear FP equation. Then, )/ln( 12112 QQQQQ   since )0(ln1  xxx  and, thus, 

.0)/ln(
2 211 R dxdvQQQ                       (8) 

Here, the normalization requirements for the two probability density functions have been used. 

Define 
 




















22

22
)(

2

1

4
exp),,()(

22
24

RR
dxdvD

Xv
Xxxax

b
dxdvtvxQXZ


 . 
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(ii) Let ),,( tvxP  be a solution of the nonlinear FP Eq. (3) with 0)( t  therein. Then，
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According to Eqs. (6) and (7), the first and third terms on the right-hand side of Eq. (11) vanish. 

Therefore, one finally obtains 
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The above H-theorem states that the H functional decreases monotonically in time due to 

property (ii) but cannot decrease indefinitely due to property (i). As a result, dttPdH /)),((   

must vanish as time approaches infinity. Thus, from Eq. (12), one obtains 0lnlim 
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up to a normalization constant, implying that any time-dependent solution of the unperturbed 

FP equation (3) converges to one of its stationary probability density functions as time tends to 

infinity. 

Since any transient solution converges to some stationary solution in the large time limit, 

one can investigate the bifurcation behavior of the nonlinear Eq. (3) in the absence of ( )t  by 

means of the implicit equation
20 0 ( , )

R
X xP x v dxdv  . Fig.2 shows the bifurcation diagram of 

the order parameter versus the coupling strength and the noise intensity, respectively. As can be 

seen from the figure, for a given  , there exists a critical noise intensity 
cD  such that the 

equilibrium order parameter takes two stable states when 
cDD   but only one stable state 
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when 
cDD  . For a fixed 𝐷, there also exists a critical coupling strength 

c  such that the 

equilibrium order parameter undergoes a (pitchfork) bifurcation as the value of   increases. 

 

  

Fig.2. Bifurcation diagram of the stable equilibrium order parameter versus the coupling strength and 

the noise intensity. The involving system parameters are 4.0 , 1.0a   and 1.0b  , respectively. 

3. Linear response analysis 

The classical Floquet theory applicable to time-varying linear systems cannot guarantee 

that the asymptotic solution of the nonlinear FP equation is periodic in time [Morillo et al., 

1995]. Nevertheless, due to the above-derived H-theorem, any time-dependent solution of the 

unperturbed version of nonlinear FP Eq. (3) can converge to one of the stationary solutions. 

Therefore, one can employ the technique of perturbation analysis [Risken, 1989] to explore the 

long-term dynamics of system (3), provided that the external input ( )t  is sufficiently weak. 

3.1 Linear susceptibility versus order parameter 
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unperturbed FP operator and 1( , , ) [ ( ) ( )]extL x v t X t t
v

 
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 is the perturbation operator 
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where )0()()( xtxtKxx   is the stationary autocorrelation function for the unperturbed 

system. Then, the above equation leads to the well-known Klein-Kramers relation [Risken, 

1989] 

https://www.bibsonomy.org/person/1d1d01e90c7f0fa5aa401e94e33cfc8fd/author/0
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1( ) ( ) ( )X      .                        (17) 

Here, 
)(

~
1

)(
~

)(





R

R

-
   satisfying )()( *     is the so-called linear dynamic 

susceptibility of the order parameter [Morillo et al., 1995]. To this end, by letting

tt  cos)( 0 , it immediately follows from Eq. (17) that 

)]()()[()(
~

01  X  

and ])([Re)( 01

tietX   . 

3.2 Calculation of linear susceptibility  

Next, take tt  cos)( 0
  

with 10    to calculate the linear susceptibility. The 

main idea underlying the calculating procedure is to combine the method of weighed series 

expansion [Evstigneev et al., 2002; Kang et al., 2003; Kang, 2011; Liu & Kang, 2018] and the 

harmonic balance method [Lim et al., 2001], where the weighting function is taken as the 

stationary solution of the unperturbed version of Eq. (3) so as to satisfy the natural boundary 

conditions. This method was applied to linear FP equations before [Evstigneev et al., 2002; 

Kang et al., 2003; Kang, 2011; Liu & Kang, 2018], but it is applied to the nonlinear FP equation 

here for the first time.  

Under the framework of the linear response theory, one can seek the asymptotic solution 

of Eq. (13) such that 

 )sin),(cos),((),,( 121101 tvxPtvxPtvxP   ,            (18) 

where ),(11 vxP  and ),(12 vxP  are unknown functions satisfying 

    
0),(),(

22 1211   RR
dxdvvxPdxdvvxP . 

due to the normalization requirement as a probability. 

Substituting Eq. (18) into Eq. (3) and using the orthogonality of trigonometric functions, 

one obtains 
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)},(])({[),(),( 120

3

122

2

11 vxPxbxxav
v

vxP
v

DvxP  








  

),()],([ 12012
vxP

x
vvxPx

v 







                        (19) 

and 

)},(])({[),(),( 110

3

112

2

12 vxPxbxxav
v

vxP
v

DvxP  








  

),()},(]1{[ 11011
vxP

x
vvxPx

v 







  .                (20) 

Here, )sincos()(
121100

txtxxtXas    with 
i

  and
i1

   stands for the 

integral with respect to the probability density ),( vxPi
 and ),(1 vxP i

, respectively.  

Let ),(),(),( 12111 vxiPvxPvxP  . Then, Eqs. (19) and (20) can be combined into one 

equation as 

)},(])({[),(),( 10

3

12

2

1 vxPxbxxav
v

vxP
v

DvxPi  








-  

),()},(]1{[ 101
vxP

x
vvxPx

v 







  .               (21) 

Let ),( vxF   be an arbitrary function of coordinates x   and v  , and assume that the 

corresponding time-dependent moment 
2

),,(),()(),(
R

dxdvtvxPvxFtvxF
  

exists. Then, 

multiplying the right-hand and the left-hand sides of Eq. (21) by ),( vxF  and then integrating 

the result over the x v  plane leads to 

 
2

3

21 0 1
1 1 0 01

{[ ( ) ]} .
F F F F F

i F D v a x bx x v x
v v x v v

    
    

          
    

 

Rewriting ),(),(),( 101 vxpvxPvxP   and noting that 

),(])([
1

00

30 vxPxxabx
Dx

(x,v)P
 




, ),(

),(
0

0 vxP
D

v

v

vxP





, 

one obtains 

0
01

00

11

0

1

01
v

F
xp

v

F

x

p

v

F

v

p

x

F
D

v

p

v

F
DFpi




































 - .   (22) 

In order to find ),(1 vxp , decompose ),(1 vxp  into 

1 ,

0 0

k

j k j t

j k

p (x,v) c H (v / v )x
 

 

 ,                  (23) 
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where 
jH  stands for the jth Hermite polynomial and Dvt 2 .  

Here, it is remarked that the decomposition with respect to the velocity v  is the same as 

that in [Evstigneev et al., 2002; Liu & Kang, 2018], but a bit different from that in [Kang et al., 

2003; Kang, 2011]. Nevertheless, numerical experiment shows that the two forms of 

decomposition have the same convergence speed.  

Now, substituting expansion (23) into Eq. (22) with 
l

ts xvvHvxF )/(),(   , ,1,0s  , 

one obtains an infinite set of linear algebraic equations: 

0

1

1 0

,1
0

1

0 0

,1
0

0 0

, 2)1(2)( 






























  lk

s k

ks

lk

s k

ks

lk

s k

ks xkDcxlsDcxsic 

1

0, 0 0 0
0

2 2k l l

k

k

c x x D x D






         
 ,      (24) 

where some properties of Hermite polynomials have been applied. For numerical calculation, 

truncate j and k in Eq. (23) and then substitute it into Eq. (24). Then, a block-tridiagonal system 

for the unknown coefficient vectors 
T

Kssss cccc ),,,( ,1,0,   is obtained as follows: 







































































0

0

0

1

2

1

0

1

22

111

00





d

c

c

c

c

AC

B

AC

BAC

BA

JJJ

J

                (25) 

with entries of the involving matrices given by  

   

,)()(
0

,

kl

kls xisA   ,)1(2)(
0

1

,

 kl

kls xlsDB  

,
2

1
2/)(

000

1

,1

lkkl

kl xx
D

xkDC 1-  

,)2(2/)(
0

1

,   sxkDC kl

kls
 

and the components of the right-hand vector given by 1 0
( ) 2 .l

ld x D  When 0s  

and 0l , the normalization of the probability is satisfied naturally. 

The Gaussian block-elimination method can then be used to solve system (25). With the 

solution so obtained, the linear dynamical susceptibility 
2

),()( 1
R

dxdvvxxP  can be 

obtained, as 

  .
0

0

1

,001 



K

k

k

k xcxp
                  

(26) 
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The numerical experiment shows that the method of moments converges quite fast as the 

truncation orders increase. In the following calculations, fix 10K , 10J  because larger 

values of K  and J   do not change the results by more than 0.5% in the parameter range 

considered. To confirm the accuracy of the method of moments, the Euler-Maruyama method 

[Fox et al., 1988; Higham, 2001] is also adopted for simulations. As shown in Fig. 3, there is a 

good agreement between the theoretical curve and the simulated curve, validating the method 

of moments with the given parameters. In fact, more comparisons have been carried out, 

showing a good agreement between the two methods for 30.0D . Corresponding theoretical 

results include the one shown in Fig. 4, where only the theoretic results with noise intensity are 

displayed under this constraint.  

With the linear dynamical susceptibility available, one can use the spectral amplification 

factor defined by 
2

)(  [Jung, 1993; Gammaitoni et al., 1998] to measure the resonance 

behavior in the order parameter of system (2). It was found [Alfonsi et al., 2000; Kang et al., 

2003] that, as a result of the coexistence of three types of motions (i.e., intrawell oscillation, 

interwell random transition and over-barrier vibration), the dependence of the spectral 

amplification factor on the noise intensity in a single underdamped bistable Duffing oscillator 

might exhibit mono- or double-peak resonance structures.  

 

     

Fig.3. Dependence of the linear dynamical susceptibility (real part (a) and imaginary part (b)) 

on driving frequency. The system parameters are taken as 1.0a  , 1.0b   , 4.0  and

6.0 . 

 

Here, the question is how the mean-filed coupling will affect these structures. As can be 

seen from Fig. 4, the order parameter can once again exhibit double-peak resonance behavior 

at some driving frequencies. Interestingly, the effects of the mono-peak resonance and the 

double-peak resonance are both enhanced. This observation enables one to generalize the 

existing results of coupling enhancing SR [Jung et al., 1992; Lindner et al., 1995; Morillo et 

al., 1995; Kang & Jiang, 2009; Nicolis & Nicolis, 2017], from the overdamped setting to the 

underdamped setting. More interestingly, by tuning the mean-coupling strength with a fixed 

noise intensity, a weird parameter-induced double resonance can be observed. This implies that 

tuning parameter paves a new way to induce double-peak SR. 
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Fig.4. Dependence of the spectral amplification factor on the noise intensity (a), (b) and on the 

coupling strength (c), (d). The other parameters are taken as 1.0a  , 1.0b  , 4.0
 

and 1.0  

in (a), (c), 3.0  in (b), (d).  

3.3 Response to general weak periodic signals 

Consider the question of how to obtain the long-time response of the order parameter to 

general weak periodic signals using the principle of superposition. Two examples are discussed.  

First, consider the case where the external perturbation is a weak periodic square wave 

signal of the form 1

0

( 1)
( ) ( 1) , , , 1,2,k k k
t t k

 
   

      
with 10  . Noting that the 

Fourier series for this signal reads 





1

))12sin(()(
k

tkMt   with 
)12(

4 0




k
M



  , one 

immediately obtains the following Fourier transform: 

     





1

)])12(())12(([)(~

k

kkMi  . 

Substituting this equation into Eq. (17) yields 

 





1

1 )])12(())12(([)()(
~

k

kkMiX  . 

Thus, an operation of inverse Fourier transform gives 

1

1

( ) [ ((2 1) )exp( (2 1) ) ( (2 1) )exp( (2 1) )]
2 k

i
X t M k i k t k i k t 





            . 
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Hence, the long-time order parameter within linear response range (as shown in Fig. 5) reads 

0

1

( ) Im[ ((2 1) )exp( (2 1) )]as

k

X t X M k i k t




      . 

  

Fig.5. The periodic telegraph signal (a) and long-time order parameter (b): direct simulation (black 

dotted) and theoretical method (blue solid) in the first example with parameters 1.0a  , 1.0b  ,

6.0 , 5.0D , 4.0 , 03.00   and 10.0 . 

 

Second, consider the case where the external perturbation is a periodic envelope signal 

generated from unilateral attenuation impulse in gear fault [Zhang et al., 2017], in the form of  

)),mod(exp()( 00 Ttdt   , where d  is the attenuation rate and 0T  is the driving period. 

In this case, the corresponding Fourier transform is 











11

0 )]()([)]()([)()(~

k

k

k

k kkbikkaa  ,       (27) 

where
))((

))exp(1(2
22

0

00






kdT

ddT
ak


 ,

))((

)))(exp(1(2
22

0

00






kdT

kdT
bk


 for 0,1,2,k   . 

Substitution of Eq. (27) into Eq. (17) yields 











11

01 )]()([)()]()([)()()()(
~

k

k

k

k kkbikkaaX  . 

Thus, 

 0
1

1 1

( ) (0) Re[ ( )exp( )] Im[ ( )exp( )].
2

k k

k k

a
X t a k ik t b k ik t  

 

 

         

Within the linear response range, the long-time order parameter reads 0 1( ) ( )asX t X X t  , as 

shown in Fig. 6. 
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Fig.6. The envelope signal (a) and the long-time order parameter (b): direct simulation (black dotted) 

and theoretical method (blue solid) in the second example with parameters 1.0a  , 1.0b  , 6.0 ,

45.0D , 4.0 , 03.00  , 
02 0.04T     and 2.0d . 

 

Recall that Fig. 3 clearly shows that both the real part and the imaginary part of the linear 

dynamical susceptibility are generally more sensitive to lower frequency signals, and thus the 

low frequency signals should be easier to be amplified by the proposed mean-field model at a 

suitable noise level. In fact, as shown in Fig. 5 and Fig. 6, both low-frequency periodic signals 

are amplified by more than two times at the prescribed noise level. 

4. Stochastic resonance and bifurcation  

As shown in Fig.2, when the control parameter such as the noise intensity or the coupling 

strength passes through a critical value, the equilibrium order parameter of the mean-field 

coupled system (2) with the absence of external periodic signals will change from a trivial phase 

into a nontrivial phase. Correspondingly, the effective potential 

xX
bxxa

xU 0

42

42

)(
)( 





  will lose its symmetry in shape at the critical point, and this 

will certainly affect the resonance. Thus, it is natural to question whether there is a relationship 

between the SR behavior of the collective response and the bifurcation of the order parameter. 

For simplicity, only the connection of the mono-SR peak and the order parameter bifurcation is 

considered here. In the following numerical simulation, time step is 0.01. 

The dependence of the unperturbed order parameter and the spectral amplification factor 

on the noise intensity for different coupling strengths is shown in Figs.7 (a) and (b), respectively. 

It is easy to see that, as the mean-field coupling strength is enhanced, although the critical noise 

intensity at the bifurcation point and the optimal noise intensity, where the spectral 

amplification factor attains peak value, shifts towards a higher noise level, the SR peak grows 

higher and higher quickly, just like what happened in the overdamped case [Morillo et al., 1995; 

Kang & Jiang, 2009]. This observation implies that one can firmly improve the effect of the 

spectral-amplification-factor measured resonance by strengthening the coupling interactions 

among these underdamped oscillators. Moreover, by a more careful examination, it can be seen 

that the critical noise intensity (denoted by the vertical dash line in Fig. 7(a)) is almost the same 

as the optimal noise intensity (denoted by the vertical dash line in Fig. 7(b)) for a given coupling 
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strength. It should be emphasized that this observation is useful since it is instructive for 

mechanical engineers to approximate the optimal noise intensity by the critical noise intensity 

in their fault detection applications [Vania & Pennacchi, 2004; Leng et al., 2006; Qiao et al., 

2017; Zhang et al., 2017; Ma et al., 2018].  

 

  
Fig.7. Bifurcation diagrams of the equilibrium order parameter versus the noise intensity (a) and 

dependence of the spectral amplification factor on the noise intensity (b). The system parameters are 

taken as 1.0a  , 1.0b  , 1.0  and 4.0 . The vertical dash lines mark the locations of the 

bifurcation points and the resonant peaks. By checking the horizontal coordinates of the intersection 

points of the vertical dash lines with the level axis, a corresponding relation between the pitchfork 

bifurcation and SR is clear.  

 

The dependence of the unperturbed order parameter and the spectral amplification factor 

on the coupling strength for different noise intensities is shown in Figs. 8 (a) and (b), 

respectively. It can be observed that the critical coupling strength at the bifurcation point 

becomes larger as the noise intensity becomes higher. This observation sufficiently 

demonstrates that the bifurcation is closely related to noise. Meanwhile, one can see that, as the 

noise intensity becomes higher, not only the optimal coupling strength at the resonance peak 

becomes larger, but also the peak height of the SR curve becomes higher. This undoubtedly 

demonstrates the counterintuitive role of noise in the way just like SR in a single underdamped 

system. Further, by checking the vertical dash lines, one can find again that the optimal coupling 

strength of SR is in coincidence with the critical coupling strength at the bifurcation point. 

Hence, this might offer a good suggestion to the mechanical engineers to approximate the 

optimal coupling strength by the critical coupling strength if they adopt a coupling strength 

parameter induced SR in their applications. 
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Fig.8. Bifurcation diagram of the equilibrium order parameter versus the coupling strength (a) and 

dependence of the spectral amplification factor on the coupling strength (b). The system parameters are 

taken as 1.0a  , 1.0b  , 1.0 , and 4.0 . Again, by checking the intersection points of the 

vertical dash lines with the horizontal axis, from where a corresponding relation between the horizontal 

coordinates is clear. 

 

With the damping coefficient as a tunable parameter, the underdamped bistable Duffing 

oscillator has a more practical advantage comparing to the overdamped oscillator, since the 

damping coefficient might induce SR [Evstigneev et al., 2002; Liu & Kang, 2018]. In order 

to check the effect of the mean-field coupling on the dissipation-induced SR, the dependence 

of the spectral amplification factor on the damping coefficient is shown in Fig. 9. From Fig.9 

(a), one can see that, for fixed  , the resonance effect is not monotonically changing with 

the noise intensity, instead there exists an optimal noise intensity 16.0optD such that the 

highest resonance peak can be achieved. Analogously, for fixed D, from Fig. 9(b) one can 

see that there exists an optimal coupling strength 23.0opt , where the highest resonance 

peak arrives. Moreover, a more careful scrutiny of Figs. 7-8 with Fig. 9 discloses that, for the 

dissipation-induced SR, the optimal noise intensity 
optD   is close to the critical noise 

intensity 14.0cD  of the noise intensity induced bifurcation, and the optimal coupling 

strength
opt  takes the same value with the critical coupling strength c  of the coupling 

strength induced bifurcation. This observation further confirms the connection of the 

bifurcation and the SR. 
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Fig.9. Dependence of the spectral amplification factor on the damping coefficient. The other 

parameters are taken as 1.0a  , 1.0b  , 1.0 , 2.0 in (a) and 15.0D in (b). From these 

cures, one can see that the peak of the dissipation-induced SR is neither a monatomic function of 

the noise intensity nor the coupling strength. In fact, the peak is related to the critical values of the 

bifurcation of the order parameter showed in Figs. 7-8. 

 

5. Conclusions 

The long-term mean-field dynamics of coupled underdamped Duffing oscillators driven 

by an external periodic signal with Gaussian noise has been investigated. A Boltzmann-type H-

theorem has been established for the associated nonlinear Fokker-Planck equation to ensure the 

long-time stationary state of the system. Based on the general framework of linear response 

theory and in terms of linear dynamical susceptibility, a key order parameter has been 

introduced and then the effect of the system parameters such as noise intensity and coupling 

strength on SR and bifurcation dynamics of the collective response has been investigated, 

revealing the connection between the optimal stochastic resonance parameter and the critical 

bifurcation parameter. The new results can be regarded as an extension and complement from 

the coupled model of overdamped bistable oscillators to the underdamped setting.  

The main research findings can be summarized as follows. Firstly, for both cases of mono-

peak and double-peak resonance curves, the mean-field coupling is always beneficial for the 

resonance enhancement. Secondly, for the mono-peak stochastic resonance, the optimal noise 

intensity is closely related to the critical noise intensity of the order parameter bifurcation; 

similarly, for the coupling-strength-induced mono-peak stochastic resonance, the optimal 

coupling strength is the critical coupling strength. Thirdly, for the dissipation-induced stochastic 

resonance, there exists an optimal noise intensity or an optimal coupling strength that 

maximizes the resonance effect. These new observations offer a good reference for practical 

applications, including weak signal detection and early mechanical fault diagnosis, for which 

one could use the critical control parameters of the unperturbed order parameter bifurcation to 

approximate the optimal control parameters of stochastic resonance, under a suitable scale 

transform, in designing resonance detecting devices.  
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