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Dynamics of weakly mixing non-autonomous systems

Mohammad Salmana, Ruchi Dasa,†

Abstract

For a commutative non-autonomous dynamical system we show that topolog-
ical transitivity of the non-autonomous system induced on probability measures
(hyperspaces) is equivalent to the weak mixing of the induced systems. Several
counter examples are given for the results which are true in autonomous but
need not be true in non-autonomous systems. Wherever possible sufficient con-
ditions are obtained for the results to hold true. For a commutative periodic
non-autonomous system on intervals, it is proved that weakly mixing implies
Devaney chaos. Given a periodic non-autonomous system, it is shown that sensi-
tivity is equivalent to some stronger forms of sensitivity on a closed unit interval.

Keywords : Non-autonomous; Probability measures; Hyperspaces; Weakly mix-
ing; Sensitivity
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1 Introduction

The theory of dynamical systems is a successful mathematical tool to describe time-
varying phenomena. Its wide application area varies from simple motion of a pendulum
to complicated climate models in physics and complex signal transduction process in
biological cells. One of the most significant constituent of dynamical systems theory
is chaos which is closely related to different forms of mixing. Parameters in real-
world problems are rarely independent of time and thus non-autonomous systems,
whose law of behavior is influenced by external forces, are widely useful over the last
decades. The external influence can be of different nature, it could be a periodic force
or a noisy process which could modulate the functional relationships that define the
interactions among systems. Such systems constitute the core mechanism for non-
stationary output signals. Also, for an appropriate time-dependence of the external
factor, there is a possibility that a non-autonomous dynamics is stationary. Therefore,
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a non-autonomous system acts as a functional generator for both stationary and non-
stationary dynamics. In this paper, we consider the following non-autonomous discrete
dynamical system, which can be seen as the discrete analogue of a non-autonomous
differential equation

xn+1 = fn(xn), n ≥ 1, (1)

where (X, d) is a metric space and fn : X → X is a continuous map, for each n ≥ 1
and the n-th iterate is given by composition of different maps fi’s. When fn = f , for
each n ≥ 1, then the above system becomes autonomous dynamical system (X, f). In
1996, non-autonomous discrete dynamical systems were introduced by Kolyada and
Snoha [8]. There are different types of non-autonomous systems such as uniformly
convergent, finitely generated, periodic, etc. It often happens that the external factor
responsible for the non-autonomicity is itself deterministic, for instance, periodic, which
shows the significance of finitely generated non-autonomous systems. The study of
complexity and chaos of non-autonomous systems has seen an increasing interest of
many researchers in recent years [1, 5, 12, 15, 17, 18, 19, 20, 22].

A dynamical system induces two natural systems; one on hyperspaces and the other
on probability measures spaces. Such systems are crucial as most of the natural phe-
nomena occur collectively as union of several components and hence non-autonomous
system on induced spaces plays an improtant role in dynamics of nature. Probability
measures have varied applications in different fields such as physics, finance, biology,
etc. In 1975, Bauer and Sigmund initiated study of connection of various topological
properties of dynamical systems with the induced systems in [3]. Since then both the
induced systems have been studied by many authors, cf., [2, 4, 9, 10, 11, 21]. Recently,
we have studied different forms of specification properties on induced systems [16].
Weak mixing is vital in the study of chaos theory as it implies sensitivity which is a
key ingredient of chaos. Also, it is important to measure how much chaotic the system
is, which resulted in the study of stronger forms of sensitivity initiated by Moothathu
in [13]. Devaney chaos and sensitivity for non-autonomous dynamical systems were
introduced by Tian and Chen [19]. Ever since the study of non-autonomous systems
started two natural questions regarding Devaney chaos are : When does topological
transitivity and density of periodic points imply sensitivity? When does topological
transitivity on intervals implies Devaney chaos? Many authors have given different
sufficient conditions in [12, 22], which answers the first question. Recently, we proved
that on finitely generated non-autonomous systems transitivity and density of periodic
points imply thickly syndetical sensitivity and hence sensitivity [15]. The second one
is still an open problem.

This paper is organized as follows. In Section 2, we give the preliminaries required
for the remaining sections of the paper. In Section 3, we study the interrelation of
weakly mixing and other related properties of a non-autonomous system and its in-
duced probability measures non-autonomous system. Equivalence of weakly mixing and
topological transitivity of a commutative induced non-autonomous system on probabil-
ity measures space and on hyperspaces is shown. In Section 4, we give counter examples
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for the results which are true in autonomous systems but not in non-autonomous sys-
tems and where ever possible sufficient conditions are obtained for the results to hold
true. For a commutative finitely generated non-autonomous system it is shown that
every weakly mixing system is thickly sensitive. It is proved that on commutative peri-
odic non-autonomous systems weakly mixing implies Devaney chaos and if an induced
autonomous system from a periodic non-autonomous system is topologically transitive
on intervals, then the non-autonomous system is Devaney chaotic. In Section 5, we first
give examples to show that in non-autonomous systems sensitivity need not be equiv-
alent to cofinite sensitivity and other stronger forms of sensitivity. Sufficient condition
is given under which sensitivity is equivalent to some stronger forms of sensitivity in a
non-autonomous system.

2 Preliminaries

In this section, we give some definitions and relevant concepts which are required for
remaining sections of the paper. Throughout this paper, (X, d) will denote a compact
metric space, N the set of natural numbers and Bd(x, ǫ) the open ball of radius ǫ > 0
and center x. Denote f1,∞ := {fn}

∞
n=1, and for all positive integers i and n, f i

n :=

fn+i−1 ◦ · · · ◦ fn, f
0
n := id and the kth iterate by f

[k]
1 = {fk

k(n−1)+1}
∞
n=1, for any k ∈ N.

We say that (X, f1,∞) is a periodic discrete system, if there exists k ∈ N such that
fn+km(x) = fn(x), for any x ∈ X , m ∈ N and 1 ≤ n ≤ k. A non-autonomous system
(X, f1,∞) is said to be finitely generated, if there exists a finite set F of continuous
self maps on X such that each fi of f1,∞ belongs to F . Clearly, every periodic non-
autonomous system is finitely generated. For the system (1), the orbit of any point
x ∈ X is the set, {fn

1 (x) : n ≥ 0} = Of1,∞(x). A point x ∈ X is said to be periodic,
for the non-autonomous system (X, f1,∞), if there exists n ∈ N such that fnk

1 (x) = x,
for every k ∈ N [12]. We say that the system (X, f1,∞) has dense small periodic set if
for any non-empty open subset U of X , there exist a closed subset F ⊆ U and n ∈ N

with fnk
1 (F ) ⊆ F , for every k ≥ 1. If V is a non-empty, closed and invariant subset

of X , and no proper subset of V is non-empty, closed and invariant, then V is said to
be a minimal subset of (X, f1,∞). For a non-autonomous system (X, f1,∞), we put X2

= X × X and (f1,∞)2 = (g1, g2, . . . , gn, . . . ), where gn = fn × fn, for each positive
integer n. Therefore, (X2, (f1,∞)2) is a non-autonomous dynamical system. We have,
gn1 = gn◦gn−1◦· · ·◦g2◦g1 = (fn×fn)◦(fn−1×fn−1)◦· · ·◦(f2×f2)◦(f1×f1) = fn

1 ×fn
1 .

Similarly we can define (Xm, (f1,∞)m) in general for any positive integer m.
Let K(X) denote the hyperspace of all non-empty compact subsets of X endowed

with the Vietoris Topology. A basis for Vietoris topology is given by the sets, 〈U1, U2,
. . . , Uk〉 = {K ∈ K(X): K ⊆

⋃k

i=1 Ui and K ∩ Ui 6= ∅, for each i ∈ {1, 2, . . . , k}},
where U1, U2, . . . , Uk are non-empty open subsets of X . Let x ∈ X , A ∈ K(X), then we
write N(A, ǫ) =

⋃
a∈A Bd(ǫ, a). The Hausdorff metric in K(X) induced by d, denoted

by H is defined by H(A,B) = inf{ǫ > 0 : A ⊆ N(B, ǫ) and B ⊆ N(A, ǫ)}, where A,
B ∈ K(X). The topology induced by the Hausdorff metric on K(X) coincides with
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the Vietoris topology if and only if the space X is compact [7]. Let (X, f1,∞) be a
non-autonomous dynamical system and fn the continuous function on K(X) induced
by fn defined by fn(K) = fn(K), K ∈ K(X), for each n ∈ N. Then the sequence f 1,∞

= (f 1, . . . , fn, . . .) induces a non-autonomous discrete dynamical system (K(X), f1,∞),

where f
n

1 = fn ◦ · · · ◦ f 2 ◦ f 1.
Let B(X) be the σ-algebra of Borel subsets of X and M(X) be the set of all Borel

probability measures on (X,B(X)) andM(X) be equipped with the Prohorov metric D
defined by D(µ, ν) = inf{ǫ : µ(A) ≤ ν(N(A, ǫ))+ ǫ and ν(A) ≤ µ(N(A, ǫ))+ ǫ, for each
A ∈ B(X)}. It is known that topology induced by D is the weak*-topology on M(X)
[6]. For x ∈ X , δx ∈ M(X) denote Dirac point measure, given by δx(A) = 1, if x ∈ A
and 0 otherwise. Let Mn(X) = {(

∑n

i=1 δxi
)/n : xi ∈ X (not necessarily distinct)}

and M∞(X) =
⋃

n∈N Mn(X). It is known that M∞(X) is dense in M(X) and each
Mn(X) is closed in M(X) [3]. For a non-autonomous system (X, f1,∞), we consider

the non-autonomous induced system (M(X), f̃1,∞), where each f̃i : M(X) → M(X)

is induced continuous function and f̃n
1 (µ)(A) = µ(f−n

1 (A)), µ ∈ M(X), A ∈ B(X) and
f−n
1 = (fn

1 )
−1.

Definition 2.1. [19] A non-autonomous system (X, f1,∞) is said to be topologically

transitive, if for each pair of non-empty open subsets U , V of X , there exists n ∈ N

such that fn
1 (U)∩ V 6= ∅. For any two non-empty open subsets U and V of X denote,

Nf1,∞(U, V ) = {n ∈ N : fn
1 (U)∩V 6= ∅}. A non-autonomous system (X, f1,∞) is totally

transitive if f
[n]
1,∞ is topologically transitive, for every n ≥ 1 and topologically mixing

if there exists n ∈ N such that Nf1,∞(U, V ) ⊇ [n,∞), for any pair of non-empty open
subsets U, V of X [5].

Recall that a non-autonomous system (X, f1,∞) is said to be point transitive if there
exists x ∈ X having dense orbit in X . Also, if (X, f1,∞) is topologically transitive, then
it is point transitive and the set of such points is dense in X [17].

Definition 2.2. [17] A non-autonomous dynamical system (X, f1,∞) satisfies Banks’s
condition if for any three non-empty open subsets U , V and W of X , there exists a
positive integer n such that fn

1 (U) ∩ V 6= ∅ and fn
1 (U) ∩W 6= ∅.

Definition 2.3. A non-autonomous dynamical system (X, f1,∞) is said to be weakly

mixing of order m (m ≥ 2), if for any non-empty open subsets U1, U2, . . . , Um, V1,
V2, . . . , Vm there exists n ∈ N, such that fn

1 (Ui) ∩ Vi 6= ∅, for each 1 ≤ i ≤ m. If the
non-autonomous system (X, f1,∞) satisfies above condition for m = 2, then it is called
weakly mixing.

Clearly, we have weakly mixing =⇒ Banks’s condition =⇒ topological transi-
tivity. In fact, for autonomous systems Banks proved that weakly mixing and Banks’s
condition are equivalent. However, for non-autonomous system this is not true as
shown by authors in [17].
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Definition 2.4. [19] The system (X, f1,∞) is said to exhibit sensitive dependence on

initial conditions if there exists δ > 0 such that, for every x ∈ X and any neighborhood
U of x, there exist y ∈ U and n ∈ N with d(fn

1 (x), f
n
1 (y)) > δ; δ > 0 is called a constant

of sensitivity.
We shall denoteNf1,∞(U, δ) = {n ∈ N : there exist x, y ∈ U such that d(fn

1 (x), f
n
1 (y))

> δ}, for any arbitrary open subset U of X .

A non-autonomous system (X, f1,∞) is said to be Devaney chaotic on X if it is
topologically transitive, has a dense set of periodic points and has sensitive dependence
on X.

Definition 2.5. [5] A non-autonomous system (X, f1,∞) is cofinitely sensitive if there
exists δ > 0 such that for any open subset U of X , Nf1,∞(U, δ) is cofinite, that is, there
exists N ∈ N with Nf1,∞(U, δ) ⊇ [N,∞) ∩ N.

Definition 2.6. A non-autonomous system (X, f1,∞) is multi-sensitive, if there exists
δ > 0 such that for any m ∈ N and any collection of non-empty open subsets V1, V2,
. . . , Vm of X ,

⋂m

i=1Nf1,∞(Vi, δ) 6= ∅, where δ > 0 is a constant of sensitivity.

Definition 2.7. A set F ⊆ N is called syndetic if there exists a positive integer a such
that {i, i+ 1, . . . , i+ a} ∩ F 6= ∅, for each i ∈ N. A non-autonomous system (X, f1,∞)
is syndetically sensitive if there exists δ > 0 such that for any open subset U of X ,
Nf1,∞(U, δ) is syndetic.

Definition 2.8. A thick set is a set of integers that contains arbitrarily long runs of
positive integers, that is, given a thick set T , for every p ∈ N, there is some n ∈ N such
that {n, n + 1, n + 2, . . . , n + p} ⊆ T . A non-autonomous system (X, f1,∞) is thickly

sensitive, if there exists δ > 0 such that for any open subset U of X , Nf1,∞(U, δ) is
thick.

Definition 2.9. A non-autonomous system (X, f1,∞) is said to be collectively sensitive,
if for x1, x2, . . . , xm ∈ X and any ǫ > 0 there exists yi ∈ X , for each i ∈ {1, 2, . . . , m}
with d(xi, yi) < ǫ, n ∈ N and i0 with 1 ≤ i0 ≤ m such that d(fn

1 (xi), f
n
1 (yi0)) > δ or

d(fn
1 (yi), f

n
1 (xi0)) > δ, for some δ > 0.

Definition 2.10. Let S ⊆ N and |S| denote the cardinality of S. Then d(S) =
lim sup
n→∞

1
n
|S ∩ {0, 1, 2, . . . , n − 1}| is called the upper density of S. A non-autonomous

system (X, f1,∞) is said to be ergodic sensitive, if there exists δ > 0 such that for any
open subset U of X , Nf1,∞(U, δ) has positive upper density.

3 Weakly Mixing on Induced Systems

In this section, we study the interrelation of weakly mixing and other related properties
of (X, f1,∞) and its induced probability measures non-autonomous system (M(X), f̃1,∞).
Equivalence of weakly mixing and topological transitivity of a commutative induced
non-autonomous system on probability measures space and hyperspaces is proved.
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Theorem 3.1. If the induced system (M(X), f̃1,∞) is topologically transitive, then

(X, f1,∞) satisfies Banks’s condition.

Proof. Let U , V1, V2 be non-empty open subsets of X . Let W1 = {µ ∈ M(X) :
µ(U) > 4/5} and W2 = {µ ∈ M(X) : µ(V1) > 4/5 and µ(V2) > 4/5}, then W1 and W2

are non-empty open subsets of M(X). If µn → µ such that µn ∈ M(X) \ W1, then
µn(U) ≤ 4/5 implying that µ(U) ≤ 4/5 and hence µ ∈ M(X) \W1. Thus, W1 is open

in M(X) and similarly W2 is also open in M(X). Now, since the system (M(X), f̃1,∞)

is topologically transitive, therefore there exists k ∈ N such that f̃k
1 (W1)∩W2 6= ∅. This

implies that there exists ν ∈ W1 with f̃k
1 (ν) ∈ W2 and hence f̃k

1 (ν)(Vi) = ν(f−k
1 (Vi)) >

4/5, for i = 1, 2. Also, as ν(U) > 4/5, so fk
1 (U) ∩ V1 6= ∅ and fk

1 (U) ∩ V2 6= ∅. Thus,
(X, f1,∞) satisfies Banks’s condition.

Note that if the system satisfies Banks’s condition, then it is topologically transitive.
Consequently, we have the following result.

Corollary 3.1. If (M(X), f̃1,∞) is topologically transitive, then so is (X, f1,∞).

Remark 3.1. Converse of Corollary 3.1 is not true in general as justified by Example
4.4

Theorem 3.2. A non-autonomous system (X, f1,∞) is weakly mixing of all orders if

and only if the induced system (M(X), f̃1,∞) is weakly mixing of all orders.

Proof. First suppose that (X, f1,∞) is weakly mixing of all orders. Let U1, . . . , Uk; V1,
. . . , Vk be the collection of non-empty open subsets of M(X). By density of M∞(X)
in M(X), we can choose r ∈ N such that

µj =
1

r

r∑

i=1

δ
x
j
i
∈ Uj and νj =

1

r

r∑

i=1

δ
y
j
i
∈ Vj , for j = 1, 2, . . . , k. (2)

Now, since (X, f1,∞) is weakly mixing of all orders, therefore for open neighbor-
hoods U j

i of xj
i and V j

i of yji , there exists n ∈ N with fn
1 (U

j
i ) ∩ V j

i 6= ∅, for all
i ∈ {1, 2, . . . , r} and j ∈ {1, 2, . . . , k}. Let zji ∈ fn

1 (U
j
i ) and zji ∈ V j

i , that is,
f−n
1 (zji ) ∈ U j

i and zji ∈ V j
i and hence using (2), we get ρj = (

∑r

i=1 δzji
)/r ∈ Vj . Now,

since f̃−n
1 (ρj)(U

j
i ) = ρj(f

n
1 (U

j
i )) = (

∑r

i=1 δzji
fn
1 (U

j
i ))/r and zji ∈ fn

1 (U
j
i ), therefore

f̃−n
1 (ρj) = (

∑r

i=1 δf−n
1

(zji )
)/r ∈ Uj. Thus, f̃n

1 (Uj) ∩ Vj 6= ∅, for every j ∈ {1, 2, . . . , k},

which gives that (M(X), f̃1,∞) is weakly mixing of all orders.
Conversely, for any k ∈ N, let U1, . . . , Uk; V1, . . . , Vk be any collection of non-

empty open subsets of X . Let Ui = {µ ∈ M(X) : µ(Ui) > 2/5} and Vi = {µ ∈
M(X) : µ(Vi) > 2/5}, for each i ∈ {1, 2, . . . , k}, then Ui, Vi are non-empty open

subsets of M(X). Now, as (M(X), f̃1,∞) is weakly mixing of all orders, so there exists

n ∈ N such that f̃n
1 (Ui)∩Vi 6= ∅, for each i = 1, 2, . . . , k. Therefore, there exists νi ∈ Ui
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with f̃n
1 (νi) ∈ Vi and hence f̃n

1 (νi)(Vi) = ν(f−n
1 (Vi)) > 2/5, for every i ∈ {1, 2, . . . , k}.

Also, µ(Ui) > 2/5 implies that fn
1 (Ui) ∩ Vi 6= ∅, for each i ∈ {1, 2, . . . , k}. Thus,

(X, f1,∞) is weakly mixing of all orders.

Corollary 3.2. If (M(X), f̃1,∞) is weakly mixing of order m, for any m ≥ 2, then so

is (X, f1,∞).

For a closed unit interval I, by [1, Theorem 11] and Theorem 3.2, we have the
following two results.

Corollary 3.3. If the non-autonomous system (I, f1,∞) is weakly mixing of order 3,

then (M(I), f̃1,∞) is weakly mixing of all orders.

Consequently, we have the following result.

Corollary 3.4. The non-autonomous system (I, f1,∞) is weakly mixing of order 3 if

and only if (M(I), f̃1,∞) is weakly mixing of order 3.

Now we prove the main result of this section.

Theorem 3.3. For a commutative non-autonomous system (X, f1,∞), the following

are equivalent:

(1) (X, f1,∞) is weakly mixing.

(2) (M(X), f̃1,∞) is weakly mixing.

(3) (M(X), f̃1,∞) is topologically transitive.

Proof. (1)⇒ (2). Since (X, f1,∞) is weakly mixing and f1,∞ is commutative, therefore
by [18, Lemma 3], f1,∞ is weakly mixing of all orders and hence by Theorem 3.2, we

get that (M(X), f̃1,∞) is weakly mixing of all orders and hence it is weakly mixing.
Clearly, (2) ⇒ (3).

Finally, we prove that (3) ⇒ (1). Let (M(X), f̃1,∞) be topologically transitive, then
by Theorem 3.1, (X, f1,∞) satisfies Banks’s condition. We show that for a commutative
family f1,∞ Banks’s condition implies weakly mixing. Let U1, U2, V1 and V2 be arbitrary
non-empty open subsets of X . Since (X, f1,∞) satisfies Banks’s condition, therefore
there exists n ∈ N such that fn

1 (U1) ∩ U2 6= ∅ and fn
1 (U1) ∩ V2 6= ∅. Consequently,

U = U1 ∩ f−n
1 (U2) and V = f−n

1 (V2) are non-empty open subsets of X . Applying
Banks’s condition to U , V and V1, we get a natural number k satisfying fk

1 (U)∩V1 6= ∅
and fk

1 (U)∩V 6= ∅. Hence, there exists x ∈ U such that fk
1 (x) ∈ f−n

1 (V2), which implies
fn
1 ◦ fk

1 (x) ∈ V2. Now, as the family f1,∞ is commutative, so fk
1 ◦ fn

1 (x) ∈ V2. Also,
since fn

1 (x) ∈ U2, therefore fk
1 (U2) ∩ V2 6= ∅ and U ⊆ U1 implies that fk

1 (U1) ∩ V1 6= ∅.
Thus, (X, f1,∞) is weakly mixing, which completes the proof.

7



Corollary 3.5. Let (X, f1,∞) be a non-autonomous system such that the family f1,∞
is commutative. If the induced system (M(X), f̃1,∞) is topologically transitive and has

dense periodic points, then it is Devaney chaotic.

Next, we discuss weakly mixing of the systems induced on hyperspaces. By [17,
Proposition 3.5, 3.10] and proceeding as in the Theorem 3.3, we get the following
famous Banks’s theorem for commutative non-autonomous systems.

Theorem 3.4. For a commutative non-autonomous system (X, f1,∞), the following

are equivalent:

(1) (X, f1,∞) is weakly mixing.

(2) (K(X), f 1,∞) is weakly mixing.

(3) (K(X), f 1,∞) is topologically transitive.

Remark 3.2. Note that if the family f1,∞ is not commutative, then above result is
not true as justified by [17, Example 3.2, 3.4].

By Theorem 3.4 and slight modification in the proof of [9, Theorem 1.1] for au-
tonomous systems, we get the following result.

Corollary 3.6. If the family f1,∞ is commutative and (X, f1,∞) is the corresponding

non-autonomous system, then the following are equivalent:

(1) (X, f1,∞) is weakly mixing with dense small periodic set.

(2) (K(X), f 1,∞) is weakly mixing with dense small periodic set.

(3) (K(X), f 1,∞) is Devaney chaotic.

To justify that the above result is not true if the family f1,∞ is not commutative
we recall the following example from [17].

Example 3.1. Let I be the closed unit interval and F be the set of elements (a, b, c, d)
such that a, b, c, d ∈ Q ∩ (0, 1), a < b; a 6= c, b 6= d and c 6= d. To every element
(a, b, c, d) in F , a homeomorphism f : I → I is assigned in two cases. If c < d, then f
is a function whose graph is determined by the segments [(0, 0), (a, c)], [(a, c), (b, d)]
and [(b, d), (1, 1)]. If c > d, then f is a function whose graph is determined by
the segments [(0, 1), (a, c)], [(a, c), (b, d)] and [(b, d), (1, 0)]. In both the cases f(a) =
c and f(b) = d. Let {fn : n ∈ N} be an enumeration of functions induced by
the elements of F . Consider the non-autonomous system (I, f1,∞), where f1,∞ =
{f1, f

−1
1 , f2, f

−1
2 , . . . , fn, f

−1
n , fn+1, f

−1
n+1, . . .}. Now, as f 2n−1

1 = fn, for each n ∈ N,
so f1,∞ is weakly mixing. Also, f 2k

1 (x) = x, for every k ∈ N and each x ∈ I implying
that every point is periodic point and hence the system (X, f1,∞) has dense small peri-
odic set. But (K(X), f 1,∞) is not topologically transitive as discussed in [17, Example
3.2], so it cannot be Devaney chaotic.
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4 Weakly Mixing and Related Properties

In this section, we give counter examples for the results which are true in autonomous
systems but not in non-autonomous systems. For a commutative finitely generated non-
autonomous system, it is shown that every weakly mixing system is thickly sensitive.
It is proved that on commutative periodic non-autonomous systems weakly mixing
implies Devaney chaos. Throughout this section, f1,∞ denote the surjective family,
that is, each fi is surjective.

For autonomous systems, it is known that if f is weakly mixing then fk is also
weakly mixing, for every k ≥ 2. We claim that this is not true for non-autonomous
system in general as justified by the following example.

Example 4.1. Let Σ2 = {0, 1}Z be the collection of two-sided sequences of 0 and 1, en-
dowed with product topology. Define σ : Σ2 → Σ2 by σ(x) = (. . . , x−2, x−1, x0, x1 , x2,
. . . ), where x = (. . . , x−2, x−1, x0 , x1, x2 . . .) ∈ Σ2, then σ is a homeomorphism
and is called the shift map on Σ2. For any k ≥ 2, we consider two cases, when
k is even, then we consider the non-autonomous system (Σ2, f1,∞), where f1,∞ =
{σ, σ−1, σ2, σ−2, σ3, σ−3, . . .} and when k is odd, then we consider the system (Σ2, g1,∞),
with g1,∞ = {σ, σ−1, i, . . . , i︸ ︷︷ ︸

(k − 2)-times

σ2, σ−2, i . . . , i︸ ︷︷ ︸
(k − 2)-times

σ3, σ−3, . . .}, where i : Σ2 → Σ2 is the

identity map. Note that f 2l−1
1 = σl, for any l ∈ N; g

(r−1)k+1
1 = σr, for any r ∈ N

and hence both (X, f1,∞) and (Σ2, g1,∞) are weakly mixing using the fact that σ is
topological mixing. But as fkl

1 = i, for k even and each l ∈ N and gkr1 = i, for k odd

and each r ∈ N, so f
[k]
1,∞, for k even and g

[k]
1,∞, for k odd are not topologically transitive

and hence cannot be totally transitive or weakly mixing.

Remark 4.1. The above example also shows that weakly mixing need not imply totally
transitive for non-autonomous systems in contrast to the case of autonomous systems.
Note that in the above example (Σ2, f1,∞) or (Σ2, g1,∞) is not topological mixing and
both f1,∞, g1,∞ are commutative and surjective.

Theorem 4.1. If the non-autonomous system (X, f1,∞) is topological mixing, then

(X, f
[k]
1,∞) is weakly mixing, for every k ≥ 2.

Proof. Let Ui, Vi be any non-empty open subsets of X , for i = 1, 2. By topological
mixing of f1,∞, there exist n1, n2 ∈ N such that fn

1 (U1) ∩ V1 6= ∅, for all n ≥ n1 and
fn
1 (U2)∩V2 6= ∅, for all n ≥ n2. Taking N = max{n1, n2}, we get that f

n
1 (Ui)∩ Vi 6= ∅,

for all n ≥ N and i = 1, 2. Now, for any k ∈ N, by Archimedean property of R, there
exists r ∈ N such that rk > N . Therefore, f rk

1 (Ui) ∩ Vi 6= ∅, that is, there exists r ∈ N

with (fk
k(r−1)+1 ◦ · · · ◦ f

k
1 )(Ui) ∩ Vi 6= ∅, for i = 1, 2 and each k ∈ N. Hence, (X, f

[k]
1,∞) is

weakly mixing, for every k ≥ 2.

Theorem 4.2. Let (X, f1,∞) be an m-period commutative non-autonomous system,

then (X, f1,∞) is weakly mixing if and only if f
[k]
1,∞ is weakly mixing, for every k ≥ 1.
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Proof. If (X, f1,∞) is weakly mixing, then by [18, Lemma 10], the autonomous system
(X, g) is weakly mixing, where g = fm ◦ · · · ◦ f1. Now, for autonomous system (X, g),
we have g is weakly mixing if and only if gk is so, for any k ∈ N. Therefore, for
any non-empty open subsets Ui, Vi of X , for i = 1, 2, there exists a natural number
r such that gkr(Ui) ∩ Vi 6= ∅, that is, (fm

1 )rk(Ui) ∩ Vi 6= ∅, for i = 1, 2. Now, as the
system (X, f1,∞) is m-periodic, so (fm

1 )rk = fmrk
1 and hence for s = mr, we get that

f sk
1 (Ui) ∩ Vi 6= ∅, that is, (fk

k(s−1)+1 ◦ · · · ◦ f
k
1 )(Ui) ∩ Vi 6= ∅, for i = 1, 2. Thus, f

[k]
1,∞ is

weakly mixing, for every k ≥ 1.

Corollary 4.1. For an m-periodic commutative non-autonomous system (X, f1,∞),
weakly mixing implies total transitivity.

For autonomous systems, it is known that (X, f) is weakly mixing if and only if
Nf (U, V ) is thick, for every pair of non-empty open sets U and V ofX. This equivalence
is not true in non-autonomous systems as justified by the example given below.

Example 4.2. Consider the non-autonomous system (Σ2, f1,∞) from Example 4.1,
that is, f1,∞ = {σ, σ−1, σ2, σ−2, σ3, σ−3, . . .}. Let U1, U2; V1, V2 be non-empty open
subsets of Σ2. Since σ is topologically mixing, therefore there exists k ∈ N such that
σn(Ui) ∩ Vi 6= ∅, for all n ≥ k and each i = 1, 2. Now, f 2k−1

1 = σk, which implies that
f 2k−1
1 (Ui) ∩ Vi 6= ∅, for each i = 1, 2 and hence f1,∞ is weakly mixing. Note that for
each i = 1, 2, we have Nf1,∞(Ui, Vi) = {2k − 1, 2k + 1, 2k + 3, . . .}, which is not thick.

Note that since the family f1,∞ is commutative and (Σ2, f1,∞) is weakly mixing,

therefore by Theorem 3.3, (M(Σ2), f̃1,∞) is weakly mixing. Also, as f 2k
1 (x) = x, for

every k ∈ N, so (Σ2, f1,∞) has dense periodic points and hence (K(Σ2), f1,∞) is weakly
mixing and Devaney chaotic.

In [15], we gave an example to show that weakly mixing need not imply thick
sensitivity in non-autonomous systems. Now, we give the sufficient condition under
which weakly mixing implies thick sensitivity in non-autonomous systems.

Theorem 4.3. Let f1,∞ be a finitely generated commutative family. If (X, f1,∞) is

weakly mixing, then it is thickly sensitive.

Proof. Let U be any non-empty open subset of X and 0 < ǫ < diam(X)/3. Since
(X, f1,∞) is weakly mixing and f1,∞ is commutative, therefore by Theorem 3.4, (K(X),
f 1,∞) is topologically transitive. Also, each fi being surjective, we have (K(X), f1,∞)

cannot be minimal. As K(X) is compact, so f1,∞ has dense transitive points in K(X)
and hence there exists a transitive point S of K(X) such that S ⊆ U = 〈U〉. We first
claim that N(S,BH(X, ǫ)) := {n ∈ N : f

n

1 (K) ∈ BH(X, ǫ)} is thick. If (X, f1,∞) is
finitely generated, then so is (K(X), f 1,∞) and since K(X) is compact also, therefore
there exists δ > 0 such that for any A, B ∈ K(X), for each j ∈ {1, 2, . . . , k} and for
all t ≥ 1, we get that

H(A,B) < δ ⇒ H(f
j

t(A), f
j

t(B)) < ǫ. (3)

10



Now, S being a transitive point, we have an existence of a natural number m with

f
m

1 (S) ∈ BH(X, δ). Thus, by (3), we get that H(f
j

m+1(f
m

1 (S), f
j

m+1(X)) < ǫ, that

is, H(f
m+j

1 (S), X) < ǫ, for j = 1, . . . , k implying that N(S,BH(X, ǫ)) is thick. Next,
we show that N(S,B(X, ǫ)) ⊆ Nf1,∞(U, ǫ) which will give that Nf1,∞(U, ǫ) is thick.
Let l ∈ N(S,B(X, ǫ)), then for s1, s2 ∈ S ⊆ U and for any x1, x2 ∈ X , we have
d(f l

1(si), xi) < ǫ, for i = 1, 2. By triangle inequality, we have

3ǫ ≤ d(x1, x2) ≤ d(x1, f
l
1(s1)) + d(f l

1(s1), f
l
1(s2)) + d(f l

1(s2), x2)

< 2ǫ+ d(f l
1(s1), f

l
1(s2)),

which implies that d(f l
1(s1), f

l
1(s2)) > ǫ and hence l ∈ Nf1,∞(U, ǫ) which gives that

N(S, B(X, ǫ)) ⊆ Nf1,∞(U, ǫ).

Example 4.3. Consider a 3-periodic non-autonomous system (X, f1,∞), where f1 = σ,
f2 = σ−2, f3 = σ2 and X = Σ2, that is, f1,∞ = {σ, σ−2, σ2, σ, σ−2, σ2, . . .}, where σ
is the shift map as defined in Example 4.1. Then (Σ2, f1,∞) is finitely generated and
commutative. Also, since f3 ◦ f2 ◦ f1 = σ and σ is weakly mixing, therefore (Σ2, f1,∞)
is also weakly mixing. Hence, we get that (Σ2, f1,∞) is thickly sensitive and totally
transitive.

Lemma 4.4. If (X, f1,∞) is a non-autonomous system such that each fi is an isometry

with X infinite, then (X, f1,∞) does not satisfy Banks’s condition.

Proof. Let x, y, z ∈ X be three distinct points and δ := min {d(x, y), d(y, z), d(z, x)}/4.
Let U , V1, V2 be open balls of radius δ around x, y and z, respectively. Since diam(U) ≤
2δ and each fi is an isometry, therefore diam(fn

1 (U)) ≤ 2δ, for each n ∈ N. Assume
that f1,∞ satisfies Banks’s condition, then there exists k ∈ N with fk

1 (U) ∩ V1 6= ∅ and
fk
1 (U) ∩ V2 6= ∅. Therefore, there exist p and q such that p, q ∈ fn

1 (U) and d(y, p) < δ,
d(z, q) < δ. Now, as diam(fn

1 (U)) ≤ 2δ, so d(p, q) ≤ 2δ. Also, by triangle inequality,
we have

4δ ≤ d(y, z) ≤ d(y, p) + d(p, q) + d(q, z) < 2δ + d(p, q),

implying that d(p, q) > 2δ, which is a contradiction. Thus, (X, f1,∞) cannot satisfy
Banks’s condition.

For autonomous dynamical systems it is known that if the system is topologically
transitive and has dense prime period periodic points then it is weakly mixing [14]. We
assert that this result is not true for non-autonomous system and give the following
example to support our claim.

Example 4.4. Let S1 be the unit circle and α be an irrational number. Let f , g : S1 →
S1 be defined as f(eiθ) = ei(θ+2πα) and g(eiθ) = ei(θ−2πα), then f and g are irrational
rotations on S1 which are minimal and hence topologically transitive. Consider the
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non-autonomous system (S1, f1,∞), where f2n−1(e
iθ) = fn(eiθ) and f2n(e

iθ) = gn(eiθ),
that is,

f1,∞ = {ei(θ+2πα), ei(θ−2πα), ei(θ+4πα), ei(θ−4πα), . . . , ei(θ+2nπα), ei(θ−2nπα), . . .}.

Note that each fi is an isometry and hence by Lemma 4.4, (S1, f1,∞) is not weakly
mixing. Now, since f 2k

1 (eiθ) = eiθ, for every k ∈ N, therefore each point of S1 is
periodic point of prime period 2. Thus, (S1, f1,∞) has dense prime period periodic
points. Also, f 2m−1

1 = fm, for every m ∈ N and f is topologically transitive, therefore
(S1, f1,∞) is also topologically transitive.

Now, let eiθ, eiφ ∈ S1 be any two distinct points and µ = δeiθ , ν = δeiφ ∈ M(S1). If

U and V are sufficiently small neighborhoods of µ and ν, respectively, then f̃n(U)∩V =
∅, for each n ∈ N [3]. For l = 2n−1, we have f l

1 = fn and for l = 2n, we have f l
1 = iS1 ,

where iS1 is the identity map on S1, and hence f̃n
1 (U)∩ V = ∅, for every n ∈ N. Thus,

(M(S1), f̃1,∞) cannot be topologically transitive.

Remark 4.2. We have the following conclusions.

(1) Note that in the above Example 4.4, the system is also not totally transitive.
Therefore, if the non-autonomous system is topologically transitive and has dense
prime period points then it is not even totally transitive.

(2) Above example also shows that the converse of the statement in Corollary 3.1
need not be true for non-autonomous discrete systems.

(3) For an autonomous system, it is known that every periodic orbit is finite or if the
system is minimal then it has no periodic point. However, this need not be true
for non-autonomous systems. In the above Example 4.4 every point is a periodic
point and since Of1,∞(eiθ) = Of(e

iθ), for every x ∈ S1, therefore (S1, f1,∞) is
minimal as (S1, f) is minimal. Thus, we have a non-autonomous system which
is minimal and has each point as periodic point.

(4) The above example also shows that the non-autonomous system which is topo-
logically transitive having dense set of periodic points need not imply sensitivity
even if the family f1,∞ is commutative. Whereas for the commutative induced
non-autonomous systems, we have proved that topological transitivity and dense
periodicity imply sensitivity, see Corollary 3.5 and Corollary 3.6.

We end this section by giving sufficient conditions under which a non-autonomous
system becomes Devaney chaotic.

Theorem 4.5. Let (J, f1,∞) be a commutative m-periodic non-autonomous system,

where J is an interval. If the system (J, f1,∞) is weakly mixing, then it is Devaney

chaotic.
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Proof. Let (J, f1,∞) be weakly mixing, then by [18, Lemma 10], the autonomous system
(J, g) is weakly mixing, where g = fm ◦ · · · ◦ f1. Now, for autonomous systems we have
topological transitivity on intervals imply Devaney chaos, therefore (J, g) has dense set
of periodic points and is sensitive. Hence, by [18, Lemma 1], we get that (J, f1,∞) has
dense set of periodic points. Let x ∈ J be arbitrary and U be an open neighborhood of
x. Since (J, g) is sensitive, therefore there exists δ > 0 such that for above x, there exist
y ∈ U and n ∈ N such that d(gn(x), gn(y)) > δ, that is, d((fm

1 )n(x), (fm
1 )n(y)) > δ.

Now, since the system (J, f1,∞) is m-periodic, therefore fmn
1 = (fm

1 )n. Hence, we get
that d(fnm

1 (x), fnm
1 (y)) > δ. Thus, there exists r = nm ∈ N such that d(f r

1 (x), f
r
1 (y)) >

δ implying that (J, f1,∞) is sensitive. Therefore, (J, f1,∞) is Devaney chaotic.

By [18, Lemma 1], [18, Lemma 2] and sensitivity from above theorem, we get the
following results.

Corollary 4.2. Let (X, f1,∞) be an m-periodic non-autonomous system and g = fm ◦
· · · ◦ f1. If the autonomous system (X, g) is topologically transitive and has dense set

of periodic points, then (X, f1,∞) is Devaney chaotic.

Corollary 4.3. Let (J, f1,∞) be an m-periodic non-autonomous system and g = fm ◦
· · · ◦ f1, where J is any interval. If the autonomous system (J, g) is topologically

transitive, then (J, f1,∞) is Devaney chaotic.

5 Sensitivity on the unit interval [0, 1]

In this section, we first give examples to justify that for non-autonomous systems in
general sensitivity need not be equivalent to cofinite sensitivity and other stronger
forms of sensitivity. Sufficient condition is given under which sensitivity is equivalent
to some stronger forms of sensitivity in non-autonomous systems.

For autonomous dynamical systems, Moothathu proved that on closed unit interval
I sensitivity is equivalent to the strongest form of sensitivity, namely cofinite sensitivity
[13]. Hence, all other stronger forms of sensitivities are equivalent to sensitivity on I
in autonomous systems. We assert that for non-autonomous system this need not be
true.

The following example shows that sensitivity is not equivalent to cofinite and thick
sensitivity for non-autonomous systems in general.

Example 5.1. Let I be the closed unit interval and {fn : n ∈ N} be an enumeration of
functions induced by the elements of F as considered in Example 3.1. Let (I, f1,∞) be
the non-autonomous, where f1,∞ = {f1, f

−1
1 , i, f2, f

−1
2 , i, . . . , fn, f

−1
n , i, fn+1, f

−1
n+1, i . . .},

here i : I → I is the identity map. Since f 3r−2
1 = fr, for each r ∈ N, therefore as before

(I, f1,∞) is weakly mixing and hence sensitive dependence on initial conditions. Note
that as f 3k

1 (x) = x, for every x ∈ I, so (I, f1,∞) cannot be cofinitely sensitive or thickly
sensitive.
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The following example shows that sensitivity is not equivalent to syndetic and
ergodic sensitivity for non-autonomous systems in general.

Example 5.2. Let I be the closed unit interval and {fn : n ∈ N} be an enumeration
of functions induced by the elements of F as considered in Example 3.1. Let (I, f1,∞)
be the non-autonomous, where

f1,∞ = {f1, f
−1
1 , i, . . . , i︸ ︷︷ ︸

10-times

, f2, f
−1
2 , i, . . . , i︸ ︷︷ ︸

102-times

, f3, f
−1
3 , . . . , i, . . . , i︸ ︷︷ ︸

10n−1-times

, fn, f
−1
n , . . . },

where i : I → I is the identity map. Since fk
1 = fn, for every n ∈ N, where k =

10+102+ · · ·+10n−1+2n−1, therefore (I, f1,∞) is weakly mixing and hence sensitive.
Thus, for any x ∈ I and any open neighborhood U of x, there is δ > 0 such that
Nf1,∞(U, δ) 6= ∅ and is infinite. Let Nf1,∞(U, δ) = {n1, n2, n3, n4, . . .}, then n2 − n1 <
n3 − n2 < n4 − n3 < · · · , therefore Nf1,∞(U, δ) has large unbounded gaps and hence
(I, f1,∞) cannot be syndetically sensitive. Also, note that d(Nf1,∞(U, δ)) = 0 implying
that (I, f1,∞) is not ergodically sensitive.

We now give sufficient conditions under which some of the stronger forms of sensi-
tivity become equivalent to sensitivity on I in non-autonomous systems.

Theorem 5.1. Let (I, f1,∞) be an m-periodic non-autonomous system. If a non-

autonomous system (I, f1,∞) is sensitive, then it is syndetically sensitive, ergodic sen-

sitive, collectively sensitive and multi-sensitive.

Proof. We first claim that for any compact metric space X , if (X, f1,∞) is sensitive,
then the corresponding autonomous system (X, g) is sensitive, where g = fm ◦ · · · ◦ f1.
Let (X, f1,∞) be sensitive with δ > 0 as a constant of sensitivity. Since each fj is
uniformly continuous, therefore for each positive integer 0 ≤ l ≤ m+2, f l

j is uniformly
continuous. Now, as f1,∞ is m-periodic, so by uniform continuity, for the above δ > 0,
there exists ǫ > 0 such that for each 0 ≤ l ≤ m+ 2 and any x, y ∈ X , j > 0, we have

d(x, y) < ǫ ⇒ d(f l
j(x), f

l
j(y)) < δ. (4)

By sensitivity of (X, f1,∞), we have for any x ∈ X and any open neighborhood U
of x and in particular for ξ-neighborhood (0 < ξ < ǫ) of x there exist y ∈ B(x, ξ)
and nξ ∈ N such that d(f

nξ

1 (x), f
nξ

1 (y)) > δ. Now as ξ < ǫ, so using (4), we have
nξ > m + 1 > m and using division algorithm, we get a positive integer r such that
nξ = rm+ q, 0 ≤ q ≤ m− 1. Thus

d(f
nξ

1 (x), f
nξ

1 (y)) = d(f rm+q
1 (x), f rm+q

1 (y))

= d(f q
rm+1(f

rm
1 (x)), f q

rm+1(f
rm
1 (y))).

Since q = (nξ − rm) ≤ (m − 1) < (m + 2), therefore using (4) and d(f q
rm+1(f

rm
1 (x)),

f q
rm+1(f

rm
1 (y))) > δ, we get that d(f rm

1 (x), f rm
1 (y)) ≥ ǫ. Taking 0 < η < ǫ, we get
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d(f rm
1 (x), f rm

1 (y)) > η, that is, d(gr(x), gr(y)) > η, implying (X, g) is sensitive. Hence,
(I, g) is sensitive. Now, for autonomous systems sensitivity on I implies cofinite sen-
sitivity and hence (I, g) is syndetically sensitive, ergodic sensitive, collective sensitive
and multi-sensitive.

If (I, g) is syndetically sensitive, then for any x ∈ I and any open neighborhood
U of x, there exist δ > 0 and ni ∈ N with Ng(U, δ) = {n1, n2, n3, n4, . . .} such that
ni+1 − ni ≤ M , for all i ≥ 1 and for some positive constant M . Since (I, f1,∞) is
m-periodic, therefore gni = (fm

1 )ni = fmni

1 and hence Nf1,∞(U, δ) = {k1, k2, k3, k4, . . .},
where ki = mni. Note that (ki+1 − ki) ≤ M/m, for all i ≥ 1. Thus, Nf1,∞(U, δ) has
bounded gaps implying that (I, f1,∞) is syndetically sensitive.

Since syndetical sensitivity implies ergodic sensitivity, therefore (I, f1,∞) is also
ergodic sensitive. We also show it holds directly. If (I, g) is ergodically sensitive, then
for any x ∈ I and any open neighborhood U of x, there exists δ > 0 such thatNg(U, δ) 6=
∅ with d(Ng(U, δ)) > 0. Since (I, f1,∞) is m-periodic, therefore gn = (fm

1 )n = fmn
1 , for

every n ∈ N and hence d(Nf1,∞(U, δ)) > 0. Thus, the system (I, f1,∞) is ergodically
sensitive.

Now, suppose that (X, g) is collectively sensitive and let x1, x2, . . . , xk ∈ X and
ǫ > 0 is given. Since (X, g) is collectively sensitive, therefore there exists δ > 0 such
that corresponding to above xi’s, there exist yi ∈ X , i = 1, 2, . . . , k with d(xi, yi) < ǫ,
n ∈ N and i0 with 1 ≤ i0 ≤ k such that d(gn(xi), g

n(yi0)) > δ or d(gn(yi), g
n(xi0)) > δ,

that is, d((fm
1 )n(xi), (f

m
1 )n(yi0)) > δ or d((fm

1 )n(yi), (f
m
1 )n(xi0)) > δ, for i = 1, 2, . . . , k.

Now, since the system (X, f1,∞) is m-periodic, therefore fmn
1 = (fm

1 )n. Hence, we
get that d(fnm

1 (xi), f
nm
1 (yi0)) > δ or d(fnm

1 (yi), f
nm
1 (xi0)) > δ. Thus, there exists

p = nm ∈ N such that d(f p
1 (xi), f

p
1 (yi0)) > δ or d(f p

1 (yi), f
p
1 (xi0)) > δ, for i = 1, 2, . . . , k

implying that (X, f1,∞) is collectively sensitive. Also, if (I, g) is multi-sensitive, then
by [15, Theorem 3.2], the corresponding non-autonomous system (I, f1,∞) is multi-
sensitive.

Corollary 5.1. For an m-periodic non-autonomous system (I, f1,∞), weakly mixing

implies ergodic sensitivity and syndetical sensitivity.

Remark 5.1. Note that Corollary 5.1 is not true if the non-autonomous is not m-
periodic as justified by the Example 5.2.
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