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Sede Alto Valle y Valle Medio, Universidad Nacional de Rı́o Negro

R8336ATG Villa Regina, Argentina

FRANCO S. GENTILE
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The dynamics of two related models of second order delay differential equations with four bi-
furcating parameters are analyzed. Through a classical technique in the time domain which
involves the location of the roots of an exponential polynomial equation, the areas of stability of
the equilibrium are set. A frequency-domain methodology is applied to study the Hopf bifurca-
tion phenomena and to describe the behavior of the emerging cycles completely via a feedback
system approach. Certain type of singularities, which provoke fold bifurcations of cycles are
detected precisely. Also, a complete picture of parameter configurations to produce resonances
is established for both models. The whole results are checked with the software DDE-Biftool.
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1. Introduction

The estimation of the critical gain and the critical
frequency in feedback control systems has a very
long tradition as limiting cases in engineering sys-
tems. In this regard, great efforts have been em-
ployed to use simple methods in order to handle the
stability issues and, at the same time, to improve
the automatic tuning of simple regulators [Åström
& Hägglund, 1984; Schei, 1994]. The computation

of the oscillation characteristics has been obtained
using the approach of relay systems and/or the de-
scribing function analysis [Atherton, 1975] in or-
der to set later the parameters of the proportional-
integral-derivative (PID) controllers under specified
rules. In particular, autotuning principles for gen-
eralization of PID controllers have been applied
also to SISO (single-input to single-output) systems
with delays (see, for example, Prokop et al. [2012]
and the references therein).
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The determination of the critical gain and the
critical frequency, simultaneously, plays a singular
role for stability issues when dealing with a non-
linear feedback system since autonomous oscilla-
tions are expected to arise under the now classi-
cal phenomenon of Hopf bifurcation. A timely ap-
proach suitable for control engineering has been pre-
sented in Mees and Chua [1979] and Mees [1981]
inspired from previous results given by the describ-
ing function and harmonic balance analyses [All-
wright, 1977]. A rather similar scenario had been
announced before for special systems having a time-
delayed feedback as it was shown in the pioneer-
ing work of Tsypkin [1946]. That contribution was
certainly proposed very early compared now with
other methods for analyzing the stability of re-
tarded functional differential equations. Then, by
using the framework of Hopf bifurcation in control
systems given in Mees [1981], the result of Tsyp-
kin [1946] has been reinforced in the work of Moiola
and Chen [1996] and Gentile et al. [2012]. In this
regard, the frontiers of stability are called Hopf bi-
furcation curves in the space of system parameters.
Moreover, taking into account the complexity added
by the delays, the characteristic polynomial is now
changed to an exponential polynomial as presented
in the now classical works of Bellman and Dan-
skin [1954] and Bellman and Cooke [1963]. The com-
plexity of stability is enlarged due to the possibility
of multiple root crossing as it was shown in a clever
tutorial by Sipahi et al. [2011] where several recent
methodologies are placed together in attractive and
useful control engineering terms. This is the case
of the appearance of resonances since two critical
frequencies coincide for the same values of system
parameters, as it was shown previously using tools
from bifurcation theory [Campbell & Bélair, 1999].

In the present article, the analysis of the Hopf
bifurcation condition and the regions of stability us-
ing a type of hybrid methods complemented with
the frequency-domain approach [Mees, 1981; Moiola
& Chen, 1996] is presented. Two models of second
order delay differential equations involving the vari-
ation of four parameters are studied. The results
are complementary of those recently shown in Gen-
tile et al. [2018] in which an analytical method plus
a numerical computational one provided by DDE-
Biftool (see Engelborghs et al. [2002]) have been
successfully applied.

From now on, the main results are presented
in the following two sections. In Section 2, the two
models are exposed and the stability of the equi-

librium is examined via a time-domain technique.
Then, in Section 3 both models are further analyzed
in the frequency-domain setting. The Hopf bifurca-
tion phenomena is considered, the stability of the
emergent orbits is fully determined and some de-
generacies are found. At last, some conclusions are
given.

2. Delay Models and Equilibrium
Stability

The aim of this work is the analysis of the dynamics
of the following delay-differential equation

ẍ+ γx = αu+ βu2, (1)

where ẋ = dx
dt , γ > 0, α, β 6= 0, for two particular

models, where u = xτ or u = ẋτ with xτ = x(t−τ),
τ > 0. One specific case with u = xτ has been con-
sidered by Campbell and LeBlanc [1998] in relation
with the study of the 1:2 resonance and its treat-
ment by normal forms. The most general situation
has been considered in Campbell and Bélair [1999]
where the action of a restoring force depends on the
velocity ẋ. In this work, the model (1) with four
parameters (counting the delay τ), is explored with
different techniques to discover and clarify some in-
herent dynamic aspects.

To analyze the stability of one equilibrium
point of (1), it is necessary to find the location
of the roots of a certain exponential polynomial.
In this regard, the following definitions and results
will be used.

Definition 2.1. Let p(x, y) be a two variable poly-
nomial. Then P (z) = p(z, ez) =

∑
m,n amne

zmzn is
an exponential polynomial.

Definition 2.2. Let P (z) be an exponential poly-
nomial. The term arse

zrzs is called the principal
term of P if ars 6= 0 and, if for each other term
amne

zmzn with amn 6= 0, it is satisfied r > m, s > n,
or r = m, s > n, or r > m, s = n.

Remark 2.1. It can be proved that if an exponen-
tial polynomial P (z) has no principal term then it
has an unbounded number of zeros with arbitrarily
large real part [Bellman & Danskin, 1954; Bellman
& Cooke, 1963], e.g. P (z) = ez − z.

The next results [Bellman & Danskin, 1954; Pon-
tryagin, 1955; Bellman & Cooke, 1963] are re-
quired for the forthcoming stability analysis. Let
P = P (z) be an exponential polynomial whose
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coefficients are real with a principal term, where
P (iy) = F (y) + iG(y). It can be easily proved that
F results an even function whereas G is an odd
function.

Notation: The expression FG′(y) means F (y)G′(y).
The same sense holds for F ′G(y).

Theorem 1. If all the zeros of P are located on the
left half plane then all the zeros of F and G are real,
alternating and FG′(y) − F ′G(y) > 0, for all real
value y.

Theorem 2. All the zeros of P are located on the
left half plane if
I) all the roots of F are real and for each of these
zeros the condition F ′G(y) < 0 is satisfied, or
II) all the roots of G are real and for each of these
zeros the condition FG′(y) > 0 is satisfied.

Remark 2.2. Notice that the condition of F (y) and
G(y) to be simultaneously zero is equivalent to state
that P has a pair of pure imaginary roots.

2.1. Model 1

Consider (1) with u = xτ , that can be written as

ẋ1 = −γx2+αx2(t−τ)+βx22(t−τ), ẋ2 = x1, (2)

and its steady states are X1 = (0, 0) and X2 =(
0, (γ − α)β−1

)
. If γ = α, then a transcritical bifur-

cation of equilibria is observed. To avoid this partic-
ular condition, in the rest of the paper it is assumed
that γ 6= α.
For the stability analysis of each equilibrium Xi, i =
1, 2, the linearization of (2) about Xi must be con-
sidered. From (2), only for the case of X1 results

ċ = Ac+Aτ c(t− τ), (3)

where

A =

(
0 −γ
1 0

)
and Aτ =

(
0 α
0 0

)
.

The characteristic equation det(λI−A−Aτe−λτ ) =
0, after changing variables as z = λτ , becomes

P1(z) = p(z, ez) = ez(z2 + γτ2)− ατ2 = 0. (4)

The principal term of P1, according with Defini-
tion 2, is ezz2. Then, by (4) it is written P1(iy) =
F1(y) + iG1(y) which yields

F1(y) = (−y2 + γτ2) cos y − ατ2,
G1(y) = (−y2 + γτ2) sin y.

(5)

The detailed work that follows aims to prove that
all the roots of P1(z) have negative real part un-
der certain parameter constraints. This fact guar-
antees the asymptotic stability of the equilibrium
point X1. In order to apply Theorem 2, it is neces-
sary to set conditions on the parameters to satisfy
the required hypotheses. Observe that the roots of
G1 are

a) yk = kπ, k ∈ Z, b) ŷ1,2 = ±√γ τ. (6)

Remark 2.3. To satisfy the condition II) (F1G
′
1(y) >

0) of Theorem 2, it is necessary that F1(y) 6= 0 for
each root of G1, which in addition must be all sim-
ple (to carry out G′1(y) 6= 0).

Then, due to (6):
a) It is precise that F1(yk) 6= 0, so considering (5)
the parameters (γ, τ, α) should not satisfy the con-
dition

(−1)k(−y2k + γτ2)− ατ2 = 0, k ∈ Z. (7)

b) It is always true that F1(ŷ1,2) = −ατ2 6= 0, due
to α, τ are nonzero.
c) As

G′1(y) = −2y sin y + (−y2 + γτ2) cos y, (8)

then it is also required that the parameters do not
check

γτ2 = y2k = k2π2, k ∈ Z, (9)

to fulfill G′1(y) 6= 0, for any root y of G1.

From now on, it will be considered γ = 1. Actu-
ally, (1) can be reduced to a three-parameter model
changing the time scale as t′ =

√
γt. So, in the fol-

lowing results the assumption γ = 1 does not mean
a loss of generality. Due to (9), two situations for the
parameter τ will be considered: 1) 0 = y0 < τ < y1
or 2) yk < τ < yk+1, k ∈ N.

Theorem 3. Consider (4) and (5) with τ > 0, α 6=
0, 1, together with yk, k ∈ N0 and ŷ1,2 given by (6).
Assume that the parameter values do not satisfy nei-
ther (7) nor (9). All the roots of P1 lie on the left
half plane if and only if the following parameter con-
ditions are fulfilled:
I) For 0 < τ < y1, it must be

α <
y21
τ2
− 1, α < 1, α > 0.

II) For yk < τ < yk+1, k ∈ N, it is required:
a) If k is odd, then

α >
y2k
τ2
− 1, α > −

y2k+1

τ2
+ 1, α < 0.



April 22, 2019 16:10 ws-ijbc

4 G. R. Itovich et al.

b) If k is even, then

α < −
y2k
τ2

+ 1, α <
y2k+1

τ2
− 1, α > 0.

Proof. =⇒ (Necessary condition) This part follows
using Theorem 1. It is required that the zeros of
F1 and G1 must be real, so an adequate result is
used to prove this statement [Bellman & Cooke,
1963]. It is clear that all the zeros of G1 (6) are
real and effectively there are 4k + 2 in any interval
[−2kπ + π/2, 2kπ + π/2] which includes τ. In order
to assert that the roots of F1 are real (see (5)), it is
analyzed the equation cos y = ατ2/(−y2 + τ2). In
the sequel and due to the parity, it must be proved
that there are 2k+ 1 roots in some interval [0, 2kπ]
for k sufficiently large.

I) Suppose 0 < τ < y1 = π. It is considered
first the interval (0, τ). The roots of G1 (6) should
alternate with F1’s by Theorem 1. As F1(0) =
(1−α)τ2, F1(τ) = −ατ2 then F1(0) and F1(τ) have
different sign only if 0 < α < 1. By Bolzano’s the-
orem F1 has a root in (0, τ) and results F1(τ) < 0.
Now, considering the zeros of G1 and the interval
(τ, y1) it follows that F1(y1) = (−y21+τ2)(−1)−ατ2
should be positive. This means α < y21/τ

2−1. Thus
two roots of F1 exist in [0, π].
Now, let be 0 < τ < y1 < yj . For j odd, j >
1, F1(yj) = (−y2j + τ2)(−1) − ατ2 > 0, which is

equivalent to α < y2j /τ
2 − 1. This result is true un-

der α < y21/τ
2 − 1.

For j even, F1(yj) = (−y2j + τ2) − ατ2 < 0, which

is equivalent to α > −y2j /τ2 + 1. This assertion is

valid under 0 < α < 1 due to −y2j /τ2 + 1 < 0 if
0 < τ < y1 < yj .
So in each interval [(j − 1)π, jπ], where j ≥ 2, F1

has one root. Thereby, one has 2k+ 1 roots of F1 in
[0, 2kπ], which proves that they are all real.

II) The proof for Case IIa) appears in Appendix A.
The proof for the remaining Case IIb) is analogous.

⇐= (Sufficient condition, sketch) In order to ap-
ply Theorem 2 II), it is necessary to check that
F1G

′
1(y) > 0 for each y, an arbitrary root of G1

(see (6)).
I) The sign of α follows from the requirement of
F1G

′
1(ŷ1,2) > 0. The condition α < 1 results from

the condition F1G
′
1(y0) > 0. The main inequality

is established by setting F1G
′
1(y1) > 0. To satisfy

F1G
′
1(yk) > 0, k ≥ 2, it can be shown that the last

condition is sufficient, by considering separately the
cases k odd or even.

II) The sign of α is established from F1G
′
1(ŷ1,2) > 0,

according to k being odd or even. The first two
inequalities in a) and b) are deduced imposing
F1G

′
1(yk) > 0 and F1G

′
1(yk+1) > 0, when k is odd or

even. These conditions result sufficient to guarantee
F1G

′
1(yi) > 0, where i < k or i > k + 1. Finally, to

show this last it is necessary to consider the four
different cases which result for i odd or even. The
details to prove the Case I and Case II)a) appear in
Appendix A. The left over case is similar.

It still remains to test that F1G
′
1(yk) > 0 for each

yk, a root of G1 where yk < 0. Due to F1G
′
1 is an

even function, i.e. F1G
′
1(−yk) = F1G

′
1(yk), now the

proof is complete. �

Corollary 2.1. The equilibrium X1 in system (2)
results asymptotically stable under the necessary
and sufficient conditions established in Theorem 3.

Remark 2.4. Theorem 3 can be stated for any γ > 0
in a similar way and analogous results can be formu-
lated for the non trivial equilibrium of system (2).

Remark 2.5. A different proof of Theorem 3 has also
been obtained through frequency-domain methods,
more specifically by using the Nyquist stability cri-
terion [Itovich et al., 2018].

Remark 2.6. The stability analysis for an equation
like (1) with u = xτ , which includes a nonzero term
in ẋ in its left member can be found in Bellman and
Cooke [1963].

Remark 2.7. When (7) is satisfied, the roots of (4)
are on the imaginary axis. This condition deter-
mines the Hopf surfaces in the three dimensional
parameter space γ− τ −α (for system (2)). Or, fix-
ing the variable γ, the Hopf curves αk, k ≥ 1 in the
τ − α plane are determined by

α = αk(τ) = (−1)k
(
−
y2k
τ2

+ γ

)
. (10)

Due to Theorem 3, Fig. 1 shows a few colored
stability areas, some Hopf curves αk (10) and mul-
tiple resonant points in the τ −α plane, with γ = 1.
In this particular case, the curves αk intersect the
τ axis (α = 0) at the points τ = yk. The curves αk
and αj (k < j) intersect each other only if k and j
have different parity. These intersections determine
k : j resonant points whose coordinates are

(τ, α) =

(√
y2k+y

2
j

2 , (−1)k
(
y2j−y2k
y2k+y

2
j

))
.
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Model 1: Stability of equilibria, γ  = 1

Fig. 1. Stability regions for the trivial equilibrium of sys-
tem (2) with γ = 1 and arbitrary β. According to Theo-
rem 3, regions in yellow, magenta and blue correspond to
k = 1, 3, 5, respectively, of situation (II)a), while areas in
cyan, green and black (partially drawn) refer to k = 2, 4, 6,
under situation (II)b) and at last the red domain is related
with the situation I).

At the resonance points, (4) has two
pair of purely imaginary solutions, namely
±i yk/τ, ±i yj/τ satisfying yk/yj = k/j. This
fact is related in (2) with the interaction between
two limit cycles, whose frequencies are kπ/τ and
jπ/τ approximately. Thereby, the intersection be-
tween the Hopf curves α1 and α2 results in a 1 : 2
resonant point [Gentile et al., 2018].
When the initial segment of the static bifurca-
tion line α = 1 crosses the Hopf curve α1 then a
Gavrilov-Guckenheimer singularity appears, whose
coordinates are

(
π/
√

2, 1
)
. This situation is re-

peated when α = 1 intersects the Hopf curve αk
where k is odd and k > 1.

Remark 2.8. A result equivalent to Theorem 3 can
be established by the assignment of a fixed value of
τ in (4) and (5). In this case, the resulting restric-
tions between γ and α are always linear. Related
with this assumption, the complete stability anal-
ysis of a general delay differential equation which
includes (3) can be found in Stépán [1989]. Consid-
ering τ = π, the Hopf curves of system (2) result
ᾱk = (−1)k(−k2 + γ), where k ∈ N, and the stabil-
ity regions for the trivial equilibrium are shown in
Fig. 2.
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Model 1: Stability of equilibria, τ  = π

Fig. 2. Colored stability regions for the equilibrium point of
system (2), with τ = π and arbitrary β, according to differ-
ent intervals of the parameter γ. When τ has a fixed value,
the Hopf curves of (2) are straight lines. The line α = γ
that delimits the stability area for 0 < γ < 1, is a static
bifurcation curve and its crossing with ᾱ1 shows a Gavrilov-
Guckenheimer singularity.

2.2. Model 2

Now, (1) with u = ẋτ is taken into account where
the feedback action depends on the velocity, with
γ, τ > 0, α 6= 0 and β ∈ R. To avoid misunderstand-
ing, from now on it is defined δ = α. Now there is a
single equilibrium point: x = 0. Equation (1) with
u = ẋτ can also be written as

ẋ1 = −γx2+δx1(t−τ)+βx21(t−τ), ẋ2 = x1, (11)

with equilibrium X0 = (0, 0). For the stability anal-
ysis of the equilibrium, it must be considered the
linearization of (11) about X0, again given by

ċ = Āc+ Āτ c(t− τ), (12)

(see (3)), where

Ā =

(
0 −γ
1 0

)
and Āτ =

(
δ 0
0 0

)
.

To guarantee the asymptotic stability of
the equilibrium, the characteristic equation
det
(
λI − Ā− Āτe−λτ

)
= 0, must have all its roots

on the left half plane. Through the change of vari-
ables z = λτ results an exponential polynomial

P2(z) = p(z, ez) = ez(z2 + γτ2)− δτz = 0. (13)

To apply Theorem 2 but now with the hypothesis I),
notice that P2 differs from P1 (see (4)) only about
its last term.
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Remark 2.9. In Theorem 2, the condition F ′G(y) <
0 means that G(y) 6= 0 for each root of F, which
must be all simple (to carry out F ′(y) 6= 0).

By (13), the expression P2(iy) = F2(y) + iG2(y)
leads to

F2(y) = (−y2 + γτ2) cos y,
G2(y) = (−y2 + γτ2) sin y − δτy. (14)

The zeros of F2 are

a) ȳk = (2k−1)
π

2
, k ∈ Z, b) y̆1,2 = ±√γ τ.

(15)
Then the conditions required to the parameters to
satisfy the hypothesis I) of Theorem 2 are:

a) The values of γ, τ and δ in (13) should not solve
the equation

(−1)k(ȳ2k − γτ2)− δτ ȳk = 0, k ∈ Z. (16)

b) As

F ′2(y) = −2y cos y − (−y2 + γτ2) sin y, (17)

then

γτ2 = (2k − 1)2 (π/2)2 , k ∈ Z, (18)

should not be satisfied to fulfill F ′2(y) 6= 0, for any
root y of F2.
One knows that τ verifies one of these two condi-
tions: 1) 0 < τ < ȳ1 or 2) ȳk < τ < ȳk+1, k ∈ N.
Notice that, again, four real parameters are involved
in the stability conditions. However, the model can
be reduced to a three-parameter one through the
change of time scale t′ =

√
γt, which is equivalent

to just consider γ = 1.
Thus, the following theorem can be set:

Theorem 4. Consider (13) and (14) with τ > 0,
γ = 1 and δ 6= 0. Let be ȳk, k ∈ N and y̆1,2 given
by (15). Assume that the parameter values do not
satisfy neither (16) nor (18). All the roots of P2 lie
on the left half plane if and only if
I) For 0 < τ < ȳ1, it must be

δ > − ȳ1
τ

+
τ

ȳ1
, δ < 0.

II) For ȳk < τ < ȳk+1, k ∈ N, it is required:
a) If k is odd, then

δ < − ȳk
τ

+
τ

ȳk
, δ <

ȳk+1

τ
− τ

ȳk+1
, δ > 0.

b) If k is even, then

δ >
ȳk
τ
− τ

ȳk
, δ > − ȳk+1

τ
+

τ

ȳk+1
, δ < 0.

Proof. =⇒ (Necessary condition) This result is a
consequence of Theorem 1. It is clear that all the
zeros of F2 given by (15) are real and effectively
there are 2k + 1 in any interval [0, 2kπ] which in-
cludes τ. Now, the zeros of G2 (see (14)) coincide
with the solutions of the equation

sin y =
δτy

−y2 + τ2
. (19)

There must be 4k + 2 roots in some interval
[−2kπ + π/2, 2kπ + π/2] for k sufficiently large, in
order to assert that all the roots of G2 are real [Bell-
man & Cooke, 1963].
I) 0 < τ < ȳ1 = π/2. First observe that G2(0) = 0
(see (19) and (14)). Then, consider the interval
(τ, ȳ1). Taking into account the roots of F2 (15),
which should alternate with G2’s by Theorem 1, one
computes G2(τ) = −δτ2, G2(ȳ1) = −ȳ21 + τ2−δτ ȳ1
and observes that if δ > 0 then G2(τ) and G2(ȳ1)
are both negative. Then it should be δ < 0, by
Bolzano’s Theorem results that G2 has a root be-
tween y̆1 = τ and ȳ1 = π/2 and G2(ȳ1) < 0. So, it
follows δ > −ȳ1/τ + τ/ȳ1. Now, considering again
the zeros of G2 and the interval (ȳ1, ȳ2) it is neces-
sary that G2(ȳ2) = (−ȳ22 +τ2)(−1)−δτ ȳ2 > 0. This
means δ < ȳ2/τ − τ/ȳ2, which is true under δ < 0.
Thereby, three roots of G2 exist in [0, ȳ2].

Now, let 0 < τ < ȳ1 < ȳj . For j odd, j >
1, G2(ȳj) = (−ȳ2j + τ2) − δτ ȳj < 0, which is equiv-
alent to δ > −ȳj/τ + τ/ȳj , but this condition is
satisfied due to δ > −ȳ1/τ + τ/ȳ1 > −ȳj/τ + τ/ȳj .
For j even, G2(ȳj) = (−ȳ2j + τ2)(−1) − δτ ȳj > 0,
which is equivalent to δ < ȳj/τ − τ/ȳj . This asser-
tion is valid under δ < 0.
So, in each interval [yj , yj+1] , j ≥ 2, G2 has
one root. Hence, there are 4k + 2 zeros of G2 in
[−2kπ + π/2, 2kπ + π/2].
The proof for II)a) appears in Appendix B and the
one for II)b) follows analogously.

⇐= (Sufficient condition, sketch) In order to apply
Theorem 2, it is necessary to check that F ′2G2(y) <
0 for each y, an arbitrary root of F2 (see (15)).
I) The sign of δ follows from the requirement
of F ′2G2(y̆1,2) < 0. The prime inequality re-
sults analyzing the necessary statements to fulfill
F ′2G2(ȳ1) < 0. To satisfy F ′2G2(ȳk) < 0, k ≥ 2, it
can be shown that the obtained conditions are suf-
ficient, by considering separately the cases k odd or
even.
II) The sign of δ is established from F ′2G2(y̆1,2) < 0,
according to k being odd or even. The first two
inequalities in a) and b) are deduced imposing
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F ′2G2(ȳk) < 0 and F ′2G2(ȳk+1) < 0, when k is odd
or even. These conditions result sufficient to guar-
antee F ′2G2(ȳi) < 0, where i < k or i > k + 1. To
show this last it is necessary to consider the four
different cases which result for i odd or even.
The details to prove the condition II)a) appear in
Appendix B. The other cases are similar.

It still remains to test that F ′2G2(ȳk) < 0 for each
ȳk < 0. But, taking into account that F ′2G2 is even,
then the whole proof results complete now. �

Corollary 2.2. The equilibrium of system (11) re-
sults asymptotically stable under the necessary and
sufficient conditions established in Theorem 4.

Remark 2.10. A different proof of Theorem 4
has also been obtained through frequency-domain
methods using the Nyquist stability criterion.

Remark 2.11. The whole stability analysis for the
trivial equilibrium in an equation like (1) with u =
ẋτ , which includes a term in ẋ in its left member
can be found in Bellman and Cooke [1963].

Remark 2.12. When (16) is satisfied, the roots
of (13) are on the imaginary axis. Then, the Hopf
surfaces in the three dimensional parameter space
γ − τ − δ (for system (11)), or alternatively, fixing
the parameter γ, the Hopf curves δk in the τ − δ
plane are determined by

δ = δk(τ) = (−1)k
(
ȳk
τ
− γτ

ȳk

)
. (20)

Figure 3 shows a few stability areas, some Hopf
curves δk (see (20)) and multiple resonant points in
the τ − δ plane, with γ = 1. The Hopf curves δk in-
tersect the τ axis at the points τ = ȳk. The curves
δk and δj intersect each other only if k and j have
different parity, at the points with coordinates

(τ, δ) =
(

(ȳkȳj)
1/2, (−1)k (ȳk − ȳj) (ȳkȳj)

−1/2
)
,

which are 2k − 1 : 2j − 1 resonant points (k < j).
At the resonance points, (13) has two pair of pure
imaginary solutions, namely ±i ȳk/τ, ±i ȳj/τ sat-
isfying ȳk/ȳj = (2k − 1)/(2j − 1). This situa-
tion is related in system (11) with the interac-
tion between two limit cycles, whose frequencies are
(2k − 1)π/(2τ) and (2j − 1)π/(2τ) approximately.
Thereby, the intersection between the Hopf curves
δ1 and δ2 results in a 1 : 3 resonance point.

Remark 2.13. An equivalent result can be estab-
lished by the assignment of a fixed value of τ in (13)

and (15). In this case, the resulting restrictions be-
tween γ and δ are linear. Related with this assump-
tion, the complete stability analysis of a general de-
lay differential equation which includes (12) can be
found in Stépán [1989].
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δ
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7

δ
2

δ
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δ
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Model 2: Stability of equilibria, γ  = 1

Fig. 3. Stability regions for the equilibrium point of (11)
with γ = 1 and arbitrary β. According to Theorem 4, regions
in red, yellow and magenta correspond to k = 1, 3, 5, respec-
tively, of situation (II)a), while areas in green, cyan and black
refer to k = 2, 4, 6, under situation (II)b). Finally the blue
domain represents the situation I).

3. Cycles Stability Analysis: A
Frequency-Domain Approach

The stability results for the equilibrium can be com-
bined with the computation of the curvature coef-
ficient provided by the frequency-domain method
[Mees & Chua, 1979; Mees, 1981; Moiola & Chen,
1996] to know the cycles stability.

3.1. Model 1

It is proposed a feedback representation of the sys-
tem (2) like

{
Ẋ = AX +Bh(y(t− τ)),

h(y) = −αy + βy2, y = −CX,

where

A =

(
0 −γ
1 0

)
, B =

(
1
0

)
, C = Bt.
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In the frequency domain the equilibrium can be
found through

y = −G(0)h(y), (21)

where G is the transfer matrix for the linear part
defined as

G(s) = C(sI −A)−1Be−sτ =
e−sτ

γ + s2
. (22)

The solutions of (21) are y = 0 and y = (α− γ)β−1.
Then, it will be considered only the analysis related
with y = 0, as in Section 2.1. The expression of
the characteristic function, which equals the (lin-
earized) loop gain, is

λ(s) = G(s)J = −αe
−sτ

γ + s2
, where J = h′(0) = −α.

(23)
The appearance of a Hopf bifurcation related with
the trivial equilibrium can be shown by solving
λ(iω) = −1, ω ∈ R+ [Moiola & Chen, 1996]. Con-
sidering this condition particularly with (23) and
splitting into real and imaginary parts one gets

α cosωτ = γ − ω2, α sinωτ = 0.

As α 6= 0, it must be ωτ = yk = kπ, k ∈ N, and
then the expressions for the Hopf curves in the τ−α
plane are:

α = αk(τ) = (−1)k
(
−y2k/τ2 + γ

)
, (24)

agreeing with (10).
Under the frequency-domain approach, the cur-

vature coefficient of a cycle that arises from a Hopf
bifurcation can be computed through

σ(ω) = −Re

(
G(iω)p(iω)

G′(iω)J

)
, (25)

where according with Mees and Chua [1979], a sim-
plified expression for p(iω) for SISO systems is

p(iω) = D2

(
1
2V22 + V02

)
+D3, (26)

but D2 = h′′(0) = 2β and D3 = h′′′(0) = 0, so
only V02 and V22 are pending. In engineering terms,
V02 is related with the bias for the correction of the
equilibrium point due to the nonlinearities; V22 is
connected to the amplitude of the second harmonic
of the oscillatory solution and p(iω) is associated to
the amplitude of the term of fundamental frequency.
The closed-loop transfer function is

H(s) = (1 +G(s)J)−1G(s), (27)

thus defining ρ = γ − α (which is nonzero by the
assumption that γ 6= α) one has H(0) = ρ−1,
H(i2ω) = (ρ− 4ω2)−1 and finally

V02 = −1
4H(0)D2 = −1

2βρ
−1,

V22 = −1
4H(i2ω)D2 = −1

2β
(
ρ− 4ω2

)−1
.

Then, according with (26),

p(iω) = −β
2

2

(
2

ρ
+

1

ρ− 4ω2

)
. (28)

Using (22), (28) and fixing ωk = yk/τ = kπ/τ,
k ∈ N, one has

G(iωk)p(iωk) = −
β2(−1)kτ2

(
3ρτ2 − 8y2k

)
2ρ(γτ2 − y2k)

(
ρτ2 − 4y2k

) .
Besides, as

G′(iωk)J =
α(−1)k+1τ

[
(γτ2 − y2k) + 2iyk

](
γτ2 − y2k

)2
= τ +

2iω(−1)k+1

ατ2
,

finally using the short notation σ(k) = σ(iωk),
Eq. (25) results

σ(k) =
β2(−1)kτ3

(
3ρτ2 − 8y2k

)
2ρ(γτ2 − y2k)

(
ρτ2 − 4y2k

) . (29)

Notation: Hereinafter the subscript e or o refers to
k even or odd, respectively.
The sign of (29) gains sense when it is evaluated
on points of a Hopf curve. For a Hopf curve with k
even (see (24)), one has α = αk(τ) = −y2k/τ2 + γ,
i.e. ρ = y2k/τ

2. Replacing into (29) results σe(k) =
5β2τ3/(6αy2k) then sgn(σe(k)) = sgn(α). Moreover
if k is odd, as α = αk = y2k/τ

2 − γ, i.e. ρ =
2γ − y2k/τ2, one gets

σo(k) = −
β2τ

(
5y2k/τ

2 + 6α
)

2α
(
−y2k/τ2 + 2α

) (
3y2k/τ

2 + 2α
) ,

but the study of the sign of σo(k) requires a bit
more work. Defining four auxiliary curves in the
τ − α plane, i.e., C1 : α = y2k/(2τ

2), C2 : α = 0,
C3 : α = −5y2k/(6τ

2) and C4 : α = −3y2k/(2τ
2)

results

sgn(σo(k)) =

−1, y2k/(2τ
2) < α ⇔ 0 < τ < τ1,

1, 0 < α < y2k/(2τ
2) ⇔ τ1 < τ < τ2,

−1, −5y2k/(6τ
2) < α < 0 ⇔ τ2 < τ < τ3,

1, −3y2k/(2τ
2)<α<−5y2k/(6τ

2)⇔ τ3 < τ < τ4,

−1, α < −3y2k/(2τ
2) ⇔ τ > τ4,

where τi is defined as the intersection between the
Hopf curve α = αk = y2k/τ

2 − γ, k odd, and
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Ci, 1 ≤ i ≤ 4. So, as the points τi depend on the
number k, they will be noted as

τ1(k) = kπ/
√

2γ, τ2(k) = kπ/
√
γ,

τ3(k) = kπ
√

11/
√

6γ, τ4(k) = kπ
√

5/
√

2γ.

Thus, there are three points in the curve αk, k odd,
where σo is indefinite corresponding to τ1(k), τ2(k)
and τ4(k). The first one corresponds to a Gavrilov-
Guckenheimer (zero-Hopf) singularity. The point
which has τ− coordinate τ3(k), where the coeffi-
cient σo vanishes, gives place to the appearance of
a fold of cycles bifurcation curve. Figure 4 shows
two branches of periodic solutions close to R =
(τ3(1), α1

(
τ3(1)

)
) = (4.2536,−0.4545), one which ex-

hibits the fold of cycles and the other corresponds to
the classic Hopf branch. These continuations have
been obtained using the software DDE-Biftool [En-
gelborghs et al., 2002]. The intersection between two
curves αk and α2k with k odd is a 1:2 resonance
point and its τ− coordinate is τ4(k), so σo is unde-
termined there.

α

-0.505 -0.5 -0.495 -0.49 -0.485 -0.48 -0.475

2*
θ

0

0.5

1

α
1
 - Hopf point: (τ ,α) = (4.35,-0.4784)

α

-0.62 -0.6 -0.58 -0.56 -0.54 -0.52 -0.5 -0.48 -0.46 -0.44 -0.42

2*
θ

0

0.5

1

1.5

α
1
 - Hopf point: (τ ,α) = (4.15,-0.4269)

Fig. 4. Branches of periodic solutions of system (2), with
γ = 1 and arbitrary β, born at α1- Hopf points, close to
R = (τ, α) = (4.2536,−0.4545). (Above: Stable branch. Be-
low: Unstable branch with fold of limit cycles). Here, θ rep-
resents an approximation of the amplitude of the cycle.

Remark 3.1. The outcomes achieved in this section
for system (2) with γ = 1, can also be generalized
for an arbitrary positive value of γ.

According with the analysis of the sign of the curva-
ture coefficient for any Hopf curve αk and from the
stability regions shown in Fig. 1, a synthesis of the
stability outcomes on the Hopf curves with γ = 1
can be observed in Fig. 5.

τ
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α

5

α
2 α

4
α
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Model 1: Stability of cycles, γ  = 1

Fig. 5. Some Hopf curves (24) of system (2) with γ = 1
and arbitrary β, where red and green denote negative and
positive values of σ(k), respectively. Colored thick lines show
stability of emergent limit cycles (red - stable, green - unsta-
ble), due to a change of stability of the equilibrium point (see
Fig. 1). The asterisks correspond to the located points over
the curves α1 and α3 where σ vanishes.

3.2. Model 2

System (11) can be written as{
Ẋ = AX +Bh(y(t− τ)),

h(y) = −δy + βy2, y = −CX, (30)

where

A =

(
0 −γ
1 0

)
, B =

(
1
0

)
, C = Bt.

Thus, the transfer function for the linear part be-
comes

G(s) = C(sI −A)−1Be−sτ =
se−sτ

γ + s2
. (31)

The equilibrium y = 0 comes from solving the equa-
tion −y = G(0)h(y). In this case, the characteristic
eigenvalue is

λ(s) = G(s)J = −δse
−sτ

γ + s2
, where J = h′(0) = −δ.

The critical condition at the Hopf bifurcation point,
i.e., λ(iω) = −1, gives this system of equations

ω2 − γ + δω sinωτ = 0, δω cosωτ = 0.

Then, as ω > 0 and δ 6= 0, it should be ωτ =
(2k − 1)π/2 = yk, k ∈ N as well as

ω2 − γ − δω(−1)k = 0, (32)
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which resumes the Hopf bifurcation condition and
results equivalent to (20) for k ∈ N after replacing
ωk = yk/τ .
From (30) follows D2 = h′′(0) = 2β and D3 =
h′′′(0) = 0. From (27) one has

H(0) = 0, H(i2ω) = − i2ω

(γ − 4ω2) + δi2ω
,

and finally

V02 = −1
4H(0)D2 = 0,

V22 = −1
4H(i2ω)D2 =

iηω

(γ − 4ω2) + δi2ω
.

Provided that p(iω) = ηV22, now (see (25)) it is
defined

aux = G(iω)p(iω) = − β2ω2e−iωτ

(γ − ω2) (γ − 4ω2 + δi2ω)
.

(33)
Notation: In what follows, the expression aux(k)
will mean aux(iωk) where ωkτ = (2k − 1)π/2, e.g.
aux(1) denotes aux(iω1) where ω1τ = π/2. The
same notation is extended for G′ and σ as for the
previous case. Again, the subscript o or e means k
odd or even, respectively.
To get the expression of σ, two possibilities must be
considered: ωkτ = (2k − 1)π/2, where k is odd or
even. Then, the whole analysis gives place to three
different situations that will be developed below and
thus the stability analysis will be completed. Now,
the sign of the curvature coefficient will be deter-
mined for the two cases mentioned in Theorem 4.
Case I) First using (32), again with γ = 1, for an
arbitrary odd value of k, Eqn. (33) results

auxo(k) =
β2i

δ(−3ωk + δ(1 + 2i))
,

then if k = 1 one has

auxo(1) =
2τβ2i

δ(−3π + 2τδ(1 + 2i))
.

From (31), it follows that

G′o(1) = G′(s)|s=iω1 = −i(−2− iπ)δπτ + 8τ2

δ2π2
.

For ω1τ = π/2, i.e. k = 1, and over the Hopf curve
δ1, (25) becomes

σo(1) = −Re

(
auxo(1)

−δG′o(1)

)
,

and after some tedious calculations, it leads to
sgn(σo(1)) = −sgn(P1), where

P1 = 2πτ (π − 1) δ2 +
(
8τ2 + 3π2

)
δ − 12πτ. (34)

Moreover, to find where σ(1) = 0, P1 = 0 un-
der δ = δ1(τ) = −π/(2τ) + 2τ/π must be solved.
So the unique point of δ1 where σ = 0 results
Q = (τ, δ) = (2.3979, 0.8715) where the nearby dy-
namics are similar to those found near point R,
in the previous subsection. If τ < 2.3979, due to
σ > 0 the emergent cycles are unstable. Close to
Q, branches of periodic solutions exhibit the cycle
folds, where two limit cycles collide and disappear.
On the contrary, for 2.3979 < τ <

√
y1y2 =

√
3π/2,

as σ < 0 the cycles result stable (classic Hopf
branch). Otherwise, for τ >

√
3π/2, the emergent

orbits are unstable. This situation is identical to the
one described in Model 1, close to the point R, and
illustrated in Fig. 4.

Besides, if one replaces δτ = −π/2+2τ2/π into
τP1 (see (34)) and then multiplies by 2, it is ob-
tained another expression P̃1 in the variable τ that
can be written as

P̃1(τ)=16
(
1+π−1

)
τ4− 4π (2π + 3) τ2 + π3(π− 4).

Then, applying Descartes’ rule it can be shown that
P̃1 has exactly one positive root, as commented be-
fore.
Case II)a) Now, it is analyzed the case with k odd
but k ≥ 3, remaking the steps done before for
ωkτ = (2k − 1)π/2 = aπ/2, where a = 2k − 1
≥ 5 if k ≥ 3. Furthermore, due to (32), one has
ω2 − 1 + δω = 0 and then

auxo(k) =
2τβ2i

δ(−3aπ + 2τδ(1 + 2i))
,

as well as

G′o(k) = −i(−2− i(2k − 1)π)δ(2k − 1)πτ + 8τ2

δ2(2k − 1)2π2
.

Then for an arbitrary odd k with k ≥ 3 from

σo(k) = −Re

(
auxo(k)

−δG′o(k)

)
,

follows sgn(σo(k)) = −sgn(Pk), where

Pk = [2πτa(πa− 1)] δ2 +
(
8τ2 + 3π2a2

)
δ − 12πτa.

(35)
Once again, to find the point along the Hopf curve
where σ = 0, it must be solved Pk = 0 and
δ = δk(τ) = −aπ/(2τ) + 2τ/(aπ). To locate the
intersections one can proceed as in the case with
k = 1. Nevertheless, if k is odd with k ≥ 3 there
are two solutions. This result also comes out substi-
tuting τδ = −aπ/2 + 2τ2/(aπ) into τPk (see (35))
and then multiplying by 2. Thus, it is attained P(o)k

which has the general form:

P(o)k(τ) = Roτ
4 + Soτ

2 + To, (36)



April 22, 2019 16:10 ws-ijbc

Hybrid Methods for Studying Stability and Bifurcations in Delayed Feedback Systems 11

where Ro = 16
[
1 + (πa)−1

]
, So = −4πa(2πα + 3)

and To = π3a3(πa−4). Thus P(o)k = 0 can be solved
analytically yielding

τ2 =
π2a2(2πa+ 3±

√
25 + 24πa)

8 (πa+ 1)
.

As a ≥ 5, then τ2 takes two different positive val-
ues. So (36) has two positive roots and (35) becomes
zero for two different (τ, δ) pairs. For instance, when
k = 3, the roots are τ1 = 5.1497, τ2 = 10.0271
and the corresponding δ values are −0.869453 and
0.4934145. Thus, considering the curve δ3 and the
regions of stability of the equilibrium point (see
Fig. 3), the emergent orbits result stable only for√
y2y3 =

√
15π/2 < τ <

√
35π/2 =

√
y3y4. This

outcome can be generalized for any Hopf curve
δk, with k odd, k ≥ 3, for the interval I =(√
yk−1yk,

√
ykyk+1

)
.

In summary, it has been demonstrated that δ1 has
a unique point where the curvature coefficient van-
ishes whereas δk has exactly two points where σ = 0
if k is odd and k ≥ 3. This result is original in sys-
tem (11) and appears after considering the variation
of several parameters.

Case II)b) Finally if k is even, taking into account
that ωkτ = (2k − 1)π/2 = aπ/2, where a ≥ 3, due
to (32) and (33) results

auxe(k) =
2τβ2i

δ(−3aπ + 2τδ(−1 + 2i))

and

G′e(k) = i
(2 + iaπ)δaπτ + 8τ2

δ2a2π2
.

In general, for even k, as

σe(k) = −Re

(
auxe(k)

−δG′e(k)

)
,

then sgn(σe(k)) = −sgn (Pk) , where

Pk=[2πτa(πa+1)] δ2 +
(
8τ2+3π2a2

)
δ + 12πτa.

Making the substitution τδ = aπ/2− 2τ2/(aπ) into
τPk above, follows

P(e)k(τ) = Reτ
4 + Seτ

2 + Te = 0, (37)

where Re = 16
[
1 − (πa)−1

]
, Se = −4πa (2πa− 3)

and Te = π3a3 (πa+ 4). Thus, solving (37) it is easy
to find that the values of τ2 result complex because
a ≥ 3. Then (37) is always nonzero since its roots
are not real and definitely Pk is always nonzero.
Thereby and in brief, it has been proved that if
k is even, then σ is always negative along the

Hopf curve δk. Taking into account Fig. 3, the
emergent orbits are stable specifically if τ ∈ I =(√
yk−1yk,

√
ykyk+1

)
.

In agreement with all the computations of this
section for system (11), as well as the outcomes of
Section 2.2, reflected in Fig. 3, some representative
results about stability over a few Hopf curves are
shown in Fig. 6.

Remark 3.2. The deductions achieved in this section
for system (11) with γ = 1, can also be generalized
for an arbitrary positive value of γ.
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Model 2: Stability of cycles,  γ  = 1

Fig. 6. Some Hopf curves (24) of system (11) with γ = 1
and arbitrary β, where red and green denote negative and
positive values of σ, respectively. Colored thick lines show
stability of emergent limit cycles (red - stable, green - unsta-
ble), due to a change of stability of the equilibrium point (see
Fig. 3). The asterisks correspond to points over the curves δ1,
δ3, δ5 and δ7 (one in δ7 is not shown) where σ vanishes.

4. Conclusions

Generalizations of previous analyzed models, now
including more parameters, have been considered
to gain clarity and perspective about the whole dy-
namics. The results about stability and bifurcations
of equilibria have been overtaken through the the-
ory of exponential polynomials and the location of
their roots. The frequency-domain methodology has
been applied to study Hopf bifurcation phenomena,
achieving some interesting cycles stability outcomes
and locating particular degeneracies.
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Appendix A

Proof. [Theorem 3] =⇒ (Necessary condition)
Case IIa): Suppose yk < τ < yk+1, k odd. By re-
duction to the absurd, consider that α > 0. Accord-
ing with Theorem 1 and using Bolzano’s theorem,
as the roots of F1 and G1 (6) should alternate and
F1(τ) = −ατ2 < 0, then F1(yk) = y2k − τ2 − ατ2 >
0 and F1(yk+1) = −y2k+1 + τ2 − ατ2 > 0. But

F1(yk) > 0 implies that α < y2k/τ
2 − 1 < 0 and

F1(yk+1) > 0 yields α < −y2k+1/τ
2 + 1 < 0, so α

can not be positive. So α < 0, α > y2k/τ
2 − 1 and

also α > −y2k+1/τ
2 + 1. Then F1 has two roots in

(yk, yk+1) = (kπ, (k + 1)π).
Besides F1(0) = (1 − α)τ2 > 0. Now, consider

yi < yk. For i < k, odd, F1(yi) = y2i − τ2−ατ2 < 0,
which is equivalent to α > y2i /τ

2 − 1. This re-
sult is true under α > y2k/τ

2 − 1. For i < k,
even, F1(yi) = (−y2i + τ2) − ατ2 > 0, leads to
α < −y2i /τ2 +1. This assertion is valid under α < 0
due to 0 < −y2i /τ2 +1 if yi < yk < τ < yk+1. Anal-
ogously it can be proved that F (yj)F (yj+1) < 0 for
each j ≥ k+ 1. Thereby, one has 2k+ 1 roots of F1

in [0, 2kπ]. So, all the roots of F1 result real.
⇐= (Sufficient condition)
Case I): In order to apply Theorem 2, it is necessary
to set conditions to satisfy F1G

′
1(y) > 0 for any root

y of G1 given by (6) with γ = 1. To prove this state-
ment, the work is divided in two parts considering
1) ŷ1,2 = ±τ ; 2) yk = kπ, k ∈ N0.
Let 0 = y0 < τ < y1 = π.
1) Analysis with ŷ1,2.
Through (5) and (8) one can establish F1G

′
1 > 0 for

ŷ1,2 = ±τ where

G′1(ŷ1,2) = −2τ sin τ, F1(ŷ1,2) = −ατ2.

As 0 = y0 < τ < y1 = π, sin τ > 0 and by the
requirement F1G

′
1(ŷ1,2) = 2ατ3 sin τ > 0, follows

α > 0.
2) Analysis with yk.
Through (5) and (8), evaluating for y0 = 0, yields
G′1(y0) = τ2 and F1(y0) = (1−α)τ2. As F1G

′
1(y0) >

0 is necessary, results the condition α < 1.
Now, considering the root y1 one has G′1(y1) =
−(−y21 + τ2), F1(y1) = −(−y21 + τ2) − ατ2. Due

to 0 < τ < y1, it yields G′1(y1) = y21 − τ2 > 0, then
to fulfill F1G

′
1(y1) > 0 it must be

F1(y1) = −(−y21 + τ2)− ατ2 > 0⇔ α < y21/τ
2 − 1.
(A.1)

It is still pending to prove that F1G
′
1(yk) > 0 for

any yk, with k ≥ 2 and 0 < τ < y1 < yk. Two
options must be considered : k odd or k even.

• k odd, k ≥ 3: By (8) G′1(yk) = y2k− τ2 > 0, to fulfill
F1G

′
1(yk) > 0 it must be F1(yk) = −(−y2k + τ2) −

ατ2 > 0 ⇔ α < y2k/τ
2 − 1, but this condition is

satisfied under (A.1) due to y21/τ
2 − 1 < y2k/τ

2 − 1.
• k even, k ≥ 2: Due to (8) G′1(yk) = −y2k + τ2 < 0,

to supply F1G
′
1(yk) > 0 one needs α > −y2k/τ2 + 1.

The last inequality is satisfied if α > 0 due to
0 < τ < y1 < yk and 0 > −y2k/τ2 + 1.

Case IIa): As the previous case, according to The-
orem 2, it is necessary to set conditions to satisfy
F1G

′
1(y) > 0 for any root y of G1 given by (6).

Again, the work is divided in two parts considering
1) ŷ1,2 = ±τ ; 2) yk = kπ, k ∈ N0.
Now, let 0 < yk < τ < yk+1, yk = kπ, yk+1 =
(k + 1)π and γ = 1, where k is odd.
1) Analysis with ŷ1,2 = ±τ.
Through (5) and (8), F1(ŷ1,2) = −ατ2, G′1(ŷ1,2) =
−2τ sin τ and by the stability condition F1G

′
1(y) >

0 for the zeros of G1, becomes F1G
′
1(ŷ1,2) =

2ατ3 sin τ > 0. As yk < τ < yk+1, yk = kπ, k
odd, results sin τ < 0 then it must be α < 0.
2) Analysis with yk.
Through (5) and (8) evaluating for yk one has

G′1(yk) = (−1)k(−y2k + τ2),
F1(yk) = (−1)k(−y2k + τ2)− ατ2. (A.2)

As k is odd and G′1(yk) = y2k − τ2 < 0, to fulfill
F1G

′
1(yk) > 0 it must be

F1(yk) = y2k−τ2−ατ2 < 0⇔ α > y2k/τ
2−1. (A.3)

Now, as G′1(yk+1) = −y2k+1 + τ2 < 0 and one needs
F1G

′
1(yk+1) > 0, it follows

F1(yk+1)=−y2k+1+τ2−ατ2<0⇔ α>−y2k+1/τ
2+1.

(A.4)
Next, it is considered the same situation with the
other roots yi, yj such that 0 ≤ yi < yk < τ <
yk+1 < yj but in both cases one must take into ac-
count when the subscript i is odd or even and the
same with the subscript j.
i) Analysis for yi

• i odd: By means of (5) and (8) G′1(yi) = y2i −τ2 < 0,
so it should be F1(yi) = y2i − τ2 − ατ2 < 0 ⇔ α >
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y2i /τ
2−1. The last inequality is valid due to yi < yk

and (A.3). So α > y2k/τ
2 − 1 > y2i /τ

2 − 1.
• i even, i 6= 0: Now, as G′1(yi) = −y2i + τ2 > 0 and

one needs FG′1(yi) > 0 follows α < −y2i /τ2+1. The
last inequality is valid if α < 0 due to 0 < yi < yk <
τ and 0 < −y2i /τ2 + 1.
• i = 0 Now, as G′1(y0) = τ2 > 0 and one needs
F1G

′
1(y0) > 0, it follows

F1(y0) = τ2 − ατ2 > 0⇔ α < 1. (A.5)

With α < 0, the condition (A.5) is already satisfied.
ii) Analysis for yj , where yk < τ < yk+1 < yj .
Again, two situations must be considered for j: even
or otherwise odd.
• j even: By (8) results G′1(yj) = −y2j + τ2 < 0, and

this implies that F1(yj) = −y2j+τ2−ατ2 < 0⇔ α >

−y2j /τ2+1. This condition is satisfied due to yk < yj
and (A.4). So α > −y2k+1/τ

2 + 1 > −y2j /τ2 + 1.

• j odd: By (8) results G′1(yj) = y2j −τ2 > 0, and this

implies that F1(yj) = y2j − τ2 − ατ2 > 0 ⇔ α <

y2j /τ
2 − 1. This inequality is valid if α < 0 due to

0 < y2j /τ
2 − 1 when τ < yk+1 < yj .

�

Appendix B

Proof. [Theorem 4] =⇒ (Necessary condition)
Case II)a): Let be 0 < ȳk < τ < ȳk+1 where
k is odd. One must prove that G2 (see (14)) has
4k + 2 zeros in [−2kπ + π/2, 2kπ + π/2] . Again
G2(0) = 0. Just as in the proof of the necessary con-
dition in I), the sign of δ is determined by the fact
that the signs of G2(ȳk), G2(τ) and G2(ȳk+1) must
alternate to guarantee the existence of roots of G2

between the zeros of F2. Thus δ > 0, G2(ȳk) > 0
and G2(ȳk+1) > 0 that yields δ < −ȳk/τ + τ/ȳk
and δ < ȳk+1/τ − τ/ȳk+1. So, there are two roots of
G2 in [ȳk, ȳk+1] . Besides, under these conditions, if
i < k and i is odd then G2(ȳi) > 0, or if i is even,
G2(ȳi) < 0. Then, G2 has one root in each inter-
val [ȳi, ȳi+1] as well as in [yj , yj+1] if j ≥ k + 1 and
altogether it has 4k+2 in [−2kπ + π/2, 2kπ + π/2] .
⇐= (Sufficient condition)
Case II)a): By Theorem 2, it is necessary to set
conditions to satisfy F ′2G2(y) = F ′2(y)G2(y) < 0 for
any root y of F2 given by (15) with γ = 1. To prove
this, the work is divided in two parts considering 1)
y̆1,2 = ±τ and 2) ȳk = (2k − 1)π/2, k ∈ N.
Let 0 < ȳk < τ < ȳk+1 and ȳk+1 = (2k + 1)π/2,
where k is odd.
1) Analysis for the roots y̌1,2 = ±τ .

Due to (14) and (17), results F ′2(y̌1,2) =
∓2τ cos τ and G2(y̌1,2) = −δτ(±τ), then the sta-
bility condition F ′2G2(y) < 0 for the zeros of F2,
becomes F ′2G2(y̌1,2) = 2δτ3 cos τ < 0. For ȳk < τ <
ȳk+1, ȳk = (2k − 1)π/2, with k odd, as cos τ < 0
then it must be δ > 0.
2) Analysis with the roots ȳk.

From (14) and (17), evaluating for ȳk one has

F ′2(ȳk) = (−1)k(−ȳ2k + τ2),
G2(ȳk) = (−1)k+1(−ȳ2k + τ2)− δτ ȳk.

As k is odd and 0 < ȳk < τ then F ′2(ȳk) = ȳ2k−τ2 <
0, so to fulfill F ′2G2(ȳk) < 0 one needs

G2(ȳk) = −ȳ2k+τ2−δτ ȳk > 0⇔ δ < −ȳk/τ+τ/ȳk.
(B.1)

Now, as F ′2(ȳk+1) = −ȳ2k+1 + τ2 < 0 and one needs
F ′2G2(ȳk+1) < 0, it follows

G2(ȳk+1) = ȳ2k+1 − τ2 − δτ ȳk+1 > 0
⇔ δ<ȳk+1/τ − τ/ȳk+1.

(B.2)

Next, the same situation is considered with the
roots ȳi, ȳj such that 0<ȳi<ȳk<τ <ȳk+1<ȳj .
i) Analysis for ȳi: it is necessary to take into account
the cases where i is odd or even.

• i odd: By means of (17), as F ′2(ȳi) = ȳ2i − τ2 < 0,
and due to (14), it should be G2(ȳi) = −ȳ2i + τ2 −
δτ ȳi > 0 ⇔ δ < −ȳi/τ + τ/ȳi. The last inequal-
ity is valid due to ȳi < ȳk and (B.1) which implies
−ȳk/τ + τ/ȳk < −ȳi/τ + τ/ȳi.
• i even: Through (17) results F ′2(ȳi) = −ȳ2i + τ2 > 0

so by (14) it must be δ > ȳi/τ − τ/ȳi. Suppos-
ing δ > 0, the last inequality is true thanks to
0 > ȳi/τ − τ/ȳi if 0 < ȳi < ȳk < τ .
ii) Analysis for ȳj : where ȳk < τ < ȳk+1 < ȳj .
Again, two situations must be considered for j: even
or otherwise odd.
• j even: Through (17) and (14) results F ′2(ȳj) =
−ȳ2j + τ2 < 0, so G2(ȳj) = ȳ2j − τ2 − δτ ȳj >
0 ⇔ δ < ȳj/τ − τ/ȳj . This last condition is sat-
isfied due to ȳk+1 < ȳj and (B.2) which implies
ȳk+1/τ − τ/ȳk+1 < ȳj/τ − τ/ȳj .
• j odd: Taking into account (17) and (14) results
F ′2(ȳj) = ȳ2j−τ2 > 0, so G2(ȳj) = −ȳ2j +τ2−δτ ȳj <
0 ⇔ δ > −ȳj/τ + τ/ȳj . The last inequality is true
due to δ > 0 and 0 > −ȳj/τ+τ/ȳj if τ < ȳk+1 < ȳj .

�
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