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The goal of this paper is to apply the method of Lagrangian descriptors to reveal the phase
space mechanism by which a Caldera-type potential energy surface (PES) exhibits the dynamical
matching phenomenon. Using this technique, we can easily establish that the non-existence of
dynamical matching is a consequence of heteroclinic connections between the unstable manifolds
of the unstable periodic orbits (UPOs) of the upper index-1 saddles (entrance channels to the
Caldera) and the stable manifolds of the family of UPOs of the central minimum of the Caldera,
resulting in the temporary trapping of trajectories. Moreover, dynamical matching will occur
when there is no heteroclinic connection, which allows trajectories to enter and exit the Caldera
without interacting with the shallow region of the central minimum. Knowledge of this phase
space mechanism is relevant because it allows us to effectively predict the existence, and non-
existence, of dynamical matching. In this work we explore a stretched Caldera potential by means
of Lagrangian descriptors, allowing us to accurately compute the critical value for the stretching
parameter for which dynamical matching behavior occurs in the system. This approach is shown
to provide a tremendous advantage for exploring this mechanism in comparison to other methods
from nonlinear dynamics that use phase space dividing surfaces.

Keywords: Chemical reaction dynamics; Phase space transport; Hamiltonian systems; La-
grangian descriptors; Periodic orbits; Invariant manifolds; Symmetry; Caldera potential;
Poincaré sections

1. Introduction

Dynamical matching is an interesting mechanism originally proposed in [Carpenter, 1985, 1995] that arises
in Caldera-type potential energy surfaces (PES). These potentials are relevant in chemistry since they pro-
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vide good approximations for the description of many organic chemical reactions, such as those that occur
in the vinylcyclopropane-cyclopentene rearrangement [Baldwin, 2003; Goldschmidt & Crammer, 1988], the
stereomutation of cyclopropane [Doubleday et al., 1997], the degenerate rearrangement of bicyclo[3.1.0]hex-
2-ene [Doubleday et al., 1999, 2006] or that of 5-methylenebicyclo[2.1.0]pentane [Reyes et al., 2002]. The
potential energy surface of a Caldera is similar to that of a collapsed region of an erupted volcano. It is
characterized by a shallow potential well region (a central minimum) surrounded by four entrance/exit
channels mediated by index-1 saddles. Two of these saddles have low energy values and correspond to the
formation of chemical products, while the other two are higher in energy and represent reactants.

Broadly speaking, trajectories in Caldera type PES exhibit two distinct types of dynamical behavior.
The first kind is the trapping of trajectories in the central minimum area of the Caldera, and the other
type is dynamical matching. Examples of the behavior of these types of trajectories for the type of Caldera
PES studied in this paper were described in [Collins et al., 2014]. In the first case, trajectories that have
initial conditions on the dividing surfaces of the unstable periodic orbits (UPOs) of the upper index-1
saddles enter the central area of the Caldera and become temporarily trapped as a result of the interaction
between the invariant manifolds of the UPOs that exist in the central area of the Caldera with those
of the unstable periodic orbits of the index-1 saddles. This is studied in [Katsanikas & Wiggins, 2018].
Eventually, these trajectories will exit the Caldera through any channel corresponding to the four index-1
saddles surrounding the central area. As we will show in this work, trapping of trajectories, i.e. non-
existence of dynamical matching, is a consequence of heteroclinic connections between the stable manifolds
of the family of UPOs in the central minimum of the Caldera and the unstable manifolds of the UPO of
the upper index-1 saddles.

The second type of trajectory behavior is dynamical matching, for which trajectories with initial
conditions on the dividing surfaces of the UPOs of the upper index-1 saddles go straight across the Caldera
and exit via the opposite lower index-1 saddles. This was considered in [Katsanikas & Wiggins, 2018]. The
understanding of this mechanism is very important for Caldera PESs with reflectional symmetry about
the y-axis (which is what we consider in this paper) since for such PESs statistical theories would predict
that reactive trajectories exit with equal probability through the two channels of the lower index-1 saddles.
However, chemical systems whose energy landscape possesses caldera intermediate regions on their PES
almost never exhibit the expected symmetry in the product formation ratio. For this reason this mechanism
must be understood from a phase space perspective.

Dynamical matching can be viewed as an expression of momentum conservation and Newton’s first
law of motion. It is manifested by a trajectory entering the Caldera from a channel corresponding to a high
energy index-1 saddle (reactant). In the relatively flat region of the caldera it experiences little force, and it
exits through the diametrically opposing low energy index-1 saddle (product). As a result, this mechanism
plays an important role in determining the outcome of the chemical reaction. However, not all trajectories
entering the caldera behave in this fashion. Some trajectories may interact with the shallow potential well
region and become temporarily trapped. This can play a significant role in how they exit from the well.

In our previous study of dynamical matching for Caldera PES described in [Katsanikas & Wiggins,
2018] we used the method of Poincaré sections to understand that dynamical matching is a consequence of
the non-existence of interaction between the unstable invariant manifolds of the UPOs associated with the
upper index-1 saddles and the manifolds from the central minimum of the Caldera. We also investigated in
[Katsanikas & Wiggins, 2019] the conditions for the non-existence of dynamical matching in cases where
we stretched the PES in the x-direction. In this case, the distance in the x-direction between the saddles
and the central minimum increases as we decrease the stretching parameter. We found that there existed
a critical value of the stretching parameter for which the system does not exhibit dynamical matching. At
this critical value, the invariant manifolds of the UPOs associated with the upper index-1 saddles begin to
interact with the central area of the Caldera, and trajectories become temporally trapped. We showed that
this results from the decrease of the Hénon stability parameter of the UPOs of the upper index-1 saddles
that is responsible for the focusing of the unstable manifolds of the UPOs towards the central area of the
Caldera [Katsanikas & Wiggins, 2019].

[Katsanikas & Wiggins, 2018, 2019] used the following methods to reveal and analyze the phase space
structure:
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(1) Computation of periodic orbits using classical methods. In particular, it was noted that in Caldera-type
Hamiltonian systems it is difficult to compute the Lyapunov families of UPOs of the index-1 upper
saddles, since the system has distinct escape routes leading to non-convergence of the methods in a
reasonable computational time.

(2) Computation of periodic orbit dividing surfaces associated with relevant UPOs.
(3) Computation of selected Poincaré sections.
(4) Computation of the invariant manifolds of the UPOs on Poincaré sections.

In this paper we show how the method of Lagrangian descriptors can be used to achieve each of these steps
with significant computational efficiency, both in implementation and time.

The outline of this paper is as follows. In section 2 we briefly describe the Caldera Hamiltonian system
for which we analyze the dynamical matching mechanism. Section 3 is devoted to introducing the method of
Lagrangian descriptors and how it can be applied to reveal the geometrical template of invariant manifolds
in the high-dimensional phase space of Hamiltonian systems. In section 4 we present the results of this
work on how to detect the dynamical matching phenomenon using Lagrangian descriptors. Finally, in the
last section we discuss the conclusions.

2. The Hamiltonian Model

In this section we present the Caldera PES that we have used in order to analyze the phase space structures
responsible for the dynamical matching mechanism. The model PES that we consider, which has been
addressed in previous works, see e.g. [Collins et al., 2014; Katsanikas & Wiggins, 2018, 2019], has a central
minimum and four index-1 saddles around it. Two of these saddles have high energy values and the other
two are lower in energy. Therefore, the regions about the index-1 saddles allow entrance and exit to and
from the central area of the Caldera. In particular, we study a stretched version of the Caldera potential
in the x degree of freedom, in the form:

V (x, y) = c1
(
y2 + (λx)2

)
+ c2 y − c3

(
(λx)4 + y4 − 6 (λx)2y2

)
(1)

where the model parameters used in this work are c1 = 5, c2 = 3, c3 = −3/10 and 0 < λ ≤ 1 (the
stretching parameter). The classical symmetric caldera PES [Collins et al., 2014; Katsanikas & Wiggins,
2018] corresponds to λ = 1 and is shown in Fig. 1. We depict in Fig. 2 the contours and the equilibrium
points of the potential for different values of λ, for example λ = 1, λ = 0.8, λ = 0.6 and λ = 0.2. We also
compile in Table 1 the positions and energies of the upper index-1 saddles for different values of λ. We
observe that the positions of the index-1 saddles move away from the center of the Caldera as we decrease
the parameter λ. The position of the central minimum is (x, y) = (0,−0.297) with energy E = −0.448 for
all values of the stretching parameter λ.

The Hamiltonian with two degrees of freedom is defined as the sum of kinetic plus potential energy:

H(x, y, px, py) =
p2x

2mx
+

p2y
2my

+ V (x, y) (2)

where V (x, y) is the Caldera PES in Eq. (1), and mx, my are the masses of the x and y DoF respectively.
We denote the numerical value of the Hamiltonian as energy E. In this work we take mx = my = 1, and
Hamilton’s equations of motion are given by:

ẋ =
∂H

∂px
=

px
mx

ẏ =
∂H

∂py
=

py
my

ṗx = −∂H
∂x

= 2λ (λx)
[
2c3
(
(λx)2 − 3y2

)
− c1

]
ṗy = −∂H

∂y
= 2y

[
2c3
(
y2 − 3(λx)2

)
− c1

]
− c2

(3)
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Fig. 1. Caldera potential energy surface given in Eq. (1) for the model parameters c1 = 5, c2 = 3, c3 = −3/10 and λ = 1.

A) B)

C) D)

Fig. 2. The stable stationary point in the center area (depicted by a black point), the upper saddles (depicted by red points),
the lower saddles (depicted by blue points) and the equipotential contours for the stretching parameter: A) λ = 1; B) λ = 0.8;
C) λ = 0.6 and D) λ = 0.2.

3. Lagrangian Descriptors

The method of Lagrangian descriptors (LDs) is a trajectory-based scalar diagnostic tool that has been
developed in the nonlinear dynamics literature to explore the geometrical template of phase space structures
that characterizes qualitatively distinct dynamical behavior. This technique was originally introduced a
decade ago in [Madrid & Mancho, 2009] for the location of Distinguished Hyperbolic Trajectories, and was
defined by means of computing the arclength of particle trajectories as they evolve forward and backward in
time [Mancho et al., 2013]. The method was originally applied to study transport and mixing mechanisms
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Table 1. The upper index-1 saddles of the potential
given in Eq. (1) (”RH” and ”LH” are the abbreviations
for right hand and left hand respectively) for different
values of λ. The energy for all the cases is E = 27.0123.

Critical point x y λ

Upper LH index-1 saddle -2.149 2.0778 1
Upper RH index-1 saddle 2.149 2.0778 1
Upper LH index-1 saddle -2.6862 2.0778 0.8
Upper RH index-1 saddle 2.6862 2.0778 0.8
Upper LH index-1 saddle -3.5815 2.0778 0.6
Upper RH index-1 saddle 3.5815 2.0778 0.6
Upper LH index-1 saddle -10.7446 2.0778 0.2
Upper RH index-1 saddle 10.7446 2.0778 0.2

in geophysical flows [Mendoza & Mancho, 2010]. Recently, the technique has received recognition in the
field of Chemistry, in particular in the area of Transition State Theory (see e.g. [Craven & Hernandez, 2015,
2016; Craven et al., 2017]), where the computation of chemical reaction rates relies on the knowledge of the
phase space structures that separate reactants from products. Therefore, the use of mathematical techniques
that have the capability of detecting high-dimensional phase space structures that occur in Hamiltonian
systems, such as normally hyperbolic invariant manifolds (NHIMs) and their stable and unstable manifolds,
is of great interest and utility. One of the biggest challenges when exploring the high-dimensional phase
space of a dynamical system is to interpret the dynamical behavior of ensembles of initial conditions, and
to recover from the evolution of their trajectories the underlying geometrical phase space structures that
govern the dynamics. The problem that arises is that classical techniques rely on following the location of
the trajectories of initial conditions that start nearby, and in a high-dimensional phase space, trajectories
might get “lost” with respect to each other very quickly. The method of Lagrangian descriptors provides a
radically different approach that resolves this issue, as it focuses on integrating a positive scalar function
along the trajectory of any initial condition of the system instead of tracking their phase space location.
This is probably one of the key ideas behind the success of this technique, as the phase space geometry is
concealed in the initial conditions themselves.

In the framework of Hamiltonian systems it has been mathematically proven that LDs detect the
geometrical phase space structures responsible for transition dynamics through index-1 saddles [Naik et al.,
2019], and numerical studies have been carried out to analyze escaping dynamics on open PESs [Demian &
Wiggins, 2017; Naik & Wiggins, 2019; Garćıa-Garrido et al., 2020]. The methodology offered by LDs has
been shown to have many advantages with respect to other nonlinear dynamics tools. For instance, it is
straightforward to implement and computationally inexpensive when applied to systems with two or three
DoF. But probably the most important feature of this tool is that it allows to produce a complete and
detailed geometrical phase space tomography in high dimensions by means of using low-dimensional phase
space probes to extract the intersections of the phase space invariant manifolds with these slices [Demian
& Wiggins, 2017; Naik et al., 2019; Naik & Wiggins, 2019; Garćıa-Garrido et al., 2020].

Consider a dynamical system with general time-dependence in the form:

dx

dt
= v(x, t) , x ∈ Rn , t ∈ R , (4)

where the vector field v(x, t) ∈ Cr(r ≥ 1) in x and continuous in time. In this work, this system is given
by Hamilton’s equations for the Caldera PES, see Eq. (3). In order to explore the phase space structures of
this dynamical system we have used a modified version of the p-norm definition of Lagrangian descriptors
that relies on variable time integration. The reason for doing so is that, since the Caldera PES is an open
potential, trajectories can escape to infinity at an increasing rate, and this issue may cause problems when
computing LDs. Take an initial condition x0 = x(t0) and a fixed integration time τ > 0, the p-norm LD
introduced in [Lopesino et al., 2017] is defined as follows:

Mp(x0, t0, τ) =

∫ t0+τ

t0−τ

n∑
i=1

|vi(x(t;x0), t)|p dt = M (b)
p (x0, t0, τ) +M (f)

p (x0, t0, τ) , p ∈ (0, 1] . (5)
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where M
(b)
p and M

(f)
p represent, respectively, backward and forward integration of initial conditions starting

at time t0, that is:

M (b)
p (x0, t0, τ) =

∫ t0

t0−τ

n∑
i=1

|vi(x(t;x0), t)|p dt , M (f)
p (x0, t0, τ) =

∫ t0+τ

t0

n∑
i=1

|vi(x(t;x0), t)|p dt (6)

In particular, we have chosen for this work p = 1/2. At this point, it is important to highlight that with
this definition of LDs one can mathematically prove that NHIMs and their stable and unstable manifolds
are detected as singularities of the Mp scalar field, that is, points at which the function is non-differentiable
and thus its gradient takes very large values [Lopesino et al., 2017; Demian & Wiggins, 2017; Naik et al.,
2019]. Moreover, it has been shown that,

Wu(x0, t0) = argmin M (b)
p (x0, t0, τ) , Ws(x0, t0) = argmin M (f)

p (x0, t0, τ) (7)

where Wu and Ws are, respectively, the unstable and stable manifolds calculated at time t0 and argmin
denotes the phase space coordinates x0 that minimize the function Mp. In addition, NHIMs at time t0 can
be calculated as the intersection of the stable and unstable manifolds:

N (x0, t0) =Wu(x0, t0) ∩Ws(x0, t0) = argmin Mp(x0, t0, τ) (8)

It is important to point out here that the phase space location of the stable and unstable manifolds can
be thus obtained in two ways. Firstly, we can extract them as ridges of the scalar function ||∇Mp|| since
manifolds are located at pòints where the function Mp is non-differentiable. Once the manifolds are known,
one can compute the NHIM at their intersection by means of a root search algorithm. The second method
to recover the manifolds and their associated NHIM is by minimizing the function Mp using a search
optimization algorithm. This second procedure and some interesting variations are described in [Feldmaier
et al., 2019].

Notice that the LD definition given in Eq. (5) implies that all initial conditions are integrated for the
same time τ . Recent studies have revealed, see e.g. [Junginger et al., 2017; Naik & Wiggins, 2019; Garćıa-
Garrido et al., 2020], that computing fixed-time LDs, that is, integrating all initial conditions chosen on a
phase space slice for the same integration time τ , could give rise to issues related to the fact that some of the
trajectories that escape the PES can go to infinity in finite time or at an increasing rate. The trajectories
that show this behavior will give NaN values in the LD scalar field, hiding some regions of the phase
space, and therefore obscuring the detection of invariant manifolds. In order to circumvent this problem
we will apply in this work the approach that has been recently adopted in the literature [Junginger et al.,
2017; Naik & Wiggins, 2019; Garćıa-Garrido et al., 2020] known as variable integration time Lagrangian
descriptors. In this methodology, LDs are calculated, at any initial condition, for the initial fixed integration
time or until the trajectory of that initial condition leaves a certain phase space region R that we call the
interaction region. Therefore, the total integration time in this strategy depends on the initial conditions
themselves, that is τ(x0). In this variable-time formulation, the p-norm definition of LDs has the form:

Mp(x0, t0, τ) =

∫ t0+τ
+
x0

t0−τ−x0

n∑
i=1

|vi(x(t;x0), t)|p dt , p ∈ (0, 1] . (9)

and, for a fixed integration time τ0 > 0, the total integration time is defined as:

τ±x0
= min

{
τ0 , |t±|∣∣x(t±;x0)/∈R

}
, (10)

where t+ and t− are the times for which the trajectory leaves the interaction region R in forward and
backward time, respectively. For the analysis of the Caldera-type Hamiltonian in this work we have chosen:

R =
{
x = (x, y, px, py) ∈ R4

∣∣ |y| ≤ 6
}
. (11)

To finish this section we will illustrate how variable integration time LDs can be used to detect the
geometrical phase space structures, that is, the NHIMs and their stable and unstable invariant manifolds
that characterize the dynamical matching phenomenon in the Caldera Hamiltonian system. In particular,
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we will focus on the extraction of the phase space structures for the dynamical system given in Eq. (3) using
the model parameters described in Section 2, and considering the unstretched (λ = 1) Caldera potential.
To compare the results obtained using LDs with those found in [Katsanikas & Wiggins, 2018] by means of
other nonlinear dynamics techniques, we will analyze the phase space structures in the following Poincaré
surfaces of section (SOSs):

U+
x,px = {(x, y, px, py) ∈ R4 | y = 1.88409 , py > 0 , E = 29} (12)

V+x,px = {(x, y, px, py) ∈ R4 | y = 0 , py > 0 , E = 30} (13)

We begin our analysis with the SOS U+
x,px , and we choose a small integration time τ = 4. Once we have

fixed the phase space slice where we want to compute LDs, we select a grid of initial conditions and, after
discarding those that are energetically unfeasible, we integrate the remaining conditions both forward and
backward in time, and compute LDs using the definition in Eq. (9) with p = 1/2 for the whole fixed
integration time or until the trajectory leaves the interaction region R in Eq. (11), whichever happens
first. The result is that if we plot the LDs values obtained from the forward/backward integration, the
scalar field will reveal the stable/unstable manifolds in the SOS under consideration. Moreover, if we plot
the combined sum of forward and backward integration, the method highlights both stable and unstable
manifolds simultaneously. This is shown in Fig. 3, where the values of LDs for forward/backward integration
is displayed in panel A)/B) and the combination of both is depicted in C). We can clearly see that the
manifolds are detected at points where the LD scalar function is non-differentiable. To demonstrate this
mathematical property, we represent in Fig. 4 the values taken by the LD function calculated on U+

x,px
along the line px = 1. Notice the jumps in the values of the function, which indicate non-differentiability
by means of large gradient values. Therefore, we can directly extract the invariant stable and unstable
manifolds in the SOS from the gradient, that is, using ||∇Mp||. This is illustrated in Fig. 5 for the SOS
U+
x,px where two different values for the integration time have been used to compute LDs, in particular
τ = 4 and τ = 8. It is important to note here the crucial role that the integration time τ plays when it
comes to revealing the invariant manifolds in phase space. As shown in Fig. 5, when we increase the value
for the integration time, richer and more complex details of the underlying geometrical template of phase
space structures are unveiled. This behavior is expected, since an increase of the integration time would
imply incorporating more information about the past and future dynamical history of particle trajectories
in the computation of LDs. This means that τ is intimately related to the time scales of the dynamical
phenomena that take place in the model under consideration and thus, it is a parameter that is problem-
dependent. Consequently, there is no general “golden” rule for selecting its value for exploring phase space,
and thus it is usually selected from the information obtained by performing several numerical experiments.
One needs to always bare in mind that there is a compromise between the complexity of the structures that
one would like to reveal to explain a certain dynamical mechanism, and the interpretation of the intricate
manifolds displayed in the LD scalar output.

As a final remark to complete the analysis of this example on how the method of Lagrangian descriptors
is applied to extract the geometrical template of invariant manifolds in a high-dimensional phase space
by means of looking at low-dimensional slices, there is a key point that needs to be highlighted and that
demonstrates the real potential of LDs with respect to other classical techniques from nonlinear dynamics.
In Figs. 5 and 6 we have extracted from the gradient of the Mp function the stable and unstable manifolds
on the Poincaré sections U+

x,px and V+x,px respectively. Using LDs we can obtain all the manifolds coming
from any NHIM in phase space simultaneously. This is of course a tremendous advantage in comparison
to the classical approach used to compute stable and unstable manifolds, which relies on the individual
location of the NHIMs in phase space and, for every NHIM, globalize the manifolds separately taking into
account the crucial information provided by the eigendirections. Consequently, the application of LDs offers
the capability of recovering all the relevant phase space structures in one shot without having to study the
local dynamics about equilibrium points of the dynamical system. To validate that the structures extracted
from the gradient of LDs correspond to the stable and unstable manifolds present in the phase space of the
Caldera Hamiltonian, we have compared them in Fig. 6 with the invariant manifolds obtained by means of
classical nonlinear dynamics techniques to calculate periodic orbits, see [Katsanikas & Wiggins, 2018] for
more details.



November 30, 2020 2:44 katsanikasetal

8 Katsanikas et al.

A) B) C)

Fig. 3. Computation of variable-time LDs in the Poincaré SOS U+x,px
using τ = 4 and p = 1/2. A) Forward integration LDs;

B) Backward integration LDs; C) The sum of forward and backward LDs. The energy boundary is depicted in magenta.

A) B)

Fig. 4. Detection of stable and unstable manifolds at phase space points where the LD scalar function is non-differentiable.
A) Variable-time LDs calculated on the Poincaré SOS U+x,px

using τ = 4 and p = 1/2; B) Value of LDs along the line px = 1.

4. Numerical Results

In this section we compute Lagrangian descriptors with τ = 4 in order to study the phase space structures
close to the UPOs associated with the upper index-1 saddles. Our goal is to reveal the phase space mech-
anism that determines the existence or nonexistence of dynamical matching in the Caldera PES. For this
purpuse we use the Poincaré surfaces of section defined in Eq. (13), which were also used in [Katsanikas &
Wiggins, 2018]. This analysis is carried out for different values of λ. Our goal is to understand how LDs
are capable of detecting the dynamical matching mechanism. This section is divided into two subsections.
In the first part we describe how the method of LDs succeeds in the detection of dynamical matching, and
the second subsection presents the properties and advantages of this methodology.

4.1. The detection of Dynamical Matching

The phenomenon of dynamical matching refers to the lack of a mechanism that would enable transport of
trajectories from the region of the upper saddles to the central area of the Caldera. As we know, trajectories
with initial conditions on the invariant manifolds of unstable periodic orbits move away from the periodic
orbit (unstable manifold) or approach the periodic orbit (stable manifold). A mechanism that could be
responsible for the transport of trajectories from the region of the upper saddles to the central area of the
Caldera, would be heteroclinic intersections of the unstable invariant manifolds of the unstable periodic
orbits of the upper saddles with the stable manifolds of the unstable periodic orbits that exist in the central
area. We will show that the non-existence or existence of this mechanism determines if we have dynamical
matching or not. For this reason, we compute the invariant manifolds for different values of λ starting from
λ = 1 to zero in order to find the values of λ that correspond to dynamical matching and trapping.
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A) B)

C) D)

Fig. 5. On the left column, LDs calculated on the SOS U+x,px
using: A) τ = 4; C) τ = 8. On the right column, the invariant

stable (blue) and unstable (red) manifolds extracted from the gradient of the scalar function Mp. We have also marked with
yellow dots the location of the unstable periodic orbits of the upper index-1 saddles and the magenta curve represents the
energy boundary.

(1) Dynamical matching: The gap in Fig.7 (for λ = 0.8) indicates that we have no interaction (hetero-
clinic intersections) of the unstable invariant manifold of the periodic orbits associated with the upper
saddle with the central area and this means that we have no mechanism of transport of trajectories
from one region to the other. Consequently, we have in this case the phenomenon of dynamical match-
ing, the trajectories that have initial conditions on the dividing surfaces of the periodic orbits of upper
saddles go straight across the Caldera and they exit via the lower opposite saddle as we know from
previous papers ([Katsanikas & Wiggins, 2018], [Katsanikas & Wiggins, 2019]). An example of this is
given in Fig. 7 for λ = 0.8. As we can see in this figure we choose an initial conditions (circle) inside
the region of the unstable invariant manifold of the unstable periodic orbits of upper saddles. If we
integrate backward the initial condition that corresponds to the circle the resulting trajectory exits via
the region of the upper saddle. If we integrate it forward the resulting trajectory goes straight across
the caldera and exits via the lower opposite saddle. This means that the trajectory comes from the
region of the upper saddle and it exhibits the phenomenon of dynamical matching. This gap decreases
in size as we decrease the stretching parameter λ until we reach a critical value of λ.

(2) The critical value: In Fig. 7 we observe for λ = 0.778 (middle row of figures) the unstable mani-
folds of the periodic orbits of upper saddles start to interact with the stable manifolds of the unstable
periodic orbits of the central area, resulting in heteroclinic connections and forming lobes between
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A) B)

C) D)

E) F)

Fig. 6. On the left column: A) LDs calculated on the SOS U+x,px
using τ = 4; C) invariant stable (blue) and unstable (red)

manifolds extracted from the gradient of the scalar function Mp; E) and F) Unstable (cyan) and stable (orange) invariant
manifolds of the periodic orbits of the two upper saddles, that are also represented by two black points. We also depict the
invariant unstable (violet) and stable (green) manifolds of the family of periodic orbits of the central minimum. On the right
column we perform the same analysis but for the Poincaré SOS V+x,px

, where LDs have been calculated using an integration
time τ = 6. It is important to remark that the invariant manifolds shown in E) and F) have been computed by means of
classical nonlinear techniques, see [Katsanikas & Wiggins, 2018].

them. These lobes are very narrow and cannot be distinguished initially as we can see in Fig.7. In
order to observe these lobes we magnify the region of the upper saddles, for example the region of the
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upper right saddle in Fig.7. When we magnify these regions, we see the heteroclinic connections and
the lobes between the unstable invariant manifolds of the unstable periodic orbits of upper saddles
and the stable manifolds of the unstable periodic orbits that exist in the central area. These lobes are
responsible for the trapping of the trajectories that come from the region of the upper saddles to the
central area. This can be checked very easily. We depict two initial conditions in Fig.7 for λ = 0.778,
one inside the lobe (the diamond) and other one outside the lobe (the circle) but inside the region of
the unstable manifold of the unstable periodic orbit of upper saddle. If we integrate backward the two
initial conditions, we see that the corresponding trajectories come from the region of the right upper
saddle because they exit via the region of the right upper saddle. But if we integrate forward the initial
condition, that is inside the lobe, the corresponding trajectory is trapped and after a long time exits
through the region of the opposite lower saddle. On the contrary, the trajectory that corresponds to
the other initial condition is not trapped and go straight across to the exit from the caldera. This
means that the initial conditions in the lobes between the unstable invariant manifolds of the unstable
periodic orbits associated with the upper saddles and the stable invariant manifolds of the unstable
periodic orbits of the central area are responsible for the trapping of the trajectories that come from
the region of the upper saddles. This is the first value of λ for which we find interaction between the
unstable invariant manifolds of unstable periodic orbits, associated with the upper saddles, with the
central area. This means that this is a critical value of the stretching parameter for the non-existence
of dynamical matching, as we have observed in a previous paper [Katsanikas & Wiggins, 2019]).

(3) Trapping: Now if we decrease the value of λ, starting from the critical value, we have again interaction
of the unstable invariant manifolds of unstable periodic orbits of upper saddles with the central area.
We have again lobes between the unstable invariant manifolds of the unstable periodic orbits with the
stable invariant manifolds of the unstable periodic orbits that exist in the central region as we can see
for example for λ = 0.7 in Fig.7. This means that we have again trapping for values of λ lower than
the critical value.

4.2. Properties and advantages of the method of Lagrangian Descriptors.

In this subsection we describe three different properties and advantages of the method of Lagrangian
descriptors for the detection of dynamical matching:

(1) Accuracy: An important advantage of Lagrangian descriptors is that they provide a more accurate
approximation of the critical value of the stretching parameter for the transition from the case of the
dynamical matching to the case of the non-existence of the dynamical matching, than the approxi-
mations that are obtained from other methods such as dividing surfaces. For example in this paper,
the critical value λ = 0.778, that we computed using Lagrangian descriptors, is a little larger than the
critical value λ = 0.72, that is computed using dividing surfaces (see [Katsanikas & Wiggins, 2019]).
The trapping of the trajectories is obtained for values of the stretching parameter below the critical
value, depend on the formation of a narrow lobe, see Fig. 7, between the unstable invariant manifolds
of the unstable periodic orbits of the upper saddles and the stable manifolds of the unstable periodic
orbits that exist in the central area, as we explained earlier. This narrow lobe can be very easily iden-
tified using Lagrangian descriptors because we can see directly which part of the phase space can be
responsible for the trapping and transport of the trajectories from the region of the upper saddles
to the central area of the Caldera. But if we use the dividing surfaces we are constrained to identify
the phenomenon of dynamical matching in the configuration space without knowing the structure of
the phase space and if there is a region of the phase space that is responsible for the trapping of the
trajectories in the central area of the Caldera. This means that it depends on the sampling of the
dividing surface whether or not we will detect the phenomenon of dynamical matching. For the case
of the critical value we have only very few trajectories that are trapped inside a narrow lobe and this
makes it very difficult for these trajectories to be included in the sampling of the dividing surfaces. For
this reason, we can identify the critical value with more accuracy using Lagrangian descriptors.
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(2) The integration time τ : A crucial quantity for the detection of dynamical matching is the time τ
of the computation of Lagrangian descriptors. In all cases we used τ = 4 because we could see all
the appropriate geometrical structures and specifically the invariant manifolds of the unstable periodic
orbits of the upper saddles and the invariant manifolds of the unstable periodic orbits of the central
area. This could allow us to see directly if we have a gap or lobe (dynamical matching or trapping)
between the unstable invariant manifolds of the unstable periodic orbits associated with the upper
saddles and the stable manifolds of the unstable periodic orbits that exist in the central area. For
values of τ less than 4 we could not see, in many cases, the invariant manifolds from the central area
of the Caldera. On the contrary, for larger values of τ we could see more structures but it was very
difficult to detect the appropriate lobes that were responsible for the non-existence of the dynamical
matching. For example we identify for λ = 0.7 and τ = 4 (see Fig. 7) the non-existence of the dynamical
matching because of the lobe between the unstable invariant manifolds of the unstable periodic orbits
associated with the upper saddles and the stable manifolds of the unstable periodic orbits that exist
in the central area. But, if we use large values for τ , as for example τ = 15 (Fig.9), we have many
returns of the invariant manifolds and it is not obvious which lobe is responsible for the trapping of
the trajectories that come from the region of the upper saddles. This means that increasing the time
τ , we increase the complexity of the figures and it is very difficult to detect the non-existence of the
dynamical matching. If we decrease the time τ less than 4 we cannot also identify the existence or not
of the dynamical matching because some of the geometrical structures from the central area do not
exist in the figures. There is a critical value for τ that is sufficient to see the appropriate geometrical
structures (invariant manifolds from the region of the upper saddles and central area) and to detect
lobes and gaps between them but also it is not so large as to increase the complexity of the figures. In
our paper this value is τ = 4.

(3) The increase of Trapping: Using the method of Lagrangian descriptors we can predict the increase
of trapping as we decrease the stretching parameter. As we decrease the λ parameter we approach the
integrable case of our system. The integrable case of our system corresponds to λ = 0. In this case
there is no x coordinate in the expression for the caldera PES and our system has only one degree of
freedom, and it is therefore integrable. This is the reason as we can see in Fig.8 the ordered region
around the central stable periodic orbit increases, as we decrease the λ parameter, decreasing the ratio
of the free space for the invariant manifolds of the unstable periodic orbits to the permitted energy
region (that is indicated by magenta color in Fig. 8). Consequently, the stable invariant manifolds of
the unstable periodic orbits, that exist in the central area, open more and more to the edge of the
permitted space forming larger lobes with the unstable invariant manifolds of the unstable periodic
orbits associated with the upper saddles. We can see this for example if we compare the lobes between
the case for λ = 0.778 and λ = 0.7 (in Fig. 7). The increasing size of lobes can explain the increase
of the trapping of trajectories in the central area, as we decrease the λ parameter, which was also
observed in a previous paper [Katsanikas & Wiggins, 2019].

5. Conclusions

In this work we have used the method of Lagrangian descriptors to detect the dynamical matching mech-
anism in a Caldera-type Hamiltonian system stretched in the x-direction, and our analysis has helped us
to develop a deeper understanding of the dynamical origin of this phenomenon in phase space. The results
we have found in this study are:

(1) Lagrangian descriptors can easily detect the gap between the unstable invariant manifolds of the upper
index-1 saddles and the stable manifolds of the unstable periodic orbits that exist in the central area.
This gap corresponds to dynamical matching and is a consequence of the non-existence of a heteroclinic
connection in phase space.

(2) The detection of dynamical matching can be carried out only by means of the computation of LDs,
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A) B) C)

D) E) F)

G) H) I)

Fig. 7. (First column) Phase space structures close to the UPOs associated with the upper saddles; (Second column) Zoom
of the phase space region indicated in the figures of the first column. The stable (blue) and unstable (red) manifolds have been
revealed by applying LDs with τ = 4; (Third column) projection onto configuration space of the trajectories that start from
the initial conditions marked in the second column as a circle and a diamond. Black and blue curves correspond to forward
time integration, while red and green are for backward integration. Panels (a)-(c) are for the stretching parameter λ = 0.8,
(d)-(f) use λ = 0.778, and (g)-(i) correspond to λ = 0.7.

allowing us to avoid the use of dividing surfaces, classical methods for finding periodic orbits, the use
of Poincaré sections and the separate computation of the invariant manifolds on Poincaré sections.
This means that this method is faster and can be implemented in all cases even in systems with many
escapes in which the computation of periodic orbits using classical methods and the use of dividing
surfaces is difficult.

(3) Lagrangian descriptors can detect not only the non-existence of dynamical matching but also the spe-
cific regions of the phase space that are responsible for this type of behavior. We can easily see using
Lagrangian descriptors the interaction of the unstable manifolds of the unstable periodic orbits of the
upper saddles with the stable manifolds of the unstable periodic orbits of the central area. Then we can
identify which lobes between the unstable manifold of the unstable periodic orbits of upper saddles
and the stable manifolds of the unstable periodic orbits of the central area are responsible for the
trapping of the trajectories. We can also predict if the intensity of the phenomenon of trapping in the
central area of the Caldera will be small or large from the size of the lobes. This gives us a deeper
understanding of the origin of this phenomenon.

(4) For the detection of dynamical matching the method of Lagrangian descriptors is more accurate than
the sampling of dividing surfaces. This is because this mechanism may involve only a few special tra-
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A) B)

C)

Fig. 8. Phase space close to the unstable periodic orbits associated with the upper saddles using the Poincaré surface of
section y = 1.884090 with py > 0 at energy E = 29 for the stretching parameter: A) λ = 0.8; B) λ = 0.6; C) λ = 0.2.

jectories that could easily be missed in a sampling procedure. In particular, these trajectories come
from the region of the upper saddles and are trapped in the central area of the Caldera. Narrow lobes
between the unstable manifolds of the unstable periodic orbits of the upper saddles with the stable
manifolds of the unstable periodic orbits of the central area are responsible for this trajectory be-
haviour.

(5) The detection of dynamical matching by means of Lagrangian descriptors is very sensitive to the value
chosen for the integration time τ to compute LDs. By numerical experiments and inspection one can
easily find a suitable value so that the method clearly reveals the relevant invariant manifolds in the
region of the upper index-1 saddles and the central area of the Caldera, allowing for the detection
of lobes and gaps between manifolds. As we have pointed out, the selection of τ is a relevant step
in the process, since for large integration time values, the complexity of the phase space structures
recovered by this technique would make the interpretation of figures a difficult task. This phenomenon
is illustrated in Fig. 9.
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Fig. 9. Phase space stable (blue) and unstable (red) manifolds extracted from Lagrangian descriptors close to the unstable
periodic orbits associated with the upper index-1 saddles. The computation has been carried out using τ = 15 for the
Hamiltonian system with energy E = 29 and stretching parameter λ = 0.7 in the Poincaré section y = 1.884090 with py > 0.
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J., Bartsch, T. & Hernandez, R. [2019] “Invariant manifolds and rate constants in driven chemical
reactions,” The Journal of Physical Chemistry B 123, 2070–2086, doi:10.1021/acs.jpcb.8b10541.
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