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Abstract. In this paper we characterize the global nilpotent centers of polynomial dif-
ferential systems of the form linear plus cubic homogeneous terms.

1. Introduction and statements of the main results

Poincaré and Dulac in [18, 13] de�ned a center for a real planar vector �eld as a singular
point whose neighborhood is �lled of periodic orbits with the exception of the singular point.
The so-called focus-center problem, which consists in distinguishing when a monodromic
singular point is a focus or a center, started with them but it is still very active with many
open problems (see for instance [2, 9]).

If a real planar analytic system has a center at the origin, then after a linear change of
variables and a rescaling of its independent variable, it can be written in one of the following
three forms:

ẋ = −y + P (x, y), ẏ = x+Q(x, y),

called a non-degenerate center;

ẋ = y + P (x, y), ẏ = Q(x, y),

called a nilpotent center;

ẋ = P (x, y), ẏ = Q(x, y),

called a degenerate center, where P (x, y) and Q(x, y) are real analytic functions without
constant and linear terms, de�ned in a neighborhood of the origin.

It is known (see [19, 6]) that real planar quadratic polynomial di�erential systems have
no global centers.

The global degenerated centers of homogeneous or quasi-homogeneous polynomial di�er-
ential systems were characterized, respectively, in [8] and [17]. However the characterization
of the global centers in the cases that the center is nilpotent or of linear-type with degree
higher or equal than three has not been done. In [15] the authors provide, for the �rst
time, a classi�cation of the global linear-type centers for the systems having a linear part at
the origin with purely imaginary eigenvalues and cubic homogeneous nonlinearities. How-
ever such a classi�cation of the global centers is not known for the nilpotent centers, that
is for the systems having a nilpotent singular point at the origin and cubic homogeneous
nonlinearities. This classi�cation is the main contribution of this paper.

Our �rst result is the following one.

Theorem 1. Any planar vector �eld of the form linear plus homogeneous cubic terms that
at the origin of coordinates has a nilpotent singular point and at in�nity has no singular
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earities”, Johanna Denise Garćıa Saldaña, Jaume Llibre, Clàudia Valls, Internat. J. Bifur. Chaos
Appl. Sci. Engrg., vol. 30(1), 2050010:1–12, 2020.



2 J. D. GARCÍA-SALDAÑA, J. LLIBRE, C. VALLS

points, after a linear change of variables and a rescaling of the variable independent can be
written as either:

ẋ = p1x
3 + (p2 − 3αµ)x2y + p3xy

2 − αy3,
ẏ = cx+ αx3 + p1x

2y + (p2 + 3αµ)xy2 + p3y
3,

(1)

or

ẋ = ax+ by + p1x
3 + (p2 − 3αµ)x2y + p3xy

2 − αy3,
ẏ = −(a2/b)x− ay + αx3 + p1x

2y + (p2 + 3αµ)xy2 + p3y
3,

(2)

where α = ±1 and a, b, c, p1, p2, p3 ∈ R with µ > −1/3 and b ̸= 0.

The proof of Theorem 1 is given is section 3.

A singular point p is called hyperbolic if the two eigenvalues of the Jacobian matrix at
this point have nonzero real part. A singular point p such that the determinant is zero and
the trace of the Jacobian matrix at this point is di�erent from zero is called semi-hyperbolic,
and p is isolated in the set of all singular points.

The singular points which are hyperbolic or semi-hyperbolic are called elementary. When
the determinant and the trace are equal to zero but the Jacobian matrix at p is not the zero
matrix we say that p is nilpotent.

Finally, if the Jacobian matrix at the singular point p is identically zero and p is isolated
inside the set of all singular points then we say that p is linearly zero, or degenerate. The
study of its local phase portrait can be done with the directional blow-ups, see for more
details [3, 7].

A polynomial di�erential system can be extended in a unique analytic way to in�nity
using the Poincaré compacti�cation, for more details see Chapter 5 of [14].

Let p be a singular point at in�nity and let h be a hyperbolic sector associated to p. We
say that h is degenerated if its two separatrices are contained in the equator of the Poincaré
sphere. In the other case, h is non-denegerated.

If a singular point p at in�nity is formed by two degenerated hyperbolic sectors then
this point must be linearly zero. The previous statement follows taking into account that
a singular point which is either hyperbolic (see Theorem 2.15 of [14]), or semi-hyperbolic
(see Theorem 2.19 of [14]), or nilpotent (see Theorem 3.5 of [14]) cannot be formed by two
degenerated hyperbolic sectors.

Theorem 2. Any planar vector �eld of the form linear plus homogeneous cubic terms that at
the origin of coordinates has a nilpotent singular point and at in�nity all the singular points
in the Poincaré disc are linearly zero, after a linear change of variables and a rescaling of
the independent variable, can be written as one of the following six systems:

ẋ = p1x
3 + p2x

2y, ẏ = cx+ αx3 + p1x
2y + p2xy

2; (3)

ẋ = ax+ by + p1x
3 + p2x

2y, ẏ = −a2

b
x− ay + αx3 + p1x

2y + p2xy
2; (4)

ẋ = (p2 − 3α)x2y, ẏ = cx+ (p2 + 3α)xy2; (5)

ẋ = ax+ by + (p2 − 3α)x2y, ẏ = −a2

b
x− ay + (p2 + 3α)xy2; (6)

ẋ = (p2 − 3α)x2y + p3xy
2 − αy3, ẏ = cx+ (p2 + 3α)xy2 + p3y

3; (7)

ẋ = ax+ by + (p2 − 3α)x2y + p3xy
2 − αy3, ẏ = −a2

b
x− ay + (p2 + 3α)xy2 + p3y

3, (8)

where α = ±1 and a, b, c, p1, p2, p3 ∈ R with b ̸= 0.

The proof of Theorem 2 is given in section 4.
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Theorem 3. Systems (1) have a nilpotent center at the origin if and only if they can be
written as one of the following two systems:

ẋ = −3αµx2y − αy3, ẏ = cx+ αx3 + 3αµxy2, (9)

where c ∈ R, µ > −1/3, α = ±1 and cα > 0; and the system

ẋ = (p2 − 3αµ)x2y − αy3, ẏ = cx+ αx3 + (p2 + 3αµ)xy2, (10)

where c ∈ R, p2 ̸= 0, µ > −1/3, α = ±1 and cα > 0.

Systems (9) are Hamiltonian with Hamiltonian function H(x, y) = c
2x

2+ 3αµ
2 x2y2+ α

4x
4+

α
4 y

4 and the center is global.

For systems (10) the center is global if either p22 − 9µ2 + 1 ≥ 0, or p22 − 9µ2 + 1 < 0 and
c(p2 − 3αµ) < 0.

Theorem 3 is proved in section 5.

Theorem 4. Systems (2) have a nilpotent center at the origin if and only if they can be
written as one of the following four systems:

ẋ = ax+ by − 3αµx2y − αy3,
ẏ = −(a2/b)x− ay + αx3 + 3αµxy2,

(11)

where a, b ∈ R, µ > −1/3, α = ±1 and bα < 0 (systems (11) are Hamiltonian with

Hamiltonian function H(x, y) = α
4x

4 + α
4 y

4 − a2

2bx
2 − b

2y
2 − axy + 3

2αµx
2y2);

ẋ = ax+ ay + p1x
3 − 3αµx2y − p1xy

2 − αy3,
ẏ = −ax− ay + αx3 + p1x

2y + 3αµxy2 − p1y
3,

(12)

where a, p1 ∈ R, p1 ̸= 0, µ > −1/3, α = ±1 and aα < 0;

ẋ = ax− ay + p1x
3 − 3αµx2y − p1xy

2 − αy3,
ẏ = ax− ay + αx3 + p1x

2y + 3αµxy2 − p1y
3,

(13)

where a, p1 ∈ R, p1 ̸= 0, µ > −1/3, α = ±1 and aα > 0;

ẋ = ax+ by + p1x
3 −

(
a2−b2

ab p1 + α
)
x2y − p1xy

2 − αy3,

ẏ = −(a2/b)x− ay + αx3 + p1x
2y −

(
a2−b2

ab p1 − α
)
xy2 − p1y

3,
(14)

where a, b, p1 ∈ R, p1 ̸= 0, ab ̸= 0, α = ±1 and bα < 0.

The proof of Theorem 4 is given in section 6.

Theorem 5. Under the assumptions of Theorem 4 the following statements hold.

(I) System (11) has a global center at the origin.
(II) System (12) has a global center at the origin if and only if one of the following sets

of conditions hold:
(II.1) α = −1, a > 0, p1 ≥ 3(1− µ)/4, µ > −1/3, b > 0;
(II.2) α = 1, a < 0, p1 ≤ 3(µ− 1)/4, µ > −1/3, b < 0.

(III) System (13) has a global center at the origin if and only if one of the following sets
of conditions hold:

(III.1) α = −1, a < 0, p1 ≤ 3(µ− 1)/4, µ > −1/3, b > 0;
(III.2) α = 1, a > 0, p1 ≥ 3(1− µ)/4, µ > −1/3, b < 0.

(IV) System (14) has a global center at the origin.

The proof of Theorem 5 is given in section 7.

Theorem 6. Systems (4) have a nilpotent center at the origin and no more �nite singular
points with all in�nite singular points formed by two degenerated hyperbolic sectors (and
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consequently the center global) if and only if they can be written as one of the following two
systems:

ẋ = ax+ by, ẏ = −a2

b
x− ay + αx3, (15)

with a, b ∈ R, b ̸= 0, α = ±1, and b α < 0 (system (15) is Hamiltonian with Hamiltonian

function H(x, y) = α
4x

4 − a2

2bx
2 − axy − b

2y
2); and the system

ẋ = ax+ by + p1x
3 +

b

a
p1x

2y, ẏ = −a2

b
x− ay + p1x

2y +
b

a
p1xy

2 + x3, (16)

with a, b ∈ R, b < 0, and ap1 > 0.

The proof of Theorem 6 is given in section 8.

Theorem 7. Systems (3) and (5) do not have a nilpotent center at the origin.

The proof of Theorem 7 is given in section 9.

Theorem 8. Systems (6) have a nilpotent center at the origin and no more �nite singular
points with all in�nite singular points formed by two degenerated hyperbolic sectors if and
only if they can be written as:

ẋ = ax+ by − 3αx2y, ẏ = −(a2/b)x− ay + 3αxy2, (17)

with α = ±1 and b α > 0. The above system is Hamiltonian with Hamiltonian function

H(x, y) = −a2

2b
x2 − b

2
y2 +

3α

2
x2y2 − axy.

The proof of Theorem 8 is given in section 10.

Theorem 9. Systems (7) have a nilpotent center at the origin and no more �nite singular
points with all in�nite singular points formed by two degenerated hyperbolic sectors if and
only if they can be written as one of the following two systems:

ẋ = −3αx2y − αy3, ẏ = cx+ 3αxy2, (18)

with c ∈ R, α = ±1, and c α > 0 (system (18) is Hamiltonian with Hamiltonian function
H(x, y) = c

2x
2 + 3α

2 x2y2 + α
4 y

4); and the system

ẋ = (p2 − 3α)x2y − αy3, ẏ = cx+ (p2 + 3α)xy2, (19)

with α = ±1, c α > 0 and either c (p2 + 3α) > 0 or c (p2 + 3α) ≤ 0 and p22 ≥ 9.

The proof of Theorem 9 is given in section 11.

Theorem 10. Systems (8) have a nilpotent center at the origin and no more �nite singular
points with all in�nite singular points formed by two degenerated hyperbolic sectors if and
only if they can be written as:

ẋ = ax+ by − 3αx2y − αy3, ẏ = −(a2/b)x− ay + 3αxy2, (20)

with α = ±1, bα < 0. System (20) is Hamiltonian with

H(x, y) =
a2

2b
x2 − b

2
y2 − axy +

3α

2
x2y2 +

α

4
y4.

The proof of Theorem 10 is given in section 12.

Corollary 11. Any polynomial vector �eld of the form linear plus cubic homogeneous terms
having at the origin of coordinates a nilpotent singular point has a global center at the origin
if and only if it satis�es the assumptions of Theorems 3, or, 5, or 6, or 7, or 8, or 9.
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2. Classification of cubic systems

Following Theorem 3.2 given in [8], doing a linear change of variables and a rescaling of
the independent variable, any planar cubic homogeneous system can be classi�ed into the
following ten classes:

(i)
ẋ = x(p1x

2 + p2xy + p3y
2),

ẏ = y(p1x
2 + p2xy + p3y

2),

(ii)
ẋ = p1x

3 + p2x
2y + p3xy

2,
ẏ = αx3 + p1x

2y + p2xy
2 + p3y

3,

(iii)
ẋ = (p1 − 1)x3 + p2x

2y + p3xy
2,

ẏ = (p1 + 3)x2y + p2xy
2 + p3y

3,

(iv)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,

(v)
ẋ = p1x

3 + (p2 − α)x2y + p3xy
2 − αy3,

ẏ = αx3 + p1x
2y + (p2 + α)xy2 + p3y

3,

(vi)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2 + y3,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,

(vii)
ẋ = p1x

3 + (p2 − 3α)x2y + p3xy
2 − αy3,

ẏ = p1x
2y + (p2 + 3α)xy2 + p3y

3,

(viii)
ẋ = p1x

3 + (p2 − 3µ)x2y + p3xy
2 + y3, µ ∈ R,

ẏ = x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,

(ix)
ẋ = p1x

3 + (p2 − 3αµ)x2y + p3xy
2 − αy3, µ > −1/3, µ ̸= 1/3

ẏ = αx3 + p1x
2y + (p2 + 3αµ)xy2 + p3y

3,

(x)
ẋ = p1x

3 + (p2 − 3µ)x2y + p3xy
2 − y3, µ < −1/3,

ẏ = x3 + p1x
2y + (p2 + 3µ)xy2 + p3y

3,

where α = ±1, p1, p2, p3 ∈ R.

3. Proof of Theorem 1

In section 2 is given the classi�cation of planar cubic homogeneous di�erential systems.
The behaviour at in�nity of these ten families of systems in the Poincaré disc is as follows:
the in�nity of systems (i) is formed by singular points. The in�nite singular points of systems
(ii), (iii) and (iv) are the real solutions of αx4 = 0, 4x3y = 0, and 6αx2y2 = 0 at in�nity,
respectively. System (v) has no singular points at in�nity. The in�nite singular points of
systems (vi), (vii) and (viii) are the real solutions of y2(6x2−y2)2 = 0, αy2(6x2+y2) = 0, and
x4+6µx2y2− y4 = 0 at in�nity, respectively. System (ix) has no singular points at in�nity.
Finally, the in�nite singular points of system (x) are the real solutions of x4+6µx2y2+y4 = 0
at in�nity.

Note that when µ = 1/3 system (v) becomes the (ix) system; that is why from now on,
we consider system (ix) with µ > −1/3 and forget system (v). In order to continue with
the proof of the theorem, we will study systems (ix) with µ > −1/3, because this family of
systems is the only one that has no singular points at in�nity.

On the other hand, for studying the cubic planar polynomial vector �elds having linear
and cubic terms being the origin a nilpotent point, it is su�cient to add to systems (i)-(x)
a linear part. This is due to the fact that the linear changes of variables that are done to
obtain systems (i)-(x) are not a�ne, they are strictly linear. So a linear plus a cubic vector
�eld being the origin a nilpotent point with no in�nite singular points in the Poincaré disc
can be written as

ẋ = ax+ by + p1x
3 + (p2 − 3αµ)x2y + p3xy

2 − αy3,
ẏ = cx+ dy + αx3 + p1x

2y + (p2 + 3αµ)xy2 + p3y
3,

(21)
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where a, b, c, d ∈ R and α = ±1, µ > −1/3. The eigenvalues of the linear part of system (21)
at the origin are

λ1,2 =
a+ d±

√
(a+ d)2 − 4(ad− bc)

2
.

In order to have a nilpotent singular point, we need that a = −d and the eigenvalues
λ1,2 = ±

√
a2 + bc/2 must be equal to zero. So, if b ̸= 0 we get c = −(a2/b), and if b = 0 we

have a = 0 with c ̸= 0 because the linear part of the system at the origin cannot be zero.
Thus, the linear part of a planar polynomial vector �eld with a nilpotent singular point at
the origin can be chosen to be either

ẋ = 0, ẏ = cx, (22)

or
ẋ = ax+ by, ẏ = −(a2/b)x− ay, (23)

where a, b, c ∈ R such that b, c ̸= 0. Thus, system (21) becomes either system (1) or
system (2). This completes the proof of the theorem.

4. Proof of Theorem 2

The proof of Theorem 2 is analogous to the proof of Theorem 1. It is done by considering
the classi�cation of cubic systems given in section 2 and taking into account the systems
having singular points at in�nity in the Poincaré disc that can be linearly zero.

System (ii) has a singular point at in�nity: the origin of the local chart U2. This point
is linearly zero if and only if p3 = 0. So, with system (ii) plus the linear part given by
(22) we obtain system (3) and with system (ii) plus the linear part given by (23) we obtain
system (4) of the statement of Theorem 2.

System (iv) has two singular points at in�nity: the origin of the local chart U1 and the
origin of the local chart U2. On U1 the point is linearly zero if p1 = 0, whereas on U2 the
origin is linearly zero if p3 = 0. Thus, under these conditions system (iv) plus the linear
part given by (22) provides system (5), and with system (iv) plus the linear part given by
(23) yields system (6).

System (vii) has one singular point at in�nity: the origin of the local chart U1 which is
linearly zero if and only if p1 = 0. Thus, under this condition system (vii) plus the linear
part given by (22) give place to system (7), and system (iv) plus the linear part given by
(23) yields system (8).

Any of the other systems (i)-(x) do not meet the assumptions of the theorem, either
because the in�nity is formed by singular points, or because the system has no singular
points at in�nity, or if the system has singular points at in�nity, at least one is not linearly
zero.

5. Proof of Theorem 3

We will use the following result proved in [12] that allows to characterize the nilpotent
centers for the di�erential systems ẋ = y+P3(x, y), ẏ = Q3(x, y) which have a local analytic
�rst integral, where P3 and Q3 are homogeneous polynomials of degree three.

Proposition 12. System

ẋ = y + a21x
2y + a12xy

2 + a03y
3, ẏ = −x3 + b21x

2y + b12xy
2 + b03y

3, (24)

has a nilpotent center at the origin having a local analytic �rst integral if and only if one of
the following two sets of conditions holds:

(a) b21 = a12 + 3b03 = a21 + b12 = 0,
(b) b21 = a12 = b03 = 0.
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To prove Theorem 3 �rst we do the change of variables x = Y , y = X and the
reparametrization of time τ = ct to system (1). By doing so we take the system to its
real Jordan normal form, and we can apply Theorem 3.5 of [14] obtaining that

Y = f(X) = −(p3/c)X
3 + . . . ,

and then B(X, f(X)) = −(α/c)X3 + . . . and G(X) = (4p3/c)X
2 + . . . , therefore the origin

of system (1) is a center or a focus if cα > 0.

In order to know when the origin is a center we apply Proposition 12 together with the
results in [1, 4] which ensure that all the �rst integrals for these systems are analytic and
not C∞ functions. To do that we shall write the system in the form of system (24), applying

the change of variables X = u − p3(cα)
−1/2v, Y = (α/c)1/2v and the reparametrization of

time s = (cα)1/2τ . Doing so we get the system

u′ = v + a21u
2v + a12uv

2 + a03v
3, v′ = −u3 + b21u

2v + b12uv
2 + b03v

3,

where the prime denotes derivative in the new variable s and

a21 =
3µ+ αp2 + p23

αc
, a12 =

p1 − αp2p3 − 2p33 − 9µp3

(αc)3/2
,

a03 =
1 + p43 + 6µp23

c2
, b21 =

4p3

(αc)1/2
,

b12 =
−3µ+ αp2 − 5p23

αc
, b03 =

p1 − αp2p3 + 2p33 + 3µp3

(αc)3/2
.

Condition (a) of Proposition 12 gives p1 = p2 = p3 = 0, and so we obtain system (9).
Note that in this case system (9) is Hamiltonian with the Hamiltonian function given in the
statement of the theorem. It was proved in [10] that the condition in order that the unique
�nite singular point is the origin is cα > 0. So the center of system (9) is global.

From condition (b) of Proposition 12 we obtain p1 = p3 = 0. Thus, system (1) with
cα > 0 has a nilpotent center at the origin if and only if p1 = p3 = 0, and so we obtain
system (3) of the statement of the theorem. Such a system has the following �nite singular

points: (0, 0),
(
0,±i

√
c/α
)
, and

(
±i

√
c(p2 − 3αµ)

p22 − 9µ2 + 1
, i

√
cα

p22 − 9µ2 + 1

)
,

(
±i

√
c(p2 − 3αµ)

p22 − 9µ2 + 1
,−i

√
cα

p22 − 9µ2 + 1

)
.

Note that due to condition cα > 0 the points (0,±i
√
c/α) do not exist. In order that the

other four points do not exist, the following conditions must hold: either p22 − 9µ2 + 1 ≥ 0,
or p22 − 9µ2 + 1 < 0 and c(p2 − 3αµ) < 0. So, the theorem is proved.

6. Proof of Theorem 4

The idea of the proof is analogous to the proof of Theorem 3, so we will only explain the
changes of variables and the most relevant part. First, we write the linear part of system (2)
into its real Jordan normal form doing the change of variables x = aX + Y , y = −(a2/b)X.
Then we can apply Theorem 3.5 of [14] obtaining that the origin is a center or a focus if
bα < 0. Now, to the resulting system we do the change of variables X = u−kv, Y = v with

k =
a(a3p3 − a2b(p2 + 3αµ) + ab2p1 − αb3)

(−αa2b(a4 + 6µa2b2 + b4))1/2
,

and the rescaling τ = rt where

r =
(
−αa2(a4 + 6µa2b2 + b4)/b3

)1/2

then the di�erential system becomes into the form of system (24). By applying Proposi-
tion 12 we have from condition (a) that the origin is a center if and only if p1 = p2 = p3 = 0,
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and so we obtain system (11). Such a system is Hamiltonian with the Hamiltonian function
given in the statement of the theorem.

Condition (b) of Proposition 12 yields the following real solutions in which αb < 0,
α = ±1 and µ > −1/3:

• µ = 1
3 and p1 = p2 = p3 = 0. This condition is included in the previous case.

• b = a, p2 = 0 and p3 = −p1. Moreover, p1 ̸= 0 because otherwise the system
becomes system (11). This condition yields system (12) in the statement of the
theorem;

• b = −a, p2 = 0 and p3 = −p1. Moreover, p1 ̸= 0 because otherwise the system
becomes system (11). This condition yields system (13) in the statement of the
theorem;

• µ = 1
3 , p2 = − (a2−b2)

ab p1, p3 = −p1 (and so ab ̸= 0). Moreover, p1 ̸= 0 because
otherwise the system becomes system (11). This condition yields system (14) in the
statement of the theorem.

This completes the proof of the theorem.

7. Proof of Theorem 5

It was proved in [10] that the Hamiltonian system (11) with the condition bα < 0 has
only the origin as �nite singular point. So statement (I) is proved.

The singular points of system (12) are (0, 0),
(
±
√

2a
α (1+3µ) ,±

√
2a

α (1+3µ)

)
, (±x+,∓y+),

(±x−,∓y−) where

x± =

√√√√−a
(
δ ±

√
−α(1 + 3µ)σ

)

2γ
, y± =

δ ∓
√
−α(1 + 3µ)σ

2(α+ p1)
x±,

with δ = 2p1 +α(1− 3µ), σ = 4p1 +3α(1−µ), and γ = 2p21 − 1+ 3µ. Note that if p1 = −α
or γ = 0 then the singular points (±x+,∓y+), (±x−,∓y−) do not exist. So in order that
the candidates to be singular points di�erent from the origin do not exist we must have

αa < 0 and either ασ > 0, or ασ ≤ 0 and a γ (δ ±
√
−α (1 + 3µ)σ) ≥ 0.

Moreover, the above conditions are equivalent to the set of conditions given in statement
(II) of the theorem. So statement (II) of the theorem is proved.

The singular points of system (13) are (0, 0),
(
±
√

2a
−α (1+3µ) ,∓

√
2a

−α (1+3µ)

)
, (±x+,±y+),

(±x−,±y−) where

x± =

√√√√−a
(
δ̄ ±

√
α(1 + 3µ)σ̄

)

2γ
, y± =

δ̄ ∓
√
α(1 + 3µ)σ̄

2(p1 − α)
x±,

with δ̄ = 2p1 − α(1 − 3µ), σ̄ = 4p1 − 3α(1 − µ), and again γ = 2p21 − 1 + 3µ. Note that if
p1 = α or γ = 0 then the singular points (±x+,±y+), (±x−,±y−) do not exist. So in order
that the candidates to be singular points di�erent from the origin do not exist we must have
αa > 0 and either α σ̄ < 0 or α σ̄ ≥ 0 and a γ (δ̄ ±

√
α (1 + 3µ) σ̄) ≥ 0. These conditions

are equivalent to the set of conditions given in the statement (III) of the theorem, so this
completes the proof.

The singular points of system (14) are (0, 0),
(
±a/

√
bα,±

√
b/α
)
, (±x+,∓y+), (±x−,∓y−),

where

x± =
ω±

(a2 + b2) p1
, y± =

√−αa bρ∓ a b p1
(a2 + b2) p1

ω±,
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with ω± =
√
αa4b− a b2ρ± 2a2b

√−αabρ and ρ = (a2+ b2) p1+αa b. So in order that the
candidates to be singular points di�erent from the origin do not exist we must have either
αabρ > 0, or αabρ ≤ 0 and αa4b − a b2ρ ± 2a2b

√−αa bρ ≤ 0. Because of the conditions
given in Theorem 4 for system (14) the above inequalities always hold, so the center is global.
This completes the proof of the statement (IV) and concludes the proof of the theorem.

8. Proof of Theorem 6

First we write system (4) into its real Jordan normal form by doing the change of variables
x = aX + Y , y = −(a2/b)X. Then by applying Theorem 3.5 of [14] we have that the point
is a center or a focus if bα < 0. Doing the change of variables X = u − kv, Y = v where
k = (p2a

2−p1ab+αb2)/(−αb3)1/2 and the rescaling τ = a(−αb)1/2t to the system obtained
previously we have a new system given in the form of system (24) with

a21 =
a2
(
αb2p2 − (bp1 − ap2)

2
)

αb3
, a12 =

a3(ap2 − bp1)
(
2(bp1 − ap2)

2 − αb2p2
)

(−αb9)1/2
,

a03 =
a4(bp1 − ap2)

4

b6
, b12 =

a2
(
5(bp1 − ap2)

2 + αb2p2
)

αb3
,

b03 = −a3(ap2 − bp1)
(
2(bp1 − ap2)

2 + αb2p2
)

(−αb9)1/2
, b21 =

4a(ap2 − bp1)

(−αb3)1/2
.

Condition (a) of Proposition 12 yields p1 = p2 = 0 and so we obtain system (15). Such a
system is Hamiltonian with the Hamiltonian function given in the statement of the Theorem.
It was proved in [10] that system (15) with the condition bα < 0 has only the origin as �nite
singular point and at in�nity only the origin of the local chart U2 is a singular point and it
has two degenerated hyperbolic sectors.

Condition (b) of Proposition 12 yields:

• p1 = p2 = 0 which gives system (15).
• p2 = (b/a)p1 with a ̸= 0 and p1 ̸= 0 because otherwise this system becomes (15).

System (4) with the condition p2 = (b/a)p1 becomes

ẋ = ax+ by + p1x
3 +

b

a
p1x

2y, ẏ = −a2

b
x− ay + αx3 + p1x

2y +
b

a
p1xy

2. (25)

The above system does not have any additional �nite singular point because of the condition
bα < 0. Now, we will study the in�nite singular points of system (25).

We already know that the unique in�nite singular point is the origin of the local chart U2

which is linearly zero so we need to apply the blow-up technique. The expression of sys-
tem (25) on the local chart U2 is

u̇ = bv2 + 2auv2 +
a2

b
u2v2 − αu4, v̇ = − b

a
p1uv − p1u

2v + av3 +
a2

b
uv3 − αu3v. (26)

The singular direction in this case is u = 0 so doing the directional blow-up (u, v) → (u,w)
with w = v/u and after removing the common factor u we obtain the system

u̇ = u(−αu2 + bw2 + 2auw2 +
a2

b
u2w2), v̇ = −w(

b

a
p1 + p1u+ bw2 + auw2).

When u = 0 the singular points of the above system are (0, 0), and (0,±
√
−p1/a). The

point (0, 0) is a semi-hyperbolic singular point, for applying Theorem 2.19 of [14] we need to
have the condition abp1 < 0 and in this case the point is a saddle if α = 1. In order to have
two hyperbolic sectors at the origin of the local chart U2 we need that the singular points
(0,±

√
−p1/a) do not exist, so the condition must be a p1 > 0. Thus we obtain system (16)

and the proof is complete.
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9. Proof of Theorem 7

We will only prove Theorem 7 for system (3) since the proof for system (5) follows in an
analogous way. Doing the change of variables x = Y , y = X and the reparametrization of
time τ = ct system (3) is written in its real Jordan form as follows

ẋ = y + c p2 x
2y + p1xy

2 + (α/c)y3 ẏ = c p2 xy
2 + p1y

3.

By applying Theorem 3.5 of [14] we get that the origin of system (3) can not be a center
(because Y = f(X) = 0, F (x) = B(X, f(X)) ≡ 0 and G(X) ≡ 0). This completes the
proof.

10. Proof of Theorem 8

First we write system (6) into its real Jordan normal form by doing the change of variables
x = aX + Y , y = −(a2/b)X. Then by applying Theorem 3.5 of [14] we have that the point
is a center or a focus if b α < 0. Doing the change of variables

X = u− a(p2 + 3α)

(−6α b)1/2
v, Y = v,

and the rescaling τ = −a2(−6α/b)1/2t to the system obtained previously we have a new
system given in the form of system (24) with

a21 = −a2(p22 − 9)

6αb
, a12 =

a3p2(p
2
2 − 9)

3(−6αb3)1/2
,

a03 =
a4(p22 − 9)2

36b2
, b21 =

2
√
2ap2

(−3αb)1/2
,

b12 =
a2
(
5p22 − 9

)

6αb
, b03 = −a3p2(p

2
2 − 9)

3(−6αb3)1/2
.

Statement (a) and (b) of Proposition 12 yield the same conditions. That is,

• a = 0, this condition yields a quadratic system, so it is not interesting for us.
• p2 = 0 and a ̸= 0, then we obtain

ẋ = ax+ by − 3αx2y, ẏ = −a2

b
x− ay + 3αxy2. (27)

The above system is Hamiltonian with the Hamiltonian function given in the statement
of the theorem. The singular points of this system are

(0, 0),

(
±
√

2b

3α
,±
√

2a

3bα

)
.

Because of the condition α b < 0, only the origin is a �nite singular point of system (27).
Moreover, we already know that the origins of the local charts U1 and U2 are the in�nite
singular points and they are linearly zero so we need to apply the blow-up technique. The
expression of system (27) on the local chart U1 is

u̇ = 6αu2 − a2

b
v2 − 2auv2 − bu2v2, v̇ = 3αuv − av3 − buv3. (28)

Doing the u-directional blow-up (u, v) → (u,w) with w = v/u and after removing the
common factor u we obtain the system

u̇ = 6αu− a2

b
uw2 − 2au2w2 − bu3w2, v̇ = −3αw +

a2

b
w3 + auw3.
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When u = 0 the real singular point of the above system is (0, 0). The eigenvalues of the
Jacobian matrix at this point are 6α and −3α so the point is a saddle. Doing the directional
blow-up (u, v) → (w, v) with w = u/v and after cancel the common factor v we obtain

u̇ = −a2

b
− avw + 3αw2, v̇ = −av2 − bv3w + 3αvw.

On v = 0 the above system does not have singular points. Then after the blow-down the
origin of the local chart U1 is formed by two degenerated hyperbolic sectors.

The expression of system (27) on the local chart U2 is

u̇ = −6αu2 + bv2 + 2auv2 +
a2

b
u2v2, v̇ = −3αuv + av3 +

3a2

b
uv3. (29)

The only singular direction is u = 0. So doing the directional blow-up (u, v) → (u,w) with
w = v/u and after removing the common factor u we obtain the system

u̇ = −6αu+ buw2 + 2au2w2 +
a2

b
u3w2, v̇ = 3αw − auw3 − bw3.

Since we have the condition α b < 0, the only singular point of the above system on u = 0
is (0, 0). The eigenvalues of the Jacobian matrix at this point are −6α and 3α so the point
is a saddle. Then after the blow-down the origin of the local chart U2 is formed by two
degenerated hyperbolic sectors. Thus we obtain system (17) and the proof is complete.

11. Proof of Theorem 9

First we write system (7) into its real Jordan normal form by doing the change of variables
x = Y , y = X and the rescaling of the time τ = c t. Then by applying Theorem 3.5 of [14]
we have that the point is a center or a focus if αc > 0. Doing the change of variables
X = u−p3(αc)

−1/2v, Y = (α/c)1/2v and the rescaling t = (α/c)1/2τ to the system obtained
previously we have a new system given in the form of system (24) with

a21 =
3 + αp2 + p23

αc
, a12 = −p3

(
9 + αp2 + 2p23

)

(αc)3/2
,

a03 =
p23
(
6 + p23

)

c2
, b12 =

4p3

(αc)1/2
,

b03 =
−3 + αp2 − 5p23

αc
, b21 =

p3
(
3− αp2 + 2p23

)

(αc)3/2
.

Condition (a) of Proposition 12 yields p2 = p3 = 0 and so we obtain system (18). Such a
system is Hamiltonian with the Hamiltonian function given in the statement of the theorem.
It was proved in [10] that system (18) with the condition αc > 0 has only the origin as �nite
singular point and at in�nity only the origin of the chart U2 is singular point and it is formed
by two degenerated hyperbolic sectors.

Condition (b) of Proposition 12 yields the conditions: p3 = 0 (p2 ̸= 0 because otherwise
this system becomes system (18)). System (7) with the condition p3 = 0 becomes

ẋ = (p2 − 3α)x2y − αy3, ẏ = cx+ (p2 + 3α)xy2. (30)

So system (30) with the condition αc > 0 has a nilpotent center at the origin. The singular
points of the above system are

(0, 0),

(
±i

√
c

p2 + 3α
,±
√

αc

9− p22

)
.

Note that if p2 = −3α then only the origin is a singular point. Taking into account that
αc > 0, to have only the origin as singular point we must have either c (p2 + 3α) > 0 or
c (p2 + 3α) ≤ 0 and p22 ≥ 9.
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Now we study the behavior of singular points at in�nity of (30) and obtain the conditions
for which these singular points have two degenerate hyperbolic sectors. We already know
that the origin of the local chart U1 is a singular point and it is linearly zero. The expression
of system (30) on the local chart U1 is

u̇ = cv2 + 6αu2 + αu4, v̇ = −(p2 − 3α)uv + αu3v. (31)

The singular points of the above system are

(0, 0),

(
±
√

p2 − 3α

α
,±
√

9− p22
αc

)
.

Note that on v = 0 the origin is the only singular point of system (31) and it is linearly
zero, so to know its behavior we need to apply the blow-up technique. The characteristic
polynomial is −v

(
cv2 + (p2 + 3α)u2

)
so we only have the characteristic direction v = 0.

Doing the u directional blow-up (u, v) 7→ (u,w) with w = v/u, and removing the common
factor u between u̇ and ẇ we obtain the system

u̇ = 6αu+ cuw2 + αu3, ẇ = −(p2 + 3α)w − cw3. (32)

When u = 0, the only singular point of (32) is the origin and its eigenvalues are −(p2+3α)
and 6α then the point is a saddle because of the conditions cα > 0 and c(p2 + 3α) > 0.
After the blow-down the origin of the local chart U1 is formed by two degenerated hyperbolic
sectors. In short, in order to have only the origin as the �nite singular point of system (30),
and the origin of the local chart U1 formed by two degenerate hyperbolic sectors, we must
have α c > 0 and c (p2 + 3α) > 0. Hence we obtain system (19). Therefore the proof of the
theorem is complete.

12. Proof of Theorem 10

We write (8) into its real Jordan normal form by doing the change of variables x = aX+Y ,
y = −(a2/b)X. Then by applying Theorem 3.5 of [14] we have that the origin is a center or
a focus if b α < 0. Doing the change of variables

X = u− a3(ap3 − (p2 + 3α)b)

(−αa4b(a2 + 6b2))1/2
v, Y = v,

and the rescaling τ = (−b3/(αa4(a2+6b2)))1/2t to the system obtained previously we obtain
a new system given in the form of system (24), so we can apply Proposition 12.

Condition (b) of Proposition 12 is empty and condition (a) yields p2 = p3 = 0. So
system (8) becomes

ẋ = ax+ by +−3αx2y − αy3, ẏ = −a2

b
x− ay + 3αxy2. (33)

The above system is Hamiltonian with the Hamiltonian function given in the statement of
the theorem. At in�nity, system (33) with the condition αb < 0, has only the origin of the
chart U1 as singular point and it is formed by two degenerated hyperbolic sectors, see [10].

The �nite singular points of system (33) are (0, 0) and

p2,3 = ±


 (3b+

√
S)

12a

√
2(R− b

√
S)

3αb
,

√
R− b

√
S

6α b


 ,

p4,5 = ±


 (3b−

√
S)

12a

√
2(R+ b

√
S)

3αb
,

√
R+ b

√
S

6α b


 ,

where R = 2a2 +3b2 and S = −12a2 +9b2. If S < 0, then the singular points p2,3 and p4,5
are not real. If S ≥ 0 then R± b

√
S > 0, so the singular points in this case are not real. So

the �nite singular point is only the origin. This completes the proof of Theorem 10.
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