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Abstract: In this article, we have studied a 1D map, which is formed by combining
the two well-known maps i.e. the tent and the logistic maps in the unit interval i.e.
[0, 1]. The proposed map can behave as the piecewise smooth or non-smooth maps
(depending on the behaviour of the map just before and after the border) and then
the dynamics of the map has been studied using analytical tools and numerical
simulations. Characterization has been done by primarily studying the Lyapunov
spectra and the corresponding bifurcation diagrams. Some peculiar dynamics of
this map have been shown numerically. Finally, a Simulink implementation of
the proposed map has been demonstrated.

Keywords: Piecewise Smooth and Non-Smooth Maps, Border Collision Bifurca-
tions, Tent Map, Logistic Map, Boundary and Interior Crisis.
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1 The Mathematical Setup
The well known logistic and the tent maps (traditionally defined on the unit
interval [0, 1]) in the study of the chaotic dynamics [13] are given by

𝐿𝑟(𝑥) = 𝑟𝑥(1 − 𝑥) (1)
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(a) Bifurcation diagram of logistic map for
𝑟 ∈ [0, 4].

(b) Bifurcation diagram of tent map for 𝑟 ∈
[0, 2].

Fig. 1: Bifurcation diagram for the Logistic and Tent maps as a function of 𝑟.

and

𝑇𝑟(𝑥) = 𝑟 𝑚𝑖𝑛{𝑥, 1 − 𝑥} (2)

respectively. The logisitc map is a quadratic continous map on the interval
[0, 1], whereas the tent map is a piecewise linear map on the same interval. The
representations “𝐿𝑟” and “𝑇𝑟” have been used to represent them throughout the
article. The control parameters 𝑟 (𝑟 ∈ [0, 4] for the logistic map and 𝑟 ∈ [0, 2] for
the tent map) determine the dynamics exhibited by both of these. The Tent Map
gives a fixed point in the parameter interval [0, 1]. As, the parameter is increased
more, the fixed point looses it’s stability and a bifurcation happens where a
two piece chaotic orbit is born which gradually merges to give rise to ‘robust
chaos’ [5, 12] upto the parameter value 2. As in the parameter range [1, 2], only
the chaotic orbit exists without any periodic attractor or co-existing attractors,
the chaotic orbit is ‘robust’ in the mentioned parameter range which is shown
in Figure. (1a). For the case of the logistic map, it gives the period doubling
bifurcation which gradually goes to chaos [16]. The most interesting feature
is that the periodic windows exist in-between chaotic orbits in the bifurcation
parameter range, which is shown in Figure. (1b). These maps have been widely
studied along with their applications in population modelling, stock market
profiling, encryption-decryption systems etc. in various literature over the year
[15, 10, 7, 9].
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(a) 𝛼 = 0.2 (b) 𝛼 = 0.5 (c) 𝛼 = 0.8

Fig. 2: Structure of 𝑀𝛼
2,4 for 𝛼 = 0.2, 0.5, 0.8

This article deals with a map born out of an amalgamation of these two well
known maps, aptly named as the “Mixed Map” (MM), denoted by “M”, and is
defined as follows:

𝑥n+1 = 𝑀𝛼
𝑟1𝑟2(𝑥n) =

{︃
𝑇𝑟1(𝑥n), ∀ 0 ≤ 𝑥n ≤ 𝛼

𝐿𝑟2(𝑥n), ∀ 𝛼 < 𝑥n ≤ 1
(3)

where, 𝑥n is the nth iteration. It is clear from the above expression that the
MM is the tent map with the parameter value 𝑟1 in the region [0, 𝛼] and it is
the logistic map with the parameter value 𝑟2 in the region [𝛼, 1]. The map has a
discontinuity at the point 𝑥n = 𝛼. Figure 2 shows the structure of the map for
various values of 𝛼 for a fixed set of (𝑟1, 𝑟2) = (2, 4).

As it is clearly evident from Figure. (2), there is a discontinuity at the point
of transition of the map i.e. at 𝑥n = 𝛼 which is known as ‘Border’. As the system
is 1D, the border will be a point at 𝑥n = 𝛼. Depending upon the values of 𝛼 and
parameters 𝑟1 and 𝑟2, the map can behave as Piecewise Continuous or Piecewise
Discontinuous. The map is continuous on each of the regions before and after
border, but is discontinuous at border. In case of a Piecewise Discontinuous Map,
there is a borderline in the Poincare section such that two arbitrarily close points
on the two sides of the border land far apart at the next observation instant
[2, 8]. Otherwise, the map is known as the Piecewise Continuous Map [11, 3].
The value of the discontinuity at border would be given by the difference in the
functional values of 𝑇𝑟1 and 𝐿𝑟2 . We can define a quantity 𝛿𝑟1,𝑟2(𝛼) as follows:

𝛿𝑟1,𝑟2(𝛼) =
⃒⃒
𝑇𝑟1(𝛼) − 𝐿𝑟2(𝛼)

⃒⃒
(4)

which can quantify the amount of discontinuity in the map at border, as a
function of the value of 𝛼. Owing to the fact that 𝑇𝑟1(𝑥n) is defined differently
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Fig. 3: Plot of 𝛿2,4(𝛼) vs 𝛼. In this plot, we have shown the variation for the case of
(𝑟1, 𝑟2) = (2, 4). The plot agrees with the structure of the maps obtained in Figure.(2)
and Equations. 6 & 7.

for 𝑥 > 0.5 and 𝑥 ≤ 0.5, the expression of 𝛿𝑟1𝑟2(𝛼) would change for two regimes
𝛼 ≤ 0.5 and 𝛼 > 0.5, which is as follows:

𝛿𝑟1,𝑟2(𝛼) =

{︃⃒⃒
𝑟2𝛼2 + 𝛼(𝑟1 − 𝑟2)

⃒⃒
, ∀𝛼 ≤ 0.5⃒⃒

𝑟2𝛼2 − 𝛼(𝑟1 + 𝑟2) + 𝑟1
⃒⃒
, ∀𝛼 > 0.5

(5)

For, 𝛼 ≤ 0.5, the map will have one discontinuity at 𝑥n = 𝛼. Therefore the
system will have one border for 𝛼 ≤ 0.5. But when 𝛼 > 0.5, the system will
have two borders i.e. one at 𝑥n = 0.5 and at 𝑥n = 𝛼 where discontinuities will
occur. Therefore, the map, which we are taking here, can have single or multiple
borders depending on the value of 𝑥n = 𝛼.

Quite clearly, as seen in Figures. (2b) & (3),

𝛿2,4(1
2) = 0 (6)

At this time the map will be piecewise continuous map with discontinuity at
border 𝑥n = 𝛼 = 0.5.

It is quite easy to see, both mathematically and intuitively, that

𝛿𝑟1,𝑟2(0) = 𝛿𝑟1,𝑟2(1) = 0 (7)

This is because 𝛼 = 1 or 𝛼 = 0 means that the existence of the Mixed Map
concept is lost and it is either fully tent-like or fully logistic-like respectively.

The MM, as defined in Equation. 3 has three parameters which determines
the dynamics of the system. While this presents a very wide range of possibilities,
it becomes a hard problem to keep track of various parameters and determine
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(a) 𝛼 = 0.2 (b) 𝛼 = 0.5 (c) 𝛼 = 0.8

Fig. 4: Structure of 𝑀𝛼
𝑟 (𝑥) for 𝛼 = 0.2, 0.5, 0.8

their effect on the dynamics of the system when they are varied together. Thus,
to simplify the problem, we define a subset of the MM, called the ‘Reduced
Mixed Map’ (RMM), in a reduced parameter space of two variables 𝑟 and 𝛼,
where the new parameter 𝑟 is related to the old ones parameters 𝑟1 and 𝑟2 as
follows:

𝑟1 = 𝑟, 𝑟2 = 2𝑟 (8)

In the definition of the RMM, the value of 𝛼 remains the same as that of
the original Mixed Map and it denotes the ‘Borders’ of the map. The value of 𝑟

is bounded in the interval [0, 2] so as to keep the iterates of the map bounded to
[0, 1]. A convenient notation for the RMM would be to reuse the ‘M’ notation
from Equation. 3 as follows:

𝑥n+1 = 𝑀𝛼
𝑟 (𝑥n) =

{︃
𝑇𝑟(𝑥n), ∀ 0 ≤ 𝑥n ≤ 𝛼

𝐿2𝑟(𝑥n), ∀ 𝛼 < 𝑥n ≤ 1
(9)

The structure of the map is shown, for various values of 𝛼, in Figure. (4).
We can similarly define the amount of discontinuity at 𝑥 = 𝛼 for the RMM by
plugging in Equation. 8 into Equation. 5, which gives us:

𝛿𝑟(𝛼) =

{︃⃒⃒
2𝑟𝛼2 − 𝛼𝑟

⃒⃒
, ∀𝛼 ≤ 0.5⃒⃒

2𝑟𝛼2 + 𝑟(1 − 3𝛼)
⃒⃒
, ∀𝛼 > 0.5

(10)

Equations. 6 and 7 follows from the previous discussions as well. A 3D plot
of Equation. 10 is shown in Figure (5). Here, we have shown that the behaviour
of 𝛿 if both 𝑟 and 𝛼 are varied in diagram.
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Fig. 5: 3D plot of 𝛿 as a function of 𝑟 and 𝛼. This shows how the discontinuity varies as
the parameters of the system is continously changed.

2 Location and Stability of the fixed points of
the RMM

The RMM can have atmost 3 fixed points whose existence, stability and expression
depends on the values of 𝑟 and 𝛼, with one of them always being at 𝑥⋆

n = 0.
The existence of the fixed point 𝑥⋆

n = 0 is always guaranteed because whatever
be the value of 𝑟 and 𝛼, the 𝑦 = 𝑥 line always intersects the map at the origin.
The stability of the fixed point is determined by the value of both the parameters.
If 𝛼 = 0, that means the map is totally logistic-like, the slope at 𝑥⋆

n = 0 is given
by 2𝑟. Then, by condition of stability,⃒⃒

𝑟
⃒⃒

<
1
2 , ∀ 𝛼 = 0, 𝑥* = 0 (11)

Here, we are taking 𝑥⋆
n = 𝑥⋆.

But if the value of 1 ≥ 𝛼 > 0, then near to 𝑥 = 0 the map is tent-like, and
thus its slope at that point is given by 𝑟. Thus, by condition of stability,⃒⃒

𝑟
⃒⃒

< 1, ∀ 1 ≥ 𝛼 > 0, 𝑥* = 0 (12)

The other two fixed points do not always exist. If 𝛼 = 0, then the map is
fully logistic-like, and therefore, the only other fixed point is

𝑥* = 1 − 1
2𝑟

(13)

The slope at this point is given by 2 − 2𝑟, and therefore, the condition of
stability is
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(a) 𝛼 = 0.5 (b) 𝛼 = 0.7 (c) 𝛼 = 0.9

(d) 𝛼 = 0.5 (e) 𝛼 = 0.7 (f) 𝛼 = 0.9

Fig. 6: Structure of 𝑀𝛼
r (x) for 𝛼 = 0.5, 0.7, 0.9 and for 𝑟 = 1, 0.9. We see that there is a

line of fixed points from 𝑥 = 0 to 𝑥 = 0.5 if 𝑟 = 1 and 𝛼 ≥ 0.5 in Figures. (6a), (6b) and
(6c). We also see that there are no other fixed points (other than 𝑥*

1 = 0) if the value of
𝑟 < 1(= 0.9) and 𝛼 ≥ 0.5, in Figures. (6d), (6e) and (6f).

1.5 > 𝑟 > 0.5, ∀ 𝛼 = 0, 𝑥* = 1 − 1
2𝑟

(14)

Quite clearly, the limiting case of 𝑟 = 1 results in a line of fixed points from
𝑥 = 0 till 𝑥 = 0.5 if 𝛼 ≥ 0.5. This is demonstrated in Figures. (6a), (6b) and
(6c). But if the value of 𝑟 is less than 1, and 𝛼 ≥ 0.5, then there is no other fixed
point other than 𝑥* = 0, which is stable, having an attracting basin as that of
the whole of the unit interval [0, 1], as demonstrated in Figures. (6d), (6e) and
(6f).

The case of 𝑟 < 1 and 𝛼 < 0.5 is slightly nontrivial and there exists a fixed
point other than 𝑥⋆ = 0, given by 𝑥* = 1 − 1

2𝑟 for 𝛼 ≤ (𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 1 − 1
2𝑟 ) < 0.5.

But if 0.5 > 𝛼 > 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, the fixed point again vanishes leaving behind only
𝑥* = 0. This is clearly demonstrated in Figures. (7a), (7b) and (7c). This fixed
point has the same stability range as discussed in Equation. 14. Again, similar
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(a) 𝛼 = 3
8
= 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (b) 𝛼 = 0.5 > 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 (c) 𝛼 = 0.2 < 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

Fig. 7: Structure of 𝑀𝛼
𝑟 (𝑥) for 𝛼 = 3/8, 0.5, 0.2 and for 𝑟 = 0.8. We see that there is a

fixed point that appears at the value 𝛼 = 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and which remains ∀𝛼 < 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 and
disappears for ∀𝛼 > 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

(a) 𝛼 = 0.4 (b) 𝛼 = 0.3 (c) 𝛼 = 0.2

Fig. 8: Structure of 𝑀𝛼
𝑟 (𝑥) for 𝛼 = 0.4, 0.3, 0.2 and for 𝑟 = 1.

to the previous discussion, if 𝑟 = 1 and 𝛼 < 0.5, there again exists a fixed point
given by 𝑥* = 1 − 1

2𝑟 = 0.5, as shown in Figure. (8a), (8b) and (8c), which is
super-stable [1]. This is evident from the fact that

⃒⃒
𝑑

𝑑𝑥 𝑀𝛼
𝑟 (0.5)

⃒⃒
= 0.

The fixed points formed on the line 𝑥 = 𝑦 till 𝑥 = 0.5 for the case of 𝑟 = 1
and 𝛼 > 0.5 has no defined stability in the usual sense because perturbations
from the fixed point neither diverge nor converge. But for initial conditions
𝑥0 > 0.5, we see the iterates converge to a fixed point rapidly (in a single step),
and the fixed point is given by:

𝑥*
𝑥0(𝑟) =

{︃
𝑟(1 − 𝑥0), ∀ 𝑥0 ≤ 𝛼

2𝑟𝑥0(1 − 𝑥0), ∀ 𝑥𝑜 > 𝛼
(15)
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𝑟 ∈ [0, 2] 𝛼 ∈ [0, 1] Remarks
𝑟 = 1 𝛼 ≥ 0.5 → Line of fixed points for 𝑥 ∈ [0, 0.5]

𝛼 < 0.5 → Line of fixed points for 𝑥 ∈ [0, 𝛼]

and the characteristic fixed point of the logistic map.
𝑟 < 1 𝛼 > 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 →Only one fixed point at 𝑥 = 0

𝛼 ≤ 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 → Fixed point at 𝑥 = 0 and the
characteristic fixed point of logistic map

𝑟 > 1 𝛼 ∈ [𝛼𝑙𝑜𝑤𝑒𝑟, 𝛼𝑢𝑝𝑝𝑒𝑟] → Two fixed points of characteristics tent
and logistic map along with 𝑥 = 0 (3 fixed points overall)

𝛼 < 𝛼𝑙𝑜𝑤𝑒𝑟 → Characteristic fixed point of logistic map
along with 𝑥 = 0

𝛼 > 𝛼𝑢𝑝𝑝𝑒𝑟 → Characteristic fixed point of tent map
along with 𝑥 = 0

Tab. 1: Summary of all the fixed point for various regimes.

We see that there exists a region/basin of attraction in both cases where
there exists fixed points. For the case 𝑟 = 1 and 𝛼 < 0.5, we see that the fixed
point formed at 𝑥* = 0.5 (see Figure.(8)) has a basin of attraction given by
𝑥0 ∈ (𝛼, 1

2 + 1
2
√

1 − 2𝛼). For the case 𝑟 < 1 and 𝛼 < 0.5, the stable fixed point
𝑥* = 1 − 1

2𝑟 , which only exists for 𝛼 ≤ 𝛼𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, has a basin of attraction as
same as the previous case (i.e. for 𝑟 = 1 case).

The last set of non-trivial fixed points are generated when 𝑟 > 1. For the case
𝛼 ≤ 0.5, the map again has only two fixed points, 𝑥* = 0 (which is unstable) and
𝑥* = 1 − 1

2𝑟 , which is globally stable upto 𝑟 = 1.5 (similar to Equation. 14). This
is described in Figures. (9a) to (9f). The other possibility is that 𝛼 > 0.5, which
results in a peculiar case where three fixed points can exist for a certain range
of 𝛼 ∈ [𝛼𝑙𝑜𝑤𝑒𝑟, 𝛼𝑢𝑝𝑝𝑒𝑟]. For 𝛼 > 𝛼𝑢𝑝𝑝𝑒𝑟, the fixed point is the characteristic tent
map fixed point and for 𝛼 < 𝛼𝑙𝑜𝑤𝑒𝑟, the fixed point is the characteristic logistic
map fixed point. This has been demonstrated in Figures. (10a) to (10f). The
values of 𝛼𝑙𝑜𝑤𝑒𝑟 and 𝛼𝑢𝑝𝑝𝑝𝑒𝑟 is given by

𝛼𝑙𝑜𝑤𝑒𝑟(𝑟) = 𝑟

1 + 𝑟
(16)

𝛼𝑢𝑝𝑝𝑒𝑟(𝑟) = 1 − 1
2𝑟

(17)

These can be obtained easily by finding the first intersection point of the
tent map and the logistic map respectively with the 𝑦 = 𝑥 line. The fixed points
themselves are the characteristic fixed points of the tent and the logistic maps
and their stability has been discussed before for various values of 𝑟. The existance
and stabilities of all the fixed points have been shown in Table 1.
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(a) 𝛼 = 0.3 (b) 𝛼 = 0.3

(c) 𝛼 = 0.3 (d) 𝛼 = 0.1

(e) 𝛼 = 0.3 (f) 𝛼 = 0.5

Fig. 9: Structure of 𝑀𝛼
𝑟 (𝑥) for 𝛼 = 0.3 and for 𝑟 = 1.2, 1.6, 2.0, in Figures. (9a),(9b) and

(9c). Structure of 𝑀𝛼
𝑟 (𝑥) for 𝛼 = 0.1, 0.3, 0.5 and for 𝑟 = 1.5, in Figures. (9d),(9e) and

(9f).

3 Numerical Results
In this section, we will present the various numerical results obtained for the
RMM for various values of 𝛼 and 𝑟. Bifurcation diagrams form the main interest
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(a) 𝛼 < 𝛼𝑙𝑜𝑤𝑒𝑟 (b) 𝛼 = 𝛼𝑙𝑜𝑤𝑒𝑟.

(c) 𝛼 ∈ [𝛼𝑙𝑜𝑤𝑒𝑟, 𝛼𝑢𝑝𝑝𝑒𝑟]. (d) 𝛼 = 𝛼𝑢𝑝𝑝𝑒𝑟.

(e) 𝛼 > 𝛼𝑢𝑝𝑝𝑒𝑟 (f) 𝛼 >> 𝛼𝑢𝑝𝑝𝑒𝑟

Fig. 10: Structure of 𝑀𝛼
𝑟 (𝑥) for 𝛼 > 0.5 and for 𝑟 = 1.5. Figure. (10a) shows the case

𝛼 < 𝛼𝑙𝑜𝑤𝑒𝑟, where the fixed point is the characteristic logistic map fixed point (apart from
𝑥* = 0). Figure. (10b) shows the birth of the third fixed point. Figure. (10c) shows the
situation where all three fixed points exist. Figure. (10d) shows the situation for which the
a fixed point vanishes - the fixed point which vanished is the one which existed before the
third one was created in Figure. (10b). Figures. (10e) and (10f) shows the case where only
two fixed points remain (i.e. the trivial fixed point at 𝑥* = 0 and the characteristic fixed
point of the tent map).
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(a) Bifurcation diagram of logistic map for
𝑟 ∈ [0, 4].

(b) Bifurcation diagram of tent map for 𝑟 ∈
[0, 2].

(c) Lyapunov Exponent of Logistic map for
𝑟 ∈ [0, 4].

(d) Lyapunov Exponent of Tent map for
𝑟 ∈ [0, 2].

Fig. 11: Bifurcation diagram and Lyapunov Exponents for the Logistic and Tent maps as a
function of 𝑟.

in this section because it clearly shows how the state variable of the map changes
with the change of parameters.

The bifurcation diagrams of the parent maps of the RMM is shown in Figures.
(11a) and (11b). We can see that the bifurcation diagram of the logistic map is
distinctively different from that of the tent map, in terms existence of different
dynamical phenomena like periodic doubling bifurcations, periodic windows
in between chaos, existance of chaos without any other periodic attractors or
co-existing attractors. In the case of the RMM, there are two parameters, namely,
𝑟 and 𝛼, and both of them are suitable candidates for plotting the bifurcation
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diagrams in the various domains as discussed in the previous section. In our
article, we will keep 𝛼 as a constant, and vary 𝑟 and observe the bifurcation
diagrams. This would be done for various different values of 𝛼 to understand the
overall behaviour of the map for various values of 𝛼 and 𝑟.

(a) Bifurcation diagram of RMM for 𝑟 ∈
[0, 2].

(b) Bifurcation diagram of RMM for 𝑟 ∈
[1.6, 2].

(c) Lyapunov Exponent of RMM for 𝑟 ∈
[0, 2].

(d) Lyapunov Exponent of RMM for 𝑟 ∈
[1.6, 2].

Fig. 12: Bifurcation diagram and Lyapunov Exponents for the RMM as a function of 𝑟 for
𝛼 = 0.5.

If we keep the value of 𝛼 = 0.5, i.e. the map is piecewise smooth as well as
continuous at border, the bifurcation diagram and corresponding it’s lyapunov
exponents are shown in Figure. (12). We see the bifurcation diagram, is in a sense,
a mixture of that of the logistic map and the tent map’s bifurcation diagrams.
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As seen in Figure. (11b) in the case of the tent map, zero is a stable fixed point
till 𝑟 < 1. After that, the fixed point jumps to the nontrivial value and the
bifurcation diagram has a structure similar to that of a logistic map where after
a normal period doubling bifurcation periodic windows exist in between chaos.
The corresponding lyapunov exponent shows the existence of the fixed points,
periodic orbits and the values of which periodic windows exist in-between chaos.
This behaviour is characterized by negative lyapunov exponent for the fixed
points and the periodic orbits, zero for the quasi-periodic orbits and positive
values for the chaotic orbits.

Even more interesting bifurcation diagrams emerge when we break the conti-
nuity of the map at border in case of 𝛼 ≠ 0.5) i.e. the piecewise discontinuous
map with single or multiple borders. If we use 𝛼 = 0.6, i.e. there will be two
borders, one is at 𝑥n = 0.5 and another one is at 𝑥n = 𝛼 = 0.6, the bifurca-
tion diagram shows a very interesting features. There exists many interesting
dynamical structure - there are period-3, period-4 upto period-11 orbits in this
case. The time series waveforms have been shown in Figure. (14). The period-11
orbit occurs near the value of 𝑟 ≈ 1.528 whereas the distinct period-3 orbit
exists near 𝑟 ≈ 1.22 (see Figure. (14a)). The period-11 orbit cannot be seen in
case of both logistic and tent map bifurcation diagram. In Figure. (13a), there
exists a 2-piece chaotic orbits just after the bifurcation near 𝑟 = 1. After that
a period-3 orbit emerges, which gradually gives a periodic orbit as we change
the parameter further. The zoomed bifurcation diagram and corresponding it’s
lyapunov exponents in between 1 to 1.3 parameter values have been shown in
Figure.(13e) and Figure.(13f) respectively. As the parameter 𝑟 is varied more,
another bifurcation occurs, where a normal period doubling bifurcation gives
a period-11 orbit, which gradudally goes to 2- piece chaotic orbit. Also, in be-
tween 1.5 to 2, in the 𝑟 parameter range, a interior crisis [4] happens where a
chaotic orbit suddenly expands it’s shape. This happens when a chaotic attractor
just overlaps with the co-existing unstable chaotic orbit and the main chaotic
orbit suddenly expands. Apart from all these, this map also has the normal
periodic points and period-2 orbits as well. Figure. (14b) demonstrates ‘sensitive
dependence on initial conditions’ which is a strong indicator for chaos [6].

Further changing the value of 𝛼 gives rise to other interesting phenomena.
Also, 𝛼 → 0 leads to approach to fully logistic-like bifurcation diagram whereas
𝛼 → 1 leads to approach to fully tent-like bifurcation diagram. These have been
demonstrated in Figure. (15). The zoomed versions of the bifurcation diagrams
in Figures (15a, 15b, and 15c) have been shown in Figure. 16. For the sake of
completion, bifurcation diagrams of the case 𝛼 = 0.2, 0.4 and 0.8 are also shown
in Figures. (18a),(18b) and (18c). The lyapunov exponents are shown in Figures
(17 and 19) respectively. In the Figures (17a and 17b), one can see the existences
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(a) Bifurcation diagram of RMM for 𝑟 ∈
[0, 2].

(b) Bifurcation diagram of RMM for 𝑟 ∈
[1.5, 1.6].

(c) Lyapunov Exponent of RMM for 𝑟 ∈
[0, 2].

(d) Lyapunov Exponent of RMM for 𝑟 ∈
[1.5, 1.6].

(e) Bifurcation diagram of RMM for 𝑟 ∈
[1, 1.3]

(f) Lyapunov Exponent for RMM for 𝑟 ∈
[1, 1.3]

Fig. 13: Bifurcation diagrams and Lyapunov Exponents for the RMM for 𝛼 = 0.6.



16 D. Biswas, S. Seth, M. Bor

(a) 𝑟 = 1.528 (period-11 orbit, purple) and
𝑟 = 1.22 (period-3 orbit, green).

(b) Time series for changes in initial condi-
tions for 𝑟 = 2. The orbits show SIC.

Fig. 14: Illustrations of Period 11 and Period 3 along with Sensitive dependence of Initial
Conditions (SIC).

of the two lyapunov exponents in the parameter values, but if one can look closely
in the two diagrams, it can be said that the values of the lyapunov exponents
toggle between the two lyapunov exponent values in that parameter ranges as
the parameter changes gradually and as they have plotted closely, it looks like
the existance of the two lyapunov exponents in the same parameter values. The
bifurcation diagrams for the cases 𝛼 = 0.2 and 0.4 have been shown in Figure
(20) for the sake of clarity in parameter range 𝑟 = 1.3 to 2.0.

From Figure.(3), it can be said that the amount of discontinuities are same
in case of 𝛼 = 0.25 and 𝛼 = 0.75. But for the first case, as there is only one
border which is at 𝛼 = 0.25, and for the next case, there are two borders, one is
at 0.5 and another is at 0.75 although the amount of discontinuities are same
for the two cases, the bifurcations are different due to different borders. The
different bifurcation diagrams have been shown in Figure.(21).

Upto this, we have taken 𝑟1 = 𝑟 and 𝑟2 = 2𝑟. In this consideration, the map
becomes continuous across the border in case of 𝛼 = 0.5. Now, we are taking
𝑟1 = 𝑟2 = 𝑟, which makes the map piecewise discontinuous with discontinuity at
𝛼 = 0.5.

The bifurcation in the Figure.(22) shows a reverse period adding bifurcation
upto 𝑟 = 1.6. This phenomenon is obversed generally in case of a 1D piecewise
discontinuous map [8]. As the parameter is evolved more. we get a normal period
doubling bifurcations which goes to chaotic region. The periodic windows also
exist in between chaos here as well.
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(a) Bifurcation diagram of
RMM for 𝛼 = 0.001.

(b) Bifurcation diagram of
RMM for 𝛼 = 0.1.

(c) Bifurcation diagram of
RMM for 𝛼 = 0.3.

(d) Bifurcation diagram of
RMM for 𝛼 = 0.7.

(e) Bifurcation diagram of
RMM for 𝛼 = 0.9

(f) Bifurcation diagram of
RMM for 𝛼 = 0.999

Fig. 15: Approach to the parent map bifurcation structures in the RMM for 𝛼 → 0 (ap-
proaches logistic map structure, in Figures. (15a), (15b) and (15c)) and for 𝛼 → 1.0

(approaches tent map structure, in Figures. (15d), (15e) and (15f)).

(a) Bifurcation diagram of
RMM for 𝛼 = 0.001.

(b) Bifurcation diagram of
RMM for 𝛼 = 0.1.

(c) Bifurcation diagram of
RMM for 𝛼 = 0.3.

Fig. 16: Zoomed Bifurcation Diagrams for the cases 𝛼 = 0.001, 𝛼 = 0.1 and 𝛼 = 0.3.
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(a) Lyapunov Exponent of
RMM for 𝛼 = 0.1.

(b) Lyapunov Exponent of
RMM for 𝛼 = 0.3..

(c) Lyapunov Exponent of
RMM for 𝛼 = 0.7..

Fig. 17: Lyapunov Exponents of RMM for 𝛼 = 0.1, 𝛼 = 0.3 and 𝛼 = 0.7.

(a) Bifurcation diagram of
RMM for 𝛼 = 0.2.

(b) Bifurcation diagram of
RMM for 𝛼 = 0.4.

(c) Bifurcation diagram of
RMM for 𝛼 = 0.8.

Fig. 18: Bifurcation diagrams for 𝛼 = 0.2,𝛼 = 0.4 and 𝛼 = 0.8

(a) Lyapunov Exponent of RMM for 𝛼 = 0.4. (b) Lyapunov Exponent of RMM for 𝛼 = 0.8..

Fig. 19: Lyapunov Exponents of RMM for 𝛼 = 0.4 and 𝛼 = 0.8.
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(a) Bifurcation diagram of RMM for 𝛼 = 0.2. (b) Bifurcation diagram of RMM for 𝛼 = 0.4.

Fig. 20: Zoomed Bifurcation Diagrams for the cases 𝛼 = 0.2, 𝛼 = 0.4.

(a) 𝛼 = 0.25. (b) 𝛼 = 0.75.

Fig. 21: Bifurcation diagrams for 𝛼 = 0.25 and 𝛼 = 0.75. Here, 𝛿 = 0.25, which is same for
both.
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Fig. 22: Bifurcation diagrams for 𝛼 = 0.5 and 𝑟1 = 𝑟2 = 𝑟.

(a) 𝛼 = 0.5, 𝑟 ∈ [1, 1.5] (b) 𝛼 = 0.5, 𝑟 ∈ [1.5, 2] (c) 𝛼 = 0.5, 𝑟 ∈ [1.78, 1.88]

(d) LE of 𝛼 = 0.5, 𝑟 ∈ [1, 1.5] (e) LE of 𝛼 = 0.5, 𝑟 ∈ [1.5, 2]

(f) LE of 𝛼 = 0.5,𝑟 ∈
[1.78, 1.8]

Fig. 23: Bifurcation diagrams and Lyapunov Exponenets for the case of 𝛼 = 0.5 and
𝑟1 = 𝑟2 = 𝑟 of the MM.
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Fig. 24: Simulink based Implementation of the Mixed Map to generate time-series data.
The initial condition, gains and the switching conditions are set arbitrarily.

The zoomed figures of all these bifurcations and corresponding it’s lyapunov
exponents have been shown in Figure.(23).

4 A Simulink based implementation of the
Mixed Map

In this section, we have shown a Simulink based implementation of the MM (not to
be confused with the RMM, which was discussed untill now). The implementation
is shown below in Figure. (24).

The implementation as shown in Figure. (24) assume the presence of various
blocks (which are readily available in Simulink) like the product (multiplier),
amplifier, minimum finder, controllable switch and a delay. A basic circuit diagram
for implementing discrete maps is shown in [14]. Following a similar method, first,
the individual maps are synthesized from the available blocks. The logistic map,
which is defined continuously in the interval [0, 1] can be easily synthesized by
using a subtracter, product (multiplier) and an amplifier. The tent map, which is
piecewise continuous in [0, 1] is implemented by using a subtracter, a minimum
finder and an amplifier. The minimum finder takes two inputs and outputs the
signal which is lesser of the two. The switching condition is implemented by
using a controllable switch which is driven by the output of the circuit. Finally,
a unit delay block is used to implement the discrete nature of our system. An
initial condition block is used to set the initial condition i.e. 𝑥0, of our system.
The values of the switching parameter, the initial condition and the gains of the
amplifiers (which set the control parameters 𝑟1 and 𝑟2 as discussed in Equation.
3) can be changed manually for each simulation run.
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(a) Time series showing aperiodic orbit.

(b) Time series showing period-11 orbit for 𝛼 = 0.6. This has been detected previously in
Figure. (14a).

(c) Time series showing SIC for two very nearby initial conditions for a pair of identical
maps.

Fig. 25: Output from Simulink Implementation of MM showing Periodic orbits (Fig-
ure.(25a)), Non-periodic orbits (Figure.(25b)) and Exhibition of SIC. (Figure.(25c))
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Some sample outputs are shown by running the simulation: Figures. (25a)
and (25b) shows the period-11 orbit and a aperiodic orbit which were previously
observed using numerical techniques. Figure. (25c) exhibits Sensitive dependence
on Initial Conditions (SIC) for two very nearby initial conditions for a pair of
identical maps.

5 Conclusion
In this article, we have proposed a novel chaotic map, called the Mixed Map
(MM), which is formed from the amalgamation of two well known maps i.e. logistic
map and the tent map. It has two parameters 𝑟 and 𝛼, which are the control
parameter and the transition parameter respectively. This map was found to be
both piecewise discontinous and continous as well, depending upon the values of
the parameters. The amount of discontinuity was investigated and plotted. To
reduce the complexity of the map, a Reduced Mixed Map (RMM) was defined
for further studies. All the fixed points for the RMM for the various cases of the
parameter values was found and their stability was classified. The presence of a
three fixed point map was observed for certain values of the parameter 𝛼. The
results have been summarized in Table. 1. Numerical studies were done on the
proposed RMM and bifurcation diagrams, lyapunov exponents and orbits were
plotted for all the interesting cases. A stable period-11 orbit was observed for
𝛼 = 0.6 case. It was also shown that for 𝛼 → 0 the bifurcation structure becomes
similar to that of the logistic bifurcation structure (as because the map becomes
almost totally logistic-like). For 𝛼 → 1, the structure becomes similar to that of
the tent-map bifurcation structure. For the case of 𝑟1 = 𝑟2 = 𝑟 and 𝛼 = 0.5 has
been studied here as a special case. There, we have got a period adding cascade
in reverse direction in bifurcation diagram. It can also be shown the dynamics
of the map for different 𝛼 with 𝑟1 = 𝑟2 = 𝑟. We can address these issues as our
future work. Finally, a simple simulink implementation was presented for the
proposed MM, which was used to verify some of the time series diagrams and
properties we discussed in the previous sections.
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