International Journal of Bifurcation and Chaos
One-way Hash function based on delay-induced hyper-chaos

Manuscript Number:
Full Title:

Article Type:
Keywords:

Corresponding Author:

Corresponding Author Secondary
Information:

Corresponding Author's Institution:

Corresponding Author's Secondary
Institution:

First Author:
First Author Secondary Information:

Order of Authors:

Order of Authors Secondary Information:

Abstract:

Response to Reviewers:

--Manuscript Draft--

IJBC-D-17-00338R4
One-way Hash function based on delay-induced hyper-chaos
Research Paper

One-way Hash function; hyper-chaos induced by time delay; key-stream function;
Cipher block chaining.

Hai Peng Ren, Ph.D
Xi'an University of Technology
Xi'an, Shaanxi CHINA

Xi'an University of Technology

Hai Peng Ren, Ph.D

Hai Peng Ren, Ph.D
Zhao Feng Zhao
Celso Grebogi, Ph.D

A scheme for constructing one-way Hash function based on hyper-chaos induced by
time delay and key-stream is proposed in this paper. In this scheme, the plain-text and
secret key are used as the initial value in two hyper-chaotic Chen systems; these
values are evolved in a hyper-chaotic way during a predened period. The results of the
evolution are quantied and iterated using key-stream function iteration to confuse and
diuse the plain-text and the secret key. The cipher block chaining method is used to
generate a 128-bit Hash value for a plain-text of arbitrary length. Theoretical analysis
and simulation results indicate that the proposed algorithm satises the

required security performance, such as value ompression function, irreversibility, initial
value sensitivity, forgery resistance and collision resistance.

see response file

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Reply to Referee's Comments

Reply to reviewers of manuscript ID 1JBC-D-17-00338R1 entitled by

""One-way Hash function based on delay-induced hyper-chaos"

Dear Editor and reviewers,
After receiving the decision letter, the authors have revised the paper to
address the comments of the reviewers. The replies are as follows:
Reviewer #1. | am satisfied with the revisions and responses.
Meanwhile, | think the authors well address the comments of the
Reviewer #4, so | suggest accept as it is.

Reply: Thank you for the comments, we fully agree!

Reviewer #4: Authors have made some minor improvements in the
paper but unfortunately most significant issues are not addressed in the
paper although authors gave extensive answers which are not satisfactory

due to following reasons.

Comment 3: Authors correctly state in their response that birthday
attack will require over 2°{64} hashes for hash value of 128 bits, but
their proof of security is not sufficient. Authors claim that this attack will
take about 60,000 years using a desk top computer, by hashing 106
times a second (the current cracking speed), but unfortunately

cryptographic attack are not performed on single desk top computer.

There are many examples of attacks based on distributed computing
which involve 100.000 computers, so even if mentioned speed is correct
today, birthday attack could be performed in about half year. Also, there
are many examples of attacks based on specialized computers which
speed is much faster (for example computers used for attacks on DES).
Therefore, authors cannot claim that m=128 is completely safe. As | said
In my previous review, m=256 should be used.

Reply: as the reviewer wrote, the birthday attack explanation is correct,
agreeing with a textbook. Furthermore, the desktop computer calculation
Is a reference. We can agree that for an infinite number of computers, no

algorithm would be safe enough, but that is nonsense.

Comment 5: In their answer authors claim that " there is not a "fully"
discrete space chaotic map to be readily used for Hash function”. This is
not correct because there are several fully discrete space chaotic maps
which can be used in the same way as map used in this paper for
generation of pseudo-random sequences. For example maps used in
following papers are fully discrete, but there are other examples as well:

Pseudo-random number generator based on discrete-space chaotic map.
Nonlinear Dynamics, 90, 223-232 (2018)

A New Pseudo-Random Number Generator Based on Two Chaotic

Maps. Informatica, 24(2), 181-197 (2013)

| still believe that this problem can reduce resistance of this method to
collision.

Reply: The idea was only to show the example in "Informatica”, where
the iteration (Eq.1 in it) is

Xne1 = [[Xn?2 mod C] x X, + Xinit] mod C.

The reviewer is wrong by asserting that this iteration is fully discrete.
There is digital round-off in the process of the calculation, which of
course depends on the bit length used by the computer, as the authors

have already replied in the last round of reviews.

Comment 6: Sensitivity to plain-text is directly related to attacks
because attacker tries to find similar plaintexts which will give same hash
value. Therefore, if proposed method is not sensitive enough to plain-text,
it will be more vulnerable to attacks such as birthday attack. My point on
this comment was that it would be good to perform more extensive test
than just 6 examples. | know that 2764 is too much, but testing on million
examples would be sufficient and feasible.

Reply: First of all, the sensitivity of the plaintext is defined as one bit
change in the plaintext leading to the bit change ratio of the cipher text.
This has been shown in the paper. We agree that additional tests would
increase the accuracy of the result. However, statistically, 30 Monte Carlo

tests would demonstrate the statistical result, though it would not be safe.

Our tests is from small number to larger number (up to 10%) of bit reverse.
Statistics guarantees that it is safe. We can perform additional tests, of

course, but there is no statistical reason for that.

Comment 7: please see comment 3.

See the reply above

For above mentioned reasons | cannot recommend this paper for
publication in its current form. | would like to give authors another
chance to improve this paper according to my previous comments. These
comments should be addressed seriously in order to avoid publication of

paper in which unsafe method is proposed.

Based on the recommendation of the first reviewer and our replies to
the Reviewer #4, we hope that the paper can now be published in the
1JBC.

Sincerely

Hai-Peng Ren, Chao-Feng Zhao, Celso Grebogi

S S D Y

Ménhs;rlp{ V Click here to access/download;Manuscript;ws-ijbc0527.pdf =

International Journal of Bifurcation and Chaos
© World Scientific Publishing Company

One-way Hash function based on delay-induced hyper-chaos

Hai-Peng Ren *, Chao-Feng Zhao f, Celso Grebogil?4
1 Shaanxi Key Laboratory of Complex System Control
and Intelligent Information Processing,

Xi’an University of Technology,

Xi’an 710048, P.R.China
2 Institute for Complex System and Mathematical Biology,
University of Aberdeen,

Aberdeen, AB2/ SUE, UK
* renhaipeng@xaut.edu.cn
T tufei210@126.com
Y grebogi@abdn. ac.uk

Received (to be inserted by publisher)

A scheme for constructing one-way Hash function based on hyper-chaos induced by time delay
and key-stream function iteration is proposed in this paper. In this scheme, the plain-text and se-
cret key are used as the initial value in two hyper-chaotic Chen systems; these values are evolved
in a hyper-chaotic way during a predefined period. The results of the evolution are quantified
and iterated using key-stream function iteration to confuse and diffuse the plain-text and secret
key. The cipher block chaining mode is used to generate a 128 bits Hash value for a plain-text
of arbitrary length. Theoretical analysis and simulation results indicate that the proposed al-
gorithm has satisfactory performance, such as value compression function, irreversibility, initial
value sensitivity, forgery resistance and collision resistance.

Keywords: One-way Hash function; hyper-chaos induced by time delay; key-stream function;
Cipher block chaining.

1. Introduction

Cryptographic Hash function is one of the most important cryptographic algorithms nowadays [Zhou et
al., 2012; Teh et al., 2015; Jeng et al., 2015; Kanso & Ghebleh, 2015; Ye et al., 2015; Chenaghlu et al.,
2016; Li et al., 2016]. There are some traditional one-way Hash algorithms, such as MD2, MD4, MD5, and
SHA [Rivest, 1992; Dobbertin, 1996; Knudsen & Preneel, 2002; Mendel et al., 2013], but most of them are
based on the hypothesis of complexity that requires lots of complicated logic computing (such as XOR)
or packet encryption method based on multiple iterations. Since Wang announced the decoding results of
the encryption algorithms MD5, HAVAL-128, MD4, RIPEMD [Wang et al., 2005a; Wang & Yu, 2005b],
and the SHA-1 algorithm [Stevens, 2013] were cracked afterwards, the design of efficient and safe Hash
algorithm has become the focus in information security research.

Because of the unique and distinct properties of chaotic dynamics, utilizing chaotic dynamics in cryp-
tography has witnessed a promising development. Chaos possesses some special and relevant properties,
such as ergodicity, sensitive dependency on initial condition, and dense set of unstable periodic orbits.

https://www.editorialmanager.com/ijbc/download.aspx?id=66908&guid=0e8cb607-089e-4d33-b255-c9cd86e006b0&scheme=1
https://www.editorialmanager.com/ijbc/download.aspx?id=66908&guid=0e8cb607-089e-4d33-b255-c9cd86e006b0&scheme=1

2 H.-P.Ren et al.

Therefore, many chaos based cryptosystems were proposed, such as chaos based image encryption [Chen
et al., 2004; Wong et al., 2009; Wang et al., 2011a; Fu et al., 2012; Ye et al., 2015; Yang et al., 2016], Hash
functions [Xiao et al., 2005, 2009; Ren & Zhuang, 2009; Zhou et al., 2012; Jiteurtragool et al., 2013; Jeng et
al., 2015; Li et al., 2016; Choi et al., 2017]. Wong developed a combined Hash scheme [Wong, 2003] based
on the work of Baptista [Baptista, 1998], which used a dynamical look-up table. Lately, Alvarez showed
that the algorithms in [Baptista, 1998] and [Wong, 2003] are insecure and inefficient [Alvarez et al., 2004].
Compared with chaos in simple maps (such as the tent map [Yi, 2005]), hyper-chaos [Ren et al., 2006;
Cang et al., 2010; Ren & Li, 2010; Ren et al., 2017a] has more than one Lyapunov exponents and it has a
more complex dynamics, which potentially promises better security. Gao and Chen offered an encryption
based on hyper-chaos which was generated from Chen’s chaotic system [Gao & Chen, 2008]. Although
their algorithm had the advantage of large key spaces, the chosen-plaintext and chosen-ciphertext allows
for possible attack [Rhouma & Belghith, 2008]. In 2015, the weakness of Gao and Chen’s algorithm and
an improved algorithm was reported in [Jeng et al., 2015]. Four dimensional hyper-chaotic Chen system
with two positive Lyapunov exponents was used to construct a Hash function in [Ren & Zhuang, 2009],
demonstrating nice performance. Stable Chen system can be chaotified by linear time delay feedback [Ren
et al., 2006], compared to both Gao’s chaos system [Gao & Chen, 2008] and four dimensional hyper-chaotic
Chen system [Ren & Zhuang, 2009], possessing more complicated dynamics and having infinite dynamical
dimension. Such a complex hyper-chaos might possess even better security potential. In this paper, the
hyper-chaos with time delay is used to construct Hash function in order to obtain better performance.

Linear time delay feedback was proposed to generate hyper-chaos with infinite dimension[Ren et al.,
2006]in the sense that a continuum of initial conditions over the interval —7 < ¢ < 0 is required to specify
the behavior, where 7 is the time delay. It possesses more complicated dynamics, including single-scroll,
double-scroll and multi-scroll attractors [Ren & Li, 2010; Ren et al., 2017a,b]. To explore the potentialities
of such complex attractors, in this paper, the attractors induced by time delay and key-stream iteration are
proposed to construct one-way Hash function. Theoretical analysis and simulation results show that the
proposed algorithm has an excellent performance and better anti-collision performance than the competing
methods.

The remaining of this paper is organised as follows: the attractors induced by time delay feedback and
the basic requirement of the Hash function is introduced in Sec. 2. In Sec. 3, a Hash algorithm is designed
based on the hyper-chaos attractors and the key-stream iteration. The performance of the proposed Hash
algorithm is evaluated and the comparison to existing methods is conducted in Sec. 4. Conclusions are
given in Sec. 5.

2. Preliminary on Hash function
2.1. Hash Function and its safety requirements

A Hash function is a one-way function that is used to map a digital data of arbitrary length to another
digital data of the fixed length. The image of the digital data returned by a Hash function is referred to as
Hash value or message digest. Hash functions should possess properties like sensitivity to the plain-text,
secure key, and collision resistance. Moreover, Hash function is required to satisfy the safety requirements:

1) Given a message m and a Hash function H, it should be easy and fast to compute Hash value

h = H(m).

2) Given h, it is very difficult to compute m, such that h = H(m).

3) Given m, it is very difficult to find another message m/, such that H(m') = H(m).

One-way Hash function based on delay-induced hyper-chaos 3

2.2. Hyper-chaotic Chen system with linear time delay feedback
The Chen system with linear time delay feedback [Ren et al., 2006] is described as follows:

i":a(y_x)7
y=(c—a)r—xz+cy, (1)
Z=ay—bz+k(z—2(t—1)).

where x, y, z are the state variables of the system, a, b, ¢ are the parameters of the system, 7 is the delay
time, and k is the linear time delay feedback gain.

When the parameters a = 35, b = 3, ¢ = 18.5, kK = 0, the Chen system without time delay feedback is
not chaotic. When the parameters a = 35, b = 3, ¢ = 18.5, k = 3.8, and 7 = 0.3, the system (1) is chaotic
[Ren et al., 2017b], which demonstrates a composite multi-scroll attractor, as shown in Fig. 1(a). Using the
method in [Ren et al., 2017b], we calculate the positive Lyapunov exponents of the composite multi-scroll
attractor, giving 1.5651, 0.4322, and 0.0684. When the parameters a = 35, b = 3, ¢ = 18.5, k = 2.85, and
7 = 0.3, a double-scroll attractor is generated, as shown in Fig. 1(b). The positive Lyapunov exponents of
the double-scroll attractor are given as 0.2219, 0.2216, and 0.0035. When the parameters a = 35, b = 3,
¢ = 18.35978, k = 2.85, and 7 = 0.3, a single-scroll attractor is generated, as shown in Fig. 1(c). The
positive Lyapunov exponents of the single-scroll attractor are given as 0.3963, and 0.1095.

As compared with ordinary chaotic systems, hyper-chaotic systems have more complex phase trajec-
tory. The Hash function, using hyper-chaotic system, promises better performance than that using low
dimensional chaotic system.

Fig. 1. The attractors induced by linear time delay feedback in the Chen system. (a) The composite multi-scroll attractor;
(b) The double-scroll attractor, and (c¢) The single-scroll attractor.

2.3. Key-stream function

A key-stream function is given by follows:

e(p):fl("'fl(fl(pvv)’v)a"'U)a (2)

ni ni

where p is one input to the iteration function f; and v is another input to the same function f;. In the
paper, p and v are derived by evolving the Chen system with time delay over a duration T using plain-text
and the key as initial conditions. The parameter [must be chosen such that both p and v lie in (—[,1),
[=1 and the number of iterations n; = 30 in this paper. And f;(*,*) is a piecewise linear function given

by
(a+b) 421,21 < (a+b) < —I,
fila,b) = (a+b),—1<(a+0) <, (3)
(a+b)—20,1< (a+b) <2l

4 H.-P.Ren et al.

3. The proposed Hash algorithm

In this section, the proposed Hash algorithm based on the attractors in the Chen system with linear time
delay feedback and key-stream function is described in detail. The input of Hash function is a message of
arbitrary length, and the output of Hash function is m bits Hash value, where m = 128 in this paper. The
reason for choosing the 128 bits Hash value is that it is long enough to ensure the desired performance of
Hash function [Kanso & Ghebleh, 2015; Teh et al., 2015]. Figure 2 is given to illustrate the proposed Hash
algorithm. The proposed Hash algorithm is described by using the following steps:

Step 1: The plain-text is partitioned into blocks of 32 bits length. When the bit number in the last
block is less than 32, compensating bits are used to compensate the bit length of the last block to 32
bits. (The way to get compensating bits is given as follows: Firstly, converting the plain-text into a value
between [0, 1] by dividing 2P*, where p; is the bit length of the plaint-text in the last block. Secondly, using
the value within [0, 1] as the initial value of the Logistic map, iterating the map with the time equal to
the number of the compensating bits. Finally, if the iteration value is larger than 0.5 then converting it as
“17, else converting it as “0”. By this way, compensating codes are derived.) After this compensating code
is used, we have N, blocks with 32 bits length. Three consecutive blocks are rearranged into one group
recorded as M;(i =0,1,---, N, — 1). If the remainder of the number of the plain-text blocks, N,, divided
by 3 is not zero, the last one (or two) block(s) is (are) grouped together with two (or one) blocks (block)
before the last block.

Step 2: 128 bits key is divided into three numbers with 40 bits, 40 bits and 48 bits length, respec-
tively. Then three numbers are converted into real numbers in [0,1] by dividing by 2%, 240 and 2%,
respectively. For example, a key given by “2A86D71ECB063FAC589B74132C3874AB” can be divided in-
to “2A86D71ECB”,“063FAC589B”, and “74132C3874AB”, then can be converted into decimals given by
7251370348235”, “26838063259”, and “127625695098027”, by dividing by 20, 240, and 2%®, respectively,
we get the real numbers given by “0.228619999902548”, “0.024409076339907” and “0.453417552741183”.

Step 3: Each group of plain-text consisting of three 32 bits integers is converted into three values in
[0,1] by dividing by 232. Three values are used as the initial states of the hyper-chaotic Chen system (with
time delay) and the system is evolved for a period T' (it is changeable and not a very long time). The final
states of the hyper-chaotic Chen system are restricted into [—1, 1], dividing it by the maximum absolute
value of the corresponding state. These three values in [—1, 1] are used as three p in the iteration (2) and
the corresponding three v are obtained at the next step (step 4).

Step 4: Similar to the step 3, three real numbers derived in step 2 from 128 bits key are used as initial
states of the hyper-chaotic Chen system and they are evolved for a time span T, restricting the final states
o [—1,1]. We get three v for iteration (2), use three p obtained in step 3 and three v in this step, iterate
(2) for n; = 30 times, we get three iteration outputs.

Step 5: Transforming three iteration outputs obtained in step 4 into the corresponding binary integers
with 40 bits, 40 bits and 48 bits length, then combine together these 128 bits integer. To this end, the
Hash function output H for one group of (three) plain-text (with 32 bits) is obtained.

Step 6: Cipher block chaining (CBC) method is used to cascade the output of Hash function for every
group into one Hash output. CBC is described by

ko= Key,hiy = H(M;, k;), ki = hi—1 ® ki1, -+ ,h =hp—1 ® kn_1 (4)

In this method, the former Hash output value and the former key are used to perform logical XOR op-
eration to obtain the 128 bits key of the next Hash operation, this process ensures the further diffusion and
confusion of the plain-text and key. A point about the digital deterioration should be noticed here is given
as follows. In chaos-based cryptography applications and implementations on finite precision computers,
the digital deterioration is a major problem, which causes the chaotic trajectory to differ drastically from
the theoretical expectations [Li et al., 2001, 2003; Lin et al., 2017a,b; Murillo-Escobar et al., 2017]. In the
proposed algorithm, the digital deterioration will not be significant, because the proposed Hash function
using the hyper-chaotic Chen system with time delay and key stream iterations evolves the chaotic dynam-
ics for a time span T (it is changeable and not a very long time), and uses the final states as plain-text p(t)
and key v(t) in the key-stream function to get the Hash value. T is relatively small for the computation
precision of the commonly used commercial computers, at the same time, it will not have accumulative

One-way Hash function based on delay-induced hyper-chaos 5

Input Plain-text P and 128 bits key

Y ceil(x): the smallest integer greater than x
pi=P((ii-1)*32+1:ii*32) XOR: the bit-wise XOR operation
> (ii=1,2,*+,ny) abs: absolute value
Where n,=ceil((length P)/32) round: round to nearest decimal or integer

dec2hex: convert decimal to hexadecimal number in string
strcat: concatenate strings horizontally
the proposed algorithm is implemented by MATLAB programming

Compensate the bit

Length of p,;=32
length of p,; to 32 bits g Put

M= [pis1Pi+2Pis3] (i=0,1,2,2++Ny-1) |
<
Where N,=ceil(n;/3) | |

Mnp1=[Mnp-1pmi] Mnp-1=[MNp-1Pni-1Pnil
A

Length of My;,.;=64

Set i=1

keyl=key(1:40)
key2=key(41:80)
key3=key(81:128)

+ No ¢
Pli=piy3n1/2? kll=key1/2*’

h=strcat(EP1,EP2,EP3) P2=pgiysa/2? k12=key2/2*
P3i=piayaa/2”? kl13=key3/2®

key=h XOR key Yes
=i+l

Output key as

T Hash value +

P1;, P2;, P3; as initial values evolves system (1) for a
EP1=dec2hex(round(Ep1*2.40),10) period T, and get x, y, z
EP2=dec2hex(round(Ep2*2740),10) k11, k12, k13 as initial values evolves system (1) for a
EP3=dec2hex(round(Ep3+*2.48),12) period T, and get x1, y1, z1
Epl=abs(epl) X0=(x(end)-(max(x)+min(x))/2)/(max(x)-min(x))/2
Ep2=abs(ep2) Y0=(y(end)-(max(y)+min(y))/2)/(max(y)-min(y))/2
Ep3=abs(ep3) Z0=(z(end)-(max(z)+min(z))/2)/(max(z)-min(z))/2
Tterate Eq.(2) 30 times, and get < Y);O;{)l((l)() as first dgroup of ;rfput p,V n{ EI(Z].(Z)2 ol zigj(xi(enz)-(max(x1):mfn(xi))g)i(max(xi)—mzn(xi))g
three iteration outputs epl,ep2,ep3 y as second group of input p, v in Eq.(2) =(y1(end)-(max(y1)+min(y1))/2)/(max(y1)-min(y1))
70, Z10 as third group of input p, v in Eq.(2) Z10=(z1(end)-(max(z1)+min(z1))/2)/(max(z1)-min(z1))/2

Fig. 2. Block diagram

effect, unlike other pseudorandom number generation applications using chaos, which will be periodic over
very long time evolution.

6 H.-P.Ren et al.

Fig. 3. Cipher Block Chaining (CBC) Hash function model

4. Performance analysis of the proposed Hash algorithm
4.1. Sensitivity to plain-text and key

The proposed Hash algorithm is performed for the following plain-texts (the initial secret key is
“2A86D71ECB063FAC589B74132C3874AB”):

Plain-text 1: “Chaos is a deterministic process, which is ubiquitously present in the world. Because of its
random like behavior, sensitivity to initial conditions and parameter values, ergodicity, and confusion and
diffusion properties; chaotic cryptography has become an important branch of modern cryptography and
has huge potential in protecting the assets.”

Plain-text 2: Change the word “Chaos” in the Plain-text 1 into “chaos”.
Plain-text 3: Change the word “values” in the Plain-text 1 into “value”.
Plain-text 4: Change the full stop at the end of the Plain-text 1 into comma.
Plain-text 5: Add a blank space to the end of the Plain-text 1.

Plain-text 6: Replace the first “2” in the secret key with “3”.

The corresponding Hash values in hexadecimal format using the composite multi-scroll attractor are
given as:

“DCDBCFD54C4247TEC4BIEBE3F04A98AC6” for Plain-text 1.
“19FDAABE34EB5C918D76A3510E770402” for Plain-text 2.
“07D9BB82659DDFOTFDBF69CCOBE2014C” for Plain-text 3.
“E76E91CF3CC3E9CATE17512B6ESTFE43” for Plain-text 4.
“D1151DE14382409F 7T0EC5B84BABDF06B” for Plain-text 5.
“FFD99F427133E4E93DC4E52CABT74DB35” for Plain-text 6.

The graphical display of the binary sequences for each plain-text using the composite multi-scroll
attractor is shown in Fig. 4. Figure 4 indicates that the proposed algorithm using the composite multi-
scroll attractor is so sensitive to the message and key that any tiny difference of the message or key
cause significant changes in the final Hash value. For other attractors given by system (1) with different
parameters, there are similar results.

4.2. Analysis of one-way property of the proposed Hash function

One-way property means that it is very easy to calculate the Hash value according to the plain-text and
key, but it is very difficult to calculate the plain-text and key according to the final Hash value.

From mathematical point of view, the plain-text space is unlimited, but the resulting Hash is always a
short string of fixed length. There are numerous plain-texts with the same Hash function value, but if the

One-way Hash function based on delay-induced hyper-chaos 7

@)

[
=
|

0.5 1

Bit Value

0 20 40 60 80 100 120 128
(b)

Bit Value
=
o al =
| T T
N Z
| |

0 0 40 60 80 100 120 128
(c)
1f]
(]
=]
S o5]
_5
Op 1 I 1 I -
0 20 40 60 80 100 120 128
(d)
1 [T T _]
g
S o5]
@
Op I I 1 -
0 20 40 60 80 100 120 128
(e)
1F .
(]
=)
g o5]
5
0 ! I ! I [
0 20 40 60 80 100 120 128
®
1f .
(]
=
g o5]
ﬁ
Op \ \]
0 20 40 60 80 100 120 128

Hash Bit Number

Fig. 4. Bit values of Hash function for Plain-texts 1 to 6 are shown in subplots (a) to (f), respectively.

Hash value reaches a certain bit length, for example, 128 bits, the resulting space has 2128 ~ 3.0428 x 1028.

It is difficult to calculate exhaustively in such a large space under the existing computing condition.
Generally, the key length should be no less than 128 bits, in order to prevent key exhaustive search

attack; the length of the Hash value should not be less than 128 bits in order to prevent birthday attack.

8 H.-P.Ren et al.

(a) (b)

100 T T T T T T T T T T 100

90 b 90
80 80

70

301

301

20

Hash value change rate /%
Hash value change rate /%

20

10f q 10F

100 200 300 400 500 600 700 800 900 1000 200 400 600 800 1000 1200 1400 1600 1800 2000
i (index of the bit change) i (index of the bit change)

Fig. 5. The sensitivity analysis of the plain-text. (a) Bit change rates for the 1024 bits plain-text; (b) Bit change rates for
the 2048 bits plain-text

4.3. Statistical analysis of diffusion and confusion

In this paper, the plain-text and secret key are confused and diffused by the evolution of the hyper-chaotic
system with time delay feedback and repeated key-stream iteration. This mixed operation leads to better
confusion and diffusion. Increased sensitivity to the plain-text and secret key are expected.

For the binary Hash function value, the ideal sensitivity is to ensure that any tiny changes, e.g., any
“0” flip to “1” or any “1” flip to “0” in the plain-text or in the secret key will lead to about 50% bit
change in the Hash function value. If the i-th bit is reversed, the corresponding Hash value is recorded
as h;, compared with the original Hash value hg, and the number of different bits between h; and hg is
recorded as D(hg, h;). Thus, the Hash values change rate for the i-th bit is defined by

o) = Dl

where N, is the length of the Hash value; in this paper N, = 128.

To measure the diffusion and confusion capabilities of the proposed Hashing scheme, we conduct the
following experiment;:

First, we obtain the Hash value of a randomly chosen message. Then, we randomly modify 1 bit in
the original message and generate the corresponding Hash value. Finally, we compare the two Hash values
and count the number of different bits in the Hash values denoted as B;. Besides, we report the following
statistical measures of the sequences B; obtained in tests. B = % sz\; 1 Bi is the mean bit change number,

P = (B/128) x 100% is the mean bit change rate, AB = \/ﬁ Zi]il(Bi — B)? is the standard variance

x 100%, (5)

of the bit change number, AP = \/ﬁ Zij\il(Bi/128 — P)? x 100% is standard variance of P, where N
indicates the test time of the experiments.

Employing the proposed algorithm using the composite multi-scroll attractor, the distribution of bit
change number B; is shown in Fig. 5 and Fig. 6. The Hash value change rate for 1024 test times, is shown
in Fig. 5(a). For 2048 test times is shown in Fig. 5(b), the corresponding distribution of bit change number
B; with 2048 test times is shown in Fig. 6, the histogram of the bit change number in the Hash value when
the i-th bit in the plain-text is reversed, B; has a normal distribution centering at the ideal value of 64.
These results show that the constructed Hash algorithm has a very good sensitivity to plain-text change.

Table 1 gives the statistic tests using the composite multi-scroll attractor for the different plain-texts
with different length. The proposed algorithm has the mean bit change number B = 63.992 and the mean
bit change rate P = 49.994% that are close to the ideal values, i.e., 64 bits and 50%, respectively, which
indicate that our algorithm has a strong capability of confusion and diffusion.

Number of hits

One-way Hash function based on delay-induced hyper-chaos

160F T T T T T T T T T]
140 |
120 E
100 - E
80 B
60 - B
40F 8
20 B
040 45 50 55 60 65 70 75 80 85 90
Bit change number
Fig. 6. Histogram of bit change number (2048 tests)
100 T T T T T T
90 B
. 8of 1
Y
o 70}]
s
)
(o))
c
]
<
o
)
>
©
>
< 30t |
@
I
20 1
10 1
0 ‘ ‘ ‘ ‘ ‘ ‘
20 40 60 80 100 120
Index of the bit change in the key
Fig. 7. The sensitivity analysis of the key (1024 tests)
Table 1. The sensitivity test of different plain-texts with different length
N=200 N=512 N=1024 N=2048 N=10000 Mean
B 63.96 64.19 63.88 63.97 63.96 63.992
AB 5.78 5.61 5.85 5.68 5.64 5.675
P(%) 49.97 50.15 49.90 49.98 49.97 49.994
AP(%) 4.47 4.38 4.58 4.41 4.44 4.456

9

Table 2 gives the sensitivity test results of different length plain-texts using XOR operation to replace
key-stream iteration in the proposed algorithm. By comparing Table 2 and Table 1, we see that the average
bit change rate for 1 bit plain-text change, using the key-stream iteration operation, is 50%, while, that
for the method using XOR is 49.94%. Therefore, the key-stream iteration operation is better than XOR

10 H.-P.Ren et al.

Table 2. The sensitivity of different length plain-texts using
XOR operation to replace key stream iteration

N=200 N=512 N=1024 N=2048 Mean

B 63.17 63.60 64.35 64.11 63.81
AB 5.61 5.77 5.77 5.64 5.70
P(%) 49.70 49.68 50.27 50.09 49.94
AP(%) 4.39 4.72 4.51 4.41 451

Table 3. The sensitivity test of the secret key for the plain—
texts of different length

N=150 N=512 N=1024 N=2048 Mean

B 63.75 6424 63.84 64.28 64.03
AB 5841 5801 6.101 5.17 5.73
P(%) 49.81 50.19 49.88 50.23 50.02
AP(%) — 4.57 4.53 4.47 4.04 4.40

operation in the sense of achieving better sensitivity to the plain-text.

Figure 7 is the sensitivity analysis of the secret key using the composite multi-scroll attractor for plain-
text 1, the mean bit change rate of the Hash value is 49.8779% for 1 bit key reversing with 1024 tests. To
test the key sensitivity in different plain-text lengths, Table 3 shows that 1 bit reversing secret key with
the plain-text with different lengths brings the mean bit change number, B, the mean bit change rate, P,
the standard variance of the bit change number, AB, and the standard variance of P, AP.

From Figure 7 and Table 3, we conclude that the proposed method has very good sensitivity to the
key.

4.4. Collision analysis

Collision resistance and birthday attack are related to each other. Both reflect the probability that two
input data are found to have the same Hash value. In what follows, we first perform qualitative analysis
on birthday attack and then conduct quantitative analysis on collision resistance.

4.4.1. Birthday attack

When birthday attacks are considered, the Hash value length determines the security. The Hash value of
128 bits means that the birthday attack difficulty is in the order of 264, the difficulty magnitude of this
attack is enough for general applications[Lin et al., 2017c; Li & Li, 2016; Teh et al., 2015; Kanso & Ghebleh,
2013].

4.4.2. Collision test

A collision occurs when two messages have the same Hash value. Collisions are unavoidable according to
the pigeonhole principle. In a security application, it should be very difficult to find two messages with the
same Hash value.

Since hyper-chaotic systems are usually defined for real numbers, it is not easy to provide a mathe-
matical proof on the collision resistance of the chaotic Hash functions. Therefore, we perform the following
test for the quantitative analysis on collision resistance:

Conventionally, 8 bits in the plain-text is selected, corresponding to the ASCII value 0 ~ 255, 8 bits
in the Hash value is selected too, namely, the value is 0 ~ 255. Therefore, the plain-text and Hash value

One-way Hash function based on delay-induced hyper-chaos 11

share the same mapping space. Then, the number of the inverse image that corresponds to any value of

the Hash value space is recorded as k, and the number of the point which has k inverse images is recorded

as N (k). The larger the number N (1) and the smaller the N(0), it means the better collision resistance.
ny is used as a quantitative measure of collision resistance performance defined as:

nk) =)
2 k=0 N (K)
where K is the largest value of collision. The closer n(1) value to 1, the lower the degree of the collision.

Using the aforementioned test method, Table 4 gives the collision resistance performance comparison
for 8 bits length of the plain-text, which shows that the proposed algorithm has the best anti-collision
performance.Meanwhile, in Table 4, the average time for generating Hash values for 30 Monte Carlo tests of
plain-text 1 on the same computer platform, the average bit change number, B, the average bit change rate,
P, the average standard variance of the bit change number, AB, and the average standard variance of the
change rate, AP, are also given. Table 4 is a comprehensive performance comparison of different methods,
which demonstrates that the proposed algorithm has better comprehensive performance as compared with
some existing algorithms.

As given in Table 4, the average time of the proposed method, i.e., 0.705s is faster than those of the
methods in [Rivest, 1992; Wang, 2006; Li & Li, 2016; Lin et al., 2017c] which are in the order of 1s. Although
the methods in [Liu et al., 2000; Peng et al., 2005; Liu et al., 2006a] have shorter average generating time
of the order of 0.01s, the methods in [Liu et al., 2000; Peng et al., 2005; Liu et al., 2006a] have weaker
plain-texts sensitivity and/or collision resistance performance.

When 16 bits in the plain-text and Hash value are considered by the aforementioned way to test
collision resistance, the proposed algorithm using the double-scroll attractor, n(1) = 0.3694, as shown by
Table 5. The proposed algorithm has the best anti-collision performance when 16 bits Hash value and
plain-text are considered as seen from Table 5.

In particularly, compared with the low dimensional chaotic behaviors generated by the original Chen
system[Chen & Ueta, 1999] with one positive Lyapunov exponent, and the four dimensional hyper-chaotic
Chen system[Wu & Wang, 2006] with two Lyapunov exponents, the chaos generated by Chen system with
time delay[Ren et al., 2006] has infinite dimension and multiple positive Lyapunov exponents, which has
better diffusing and confusing ability. Table 4 and 5 show this point.

(6)

Table 4. The comprehensive performance comparison of the proposed method and some existing methods

Algorithms ch{:o N(1) n(l) Averagetime B P(%) AB AP%)
Composite multi-scroll attractor 256 100 0.3906 0.705s 63.99 49.99 5.68 4.46
Double-scroll attractor 256 104 0.4063 0.705s 63.89 4991 5.66 4.42
Single-scroll attractor 256 99 0.3867 0.705s 63.94 49.95 5.67 4.43
[Rivest, 1992] 256 60 0.2344 3.456s 63.99 49.99 5.58 4.36
[Liu et al., 2000] 256 84 0.3281 0.029s 63.73 49.79 5.64 4.41
[Xiao et al., 2005] 256 42 0.1641 0.231s 63.78 49.84 5.67 4.43
[Peng et al., 2005] 256 87 0.3398 0.039s 64.11 50.09 5.57 4.33
[Yi, 2005] 256 26 0.1016 0.451s 63.59 49.68 6.47 4.15
[Liu et al., 2006a] 256 101 0.3945 0.063s 61.24 47.84 5.23 4.09
[Liu et al., 2006b] 256 87 0.3398 0.393s 63.76 49.66 5.69 4.45
[Wang, 2006] 256 44 0.1718 2.912s 63.56 49.26 5.64 5.34
[Ren & Zhuang, 2009] 256 95 0.3711 0.335s 63.79 49.83 5.43 4.24
[Kanso & Ghebleh, 2013] 256 80 0.3125 0.730s 64.01 50.03 5.60 4.42
[Li et al., 2016] 256 63 0.2461 0.195s 63.92 49.94 5.80 4.54
[Li & Li, 2016] 256 76 0.2969 2.329s 64.19 50.14 5.64 4.44

[Lin et al., 2017¢] 256 88 0.3438 1.803s 63.88 49.76 5.78 4.51

12 H.-P.Ren et al.

Table 5. Collision resistance performance comparison among the
proposed method and some existing methods (the plain-text with 16
bits length)

Algorithms SEONK) N1 a(l)

Composite multi-scroll attractor 65536 24080 0.3674
Double-scroll attractor 65536 24211 0.3694
Single-scroll attractor 65536 23933 0.3652
[Rivest, 1992] 65536 1468 0.0224
[Liu et al., 2000] 65536 24094 0.3676
[Peng et al., 2005] 65536 1506 0.0230
[Yi, 2005] 65536 116 0.0018
[Liu et al., 2006a] 65536 23906 0.3648
[Liu et al., 2006b) 65536 1916 0.0292
[Wang, 2006] 65536 6886 0.1051
[Ren & Zhuang, 2009] 65536 24109 0.3679
[Kanso & Ghebleh, 2013] 65536 23302 0.3556

Table 6. The collision resistance performance us-
ing XOR operation to replace key-stream iteration
(for the double scroll attractor and 8 bits Hash val-
ue)

Algorithms Z/i{:o N(1) n(1)

Key stream iteration 256 104 0.4063
XOR operation 256 80 0.3516

Table 7. The collision resistance performance
using different compensating code methods (for
the double scroll attractor and 8 bits Hash val-
ue)

Algorithms 25:0 N(1) n(1)

Chaotic iteration 256 104 0.4063
Compensating 1 0 256 94 0.3672
Compensating 0 0 256 94 0.3672
Compensating 1 1 256 96 0.3750

In order to illustrate that the key-stream iteration method is being helpful to improve collision re-
sistance performance, we give the collision resistance performance comparison in Table 6 for 8 bits Hash
value and using XOR operation to replace the key-stream iteration in the proposed algorithms.

We can see from Table 6 that n(1) = 0.3516 for XOR operation, while, n(1) = 0.4063 for the key-stream
iteration. This result shows that a better performance can be achieved by using the proposed key-stream
iteration method as compared to the conventional XOR, operation.

REFERENCES 13

To show the performance of the proposed compensating code, we replace the compensating code
generation algorithm of the proposed method with the conventional compensating code, i.e., using (1, 0)
or (0, 0) or (1, 1) for compensation. The collision resistance performance comparison is given in Table 7.
We can conclude from Table 7 that the proposed algorithm has better collision resistance performance.

Based on these results, the quantitative analysis of collision demonstrates that the proposed hyper-
chaos based method has excellent collision resistance performance.

5. Conclusion

In this paper, we present a novel algorithm of one-way Hash function based on the hyper-chaotic attractors
in the Chen system with linear time delay feedback. The advantage and innovation of this work lie in: Firstly,
the theoretically infinite dimensional hyper-chaotic system with multiple positive Lyapunov exponents is
used to construct the Hash function. Although only three states of the infinite dimensional system are used
for constructing Hash function, they contain infinite dimensional dynamical system information, which
yields the extremely complicated phase space and strong ability of diffusing and confusing. Secondly, other
than commonly used XOR operation for further diffusing and confusing, key-stream iteration is used in
the proposed method, which provides n times iteration for the plain-text and key to enhance the diffusing
and confusing ability of the proposed method. Thirdly, compensating code generated by chaotic map in
the message filling phase helps to improve the anti-collision performance of the proposed Hash algorithm.
Fourthly, the chaotic evolution time T in the paper is relatively small for the computation precision of the
commonly used commercial computers, the digital deterioration is not significant. The proposed algorithm
achieves very competitive plain-text and the key sensitivity. Finally, the proposed algorithm has the best
anti-collision performance with the reasonable computation cost.

References

Alvarez, G., Montoya, F. & Romera, M. [2004] “Cryptanalysis of dynamic look-up table based chaotic
cryptosystems,” Phys. Lett. A 326, 211-218.

Akhavan, A., Samsudin, A. & Akhshani, A. [2013] “A novel parallel Hash function based on 3D chaotic
map,” Furasip. J. Adv. Sign. Process. 2013, 126.

Baptista, M. S. [1998] “Cryptography with chaos,” Phys. Lett. A 240, 50-54.

Cang, S., Qi, G. & Chen, Z. [2010] “A four-wing hyper-chaotic attractor and transient chaos generated
from a new 4-D quadratic autonomous system,” Nonlinear Dyn. 59, 515-527.

Chen, G., Mao, Y. & Chui, C. K. [2004] “A symmetric image encryption scheme based on 3D chaotic cat
maps,” Chaos Solit. Fract. 21, 749-761

Chen, G. R. & Ueta, T. [1999] “Yet another chaotic attractor,” Int. J. Bifurcation and Chaos 9, 1465-1466.

Chenaghlu, M. A.; Jamali, S. & Khasmakhi, N. N. [2016] “A novel keyed parallel Hashing scheme based
on a new chaotic system,” Chaos Solit. Fract. 87, 216-225.

Choi, Y., Lee, Y., Moon, J. & Won, D. [2017] “Security enhanced multi-factor biometric authentication
scheme using bio-Hash function,” Plos One 12, e0176250.

Dobbertin, H. [1996] “Cryptanalysis of md4,” Lect. Notes Comput. Sci. 1039, 53-69.

Fu, C., Chen, J., Zou, H. & Meng, W. H. [2012] “A chaos-based digital image encryption scheme with an
improved diffusion strategy,” Opt. Fxpress. 20, 2363-2378.

Gao, T. & Chen, Z. [2008] “A new image encryption algorithm based on hyper-chaos,” Phys. Lett. A 372,
394-400.

Guo, W., Wang, X. & He, D. [2009] “Cryptanalysis on a parallel keyed Hash function based on chaotic
maps,” Phys. Lett. A 373, 3201-3206.

Jeng, F. G., Huang, W. L. & Chen, T. H. [2015] “Cryptanalysis and improvement of two hyper-chaos-based
image encryption schemes,” Signal Process Image Commun. 34, 45-51.

Jiteurtragool, N., Ketthong, P., Wannaboon, C. & San-Um, W. [2013] “A topologically simple keyed
Hash function based on circular chaotic sinusoidal map network,” Int. Conf. Adv. Commun. Technol.

ICACT. 1089-1094.

14 REFERENCES

Kanso, A. & Ghebleh, M. [2013] “A fast and efficient chaos-based keyed Hash function,” Commun. Nonlin.
Sci. Numer. Simul. 18, 109-123.

Kanso, A. & Ghebleh, M. [2015] “A structure-based chaotic Hashing scheme,” Nonlinear Dyn. 81, 27-40.

Knudsen, L.& Preneel, B. [2002] “Construction of secure and fast Hash functions using non-binary error-
correcting codes,” IEEFE Trans. Inf. Theory. 48, 2524-2539.

Li, S., Li, Q., Li, W., Mou, X. & Cai, Y. [2001] “Statistical properties of digital piecewise linear chaotic
maps and their roles in cryptography and pseudorandom coding,” Proc. IMA Int. Conf. Cryptography
and Coding, pp. 205-221.

Li, S., Mou, X., Yang, B. L., Ji, Z. & Zhang, J. [2003] “Problems with a probabilistic encryption scheme
based on chaotic systems,” Int. J. Bifurcation and Chaos 13, 3063-3077.

Li, Y., Li, X. & Liu, X. [2016] “A fast and efficient Hash function based on generalized chaotic mapping
with variable parameters,” Neural Comput. Appl. 28, 1405-1415.

Li, Y. T. & Li, X. [2016] “Chaotic Hash function based on circular shifts with variable parameters,” Chaos
Solit. Fract. 91, 639-648.

Lin, Z. S., Guyeuxy, C., Wang, Q. X. & Yu, S. M. [2017a] “Diffusion and Confusion of Chaotic Iteration
Based Hash Functions,” Proc. - IEEE Int. Conf. Comput. Sci. Eng., IEEE Int. Conf. Embed. Ubiqui-
tous Comput., Int. Symp. Distrib. Comput. Appl. Bus., Eng. Sci., CSE-EUC-DCABES pp:444-447.

Lin, Z. S., Guyeux, C., Yu, S. M., Wang, Q. X. & Cai, S. T. [2017b] “On the use of chaotic iterations to
design keyed hash function,” Cluster Comput 2, 1-15.

Lin, Z. S., Yu, S. M. & Li, J. H. [2017¢c] “A novel approach for constructing one-way Hash function based
on a message block controlled 8D hyperchaotic map,” Int. J. Bifurcation and Chaos 27, 1750106.

Liu, G. J. Shan, L. & Dai, Y. W. [2006a] “One-way Hash function based on chaotic neural network,” Acta
Phys. Sin. 55, 5688-5693.

Liu, G. J., Liang, S., Sun, J. S., Dai, Y. W. & Wang, Z. Q. [2006b] “Construction of Hash function based
on spatiotemporal chaotic systems,” Control Decis. 21, 1244-1248.

Liu, J. N., Xie, J. H. & Wang, P. [2000] “One way Hash function construction based on chaotic mappings,”
J. Tsinghua Univ. 40, 55-58.

Luo, Y. L. & Du, M. H. [2012] “One-way Hash function construction based on the spatiotemporal chaotic
system,” Chin. Phys. B 21, 84-93.

Mendel, F., Nad, T. & Schlaffer, M. [2013] “Improving local collisions: new attacks on reduced SHA-256,”
Lect. Notes Comput. Sci. 7881, 262-278.

Murillo-Escobar, M. A.; Cruz-Hernéndez, C., Cardoza-Avendafio, L., & Méndez-Ramirez, R. [2017] “A
novel pseudorandom number generator based on pseudorandomly enhanced logistic map,” . Nonlinear
Dyn. 87, 407-425.

Peng, F., Qiu, S. S. & Long, M. [2005] “One-way Hash function construction based on two-dimensional
hyper-chaotic mappings,” Acta Phys. Sin. 54, 4562-4568.

Ren, H. P., Liu, D. & Han, C. Z. [2006] “Anti-control of chaos via direct time delay feedback,” Acta Phys.
Sin. 55, 2694-2701.

Ren, H. P. & Zhuang, Y. [2009] “One-way Hash function construction based on Chen-type hyper-chaotic
system and key-stream,” J. Commun. 30, 100-113.

Ren, H. P. & Li, W. C. [2010] “Heteroclinic orbits in Chen circuit with time delay,” Commun. Nonlin. Sci.
Numer. Stmul. 15, 3058-3066.

Ren, H. P., Bai, C., Huang, Z. Z. & Grebogi, C. [2017a] “Secure Communication with Hyper-Chaotic Chen
System,” Int. J. Bifurcation and Chaos 14, 1750076-1-15.

Ren, H. P., Bai, C., Tian, K. & Grebogi, C. [2017b] “Dynamics of delay induced composite multi-scroll
attractor and its application in encryption,” Int. J. Non. Linear Mech. 94, 334-342.

Rhouma, R. & Belghith, S. [2008] “Cryptanalysis of a new image encryption algorithm based on hyper-
chaos,” Phys. Lett. A 372, 5973-5978.

Rivest, R. [1992] “The MD5 Message-Digest Algorithm,” IETF Network Working Group, 473, 492.

Stevens, M. [2013] “New collision attacks on SHA-1 based on optimal joint local-collision analysis,” Lect.
Notes Comput. Sci. 7881, 245-261.

Teh, J. S., Samsudin, A. & Akhavan, A. [2015] “Parallel chaotic Hash function based on the shuffle-exchange

REFERENCES 15

network,” Nonlinear Dyn. 81, 1067-1079.

Wang, X., Lai, X. & Feng, D. [2005a] “Cryptanalysis of the Hash Functions MD4 and RIPEMD,” Lect.
Notes Comput. Sci. 3494, 1-18.

Wang, X. & Yu, H. [2005b] “How to break MD5 and other Hash functions,” Lect. Notes Comput. Sci.
3494, 19-35.

Wang, L. [2006] “Research of one way Hash function based on logistic mapping,” Comput. Eng. Des. 27,
T74-776.

Wang, Y., Wong, K. W. & Liao, X. F. [2011a] “A new chaos-based fast image encryption algorithm,” Appl.
Soft Comput. J. 11, 514-522.

Wang, Y., Wong, K. W. & Xiao, D. [2011b] “Parallel Hash function construction based on coupled map
lattices,” Commun. Nonlin. Sci. Numer. Simul. 16, 2810-2821.

Wong, K. W. [2003] “A combined chaotic cryptographic and Hashing scheme,” Phys. Lett. A 307, 292-298.

Wong, K. W., Kwok, B. S. H. & Yuen, C. H. [2009] “An efficient diffusion approach for chaos-based image
encryption,” Chaos Solit. Fract. 41, 2652-2663.

Wu, X. J., & Wang, X. Y. [2006] “Chaos synchronization of the new hyperchaotic Chen system via nonlinear
control,” Acta. Phys. Sin. 55, 6261-6266.

Xiao, D., Liao, X. F. & Deng, S. J. [2005] “One-way Hash function construction based on the chaotic map
with changeable-parameter,” Chaos Solit. Fract. 24, 65-71.

Xiao, D., Liao, X. & Wang, Y. [2009] “Improving the security of a parallel keyed Hash function based on
chaotic maps,” Phys. Lett. A 373, 4346-4353.

Xiao, D., Shih, F., Y. & Liao, X. [2010] “A chaos-based Hash function with both modification detection
and localization capabilities,” Commun. Nonlin. Sci. Numer. Simul. 15, 2254-2261.

Yang, Y. G., Xu, P. & Yang, R. [2016] “Quantum Hash function and its application to privacy amplification
in quantum key distribution, pseudo-random number generation and image encryption,” Sci. Rep. 6,
19788.

Ye, G., Zhao, H., & Chai, H. [2015] “Chaotic image encryption algorithm using wave-line permutation and
block diffusion,” Nonlinear Dyn. 83, 1-11.

Yi, X. [2005] “Hash function based on chaotic tent maps,” IEEE Trans. Circuits Syst. Express Briefs. 52,
354-357.

Zhou, Q., Liao, X. & Liu, J. [2012] “Design of image Hash functions based on fluid dynamics model,”
Nonlinear Dyn. 67, 1837-1845.

