
ar
X

iv
:1

70
6.

00
09

9v
1 

 [
m

at
h.

D
S]

  3
1 

M
ay

 2
01

7

Centers and limit cycles of a generalized cubic Riccati system

Zhengxin Zhoua, Valery G. Romanovskib,c,d, Jiang Yue,∗

aSchool of Mathematical Sciences, Yangzhou University, Yangzhou 225002, P. R. China
b Faculty of Electrical Engineering and Computer Science, University of Maribor,

Smetanova 17, Maribor, SI-2000 Maribor, Slovenia
cCAMTP - Center for Applied Mathematics and Theoretical Physics,

University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
dFaculty of Natural Science and Mathematics, University of Maribor, Koroška c. 160, SI-2000 Maribor, Slovenia
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Abstract

We obtain condition for existence of a center for a cubic planar differential system, which can

be considered as a polynomial subfamily of the generalized Riccati system. We also investigate

bifurcations of small limit cycles from the components of the center variety of the system.
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1. Introduction

Consider systems of ordinary differential equations on R2 of the form

ẋ = P(x, y), ẏ = Q(x, y), (1)

where P and Q are polynomials, max{deg P, deg Q} = n. We view (1) as defining a family of

systems parametrized by the coefficients of P and Q. That is, the degree of polynomials P and

Q in system (1) is fixed and the coefficients of the polynomials are parameters λ1, . . . , λN , so

the N-tuple of the parameters p = (λ1, . . . , λN) is a point in a Euclidean N-dimensional space E,

and we identify each point in E with its corresponding system (1). In this paper the space E of

parameters is either RN or CN .

A singular point (x0, y0) of real system (1) is a stable focus if every nearby trajectory spirals

towards to it, an unstable focus if every nearby trajectory spirals away from it, and it is a center

if every nearby trajectory is an oval.

A singular point (x0, y0) ∈ R2 of a system p ∈ E ⊂ RN is said to have cyclicity k with respect

to E if and only if any sufficiently small perturbation of p in E has at most k limit cycles in a

sufficiently small neighborhood of (x0, y0), and k is the smallest number with this property. The

problem of cyclicity of a center or a focus of a system of the form (1) is known as the local

16th Hilbert problem in (Françoise and Yomdin (1997)), based on its connection to Hilbert’s
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still unresolved 16th problem, which in part asks for a bound on the number of limit cycles of

system (1) in terms of degree n of the system (see, e.g. survey papers Giné (2007); Li (2003)).

The problem of cyclicity is closely connected to the center problem, that is, the problem

of finding systems with centers in a given polynomial family (1). The studies of the center

problem dates back to 1908 when Dulac (1908) investigated the case of the quadratic system.

The literature devoted to the subject is vast, see e.g. Amel’kin et al. (1982); Christopher and Li

(2007); Liu et al. (2008); Romanovski and Shafer (2009); Sibirskii (1976) and the references

that they contain.

After a linear transformation and time rescaling any planar polynomial system (1) with an

elementary center or weak focus can be written in the form

ẋ = −y + P̃(x, y), ẏ = x + Q̃(x, y), (2)

where P̃ and Q̃ are polynomials without free and linear terms. By the Poincaré-Lyapunov the-

orem for real system (2) the origin is a center if and only if in a neighborhood of the origin the

system admits a real analytic local first integral of the form

Ψ(x, y) = x2 + y2 +
∑

j+k=3

ψ jk x jyk. (3)

Recently Llibre and Valls (2014, 2015) investigated the planar system

ẋ = f (y), ẏ = g2(x)y2 + g1(x)y + g0(x), (4)

which is called the generalized Riccati system (4), since it becames the classical Riccati system

if f (x) ≡ 1.

In this paper we consider a particular subfamily of the generalized Riccati system, namely,

the cubic system

ẋ = −y + a02y2,

ẏ = (b02 + b12x)y2 + (b11x + b21x2)y + (b20x2 + b30x3 + x)

= x + b20x2 + b11xy + b02y2 + b30x3 + b21x2y + b12xy2,

(5)

where ai j, bks are real or complex parameters. We first find conditions for system (5) with com-

plex parameters to have an analytic first integral of the form (3), so, the corresponding real

systems have a center at the origin. Then, we study limit cycles bifurcations from the centers of

real systems (5).

2. Preliminaries

For system (2) it is always possible to find a function

Φ(x, y) = x2 + y2 +

∞∑

j+k=3

φ jk x jyk, (6)

such that
∂Φ

∂x
(−y + P̃(x, y)) +

∂Φ

∂y
(x + Q̃(x, y)) =

∞∑

m=2

gm−1(u2 + v2)m. (7)
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The coefficients gk in (7) are polynomials in parameters of system (7) called the focus quantities

of the system. Each polynomial gi represents an obstacle for existing of integral (3), that is,

system (2) admits an integral (3) if and only if g1 = g2 = g3 = · · · = 0. Thus, the set of all

systems in the parametric family (2) with centers (equivalently, the set of systems with a first

integral of the form (3)) is the variety1 VR ⊂ Rn of the ideal B = 〈g1, g2, g3, . . .〉. By the Hilbert

Basis Theorem there is an integer k that B = 〈g1, . . . , gk〉, however there are no regular methods

to find such k.

We will also consider system (2) as a system with complex parameters. In such case the

polynomials gi in (7) are polynomials with complex coefficients and then their variety is a com-

plex variety, which we will denote VC. All systems whose parameters belong to the variety VC

admit local analytic first integral of the form (3). We call VR and VC the real and complex center

varieties of system (2).

It was shown in Garcı́a et al. (2016) that knowing the complex variety of a real polynomial

system can be helpful for investigation of cyclicity of the real system. We also need to work with

complex varieties to apply our computational approach for computing conditions of integrability.

To find a real or complex center variety of a polynomial system (2), one computes a few

first focus quantities g1, . . . , gk of the system and then finds decomposition of the variety of the

ideal Bk = 〈g1, . . . , gk〉 obtaining the necessary conditions of existence of integral (3). Then

it is necessary to prove the sufficiency of the obtained condition. We recall that one of most

powerful methods to prove the existence of integral (3) is the Darboux method, which allows

to construct a first integral or integrating factor using Darboux polynomials (see, e.g. surveys

Llibre (2011); Llibre and Zhang (2012)). A Darboux polynomial of system (1) is a polynomial

f (x, y) satisfying
∂ f

∂x
P +

∂ f

∂y
Q = K f ,

where K(x, y) is a polynomial called the cofactor of f . It is easy to see that if f is a Darboux

polynomial of system (1), then f = 0 is an algebraic invariant curve of the system.

It is easy to see that if system (2) has p irreducible Darboux polynomials f1, ..., fp with the

associated cofactors K1, ...,Kp, such that s1K1 + ...+ spKp = 0, then the function H = f
s1

1
... f

sp

p is

a first integral of the system (called the Darboux first integral) and if

s1K1 + ... + spKp =
∂P

∂x
+
∂Q

∂y
,

then the function µ = f
s1

1
... f

sp

p is an integrating factor of (1) (called the Darboux integrating

factor).

3. Itegrability conditions for system (5)

In this section we assume that parameters of system (5) are complex and find the complex

variety VC of the system. The study yields that the variety consists of 7 irreducible components.

Theorem 1. System (5) has an analytic integral of the form (3) if the 7-tuple (a02, b20, b11, b12, b02,

b21, b30) of its parameters belong to the variety of one of the following prime ideals:

1 We remind that the variety of a given ideal F generated by polynomials f1(x1 , . . . , xm), . . . , fs(x1 , . . . , xm) over a

field k, F = 〈 f1 , . . . , fs〉 ⊂ k[x1 , . . . , xm], is the set V(F) = {(x1, . . . , xn) ∈ kn | f (x1 , . . . , xm) = 0 for all f ∈ F}.
3



I1 = 〈b21, b20, b02〉,
I2 = 〈b30, b12, b02, b11b20 − b21〉,
I3 = 〈b30, b21, b12,−2b02b2

11
+ 4b2

02
b20 − b2

11
b20, 2a02b11 + b2

11
− 4b02b20, 2a02b02 − b02b11 −

b11b20, 4a2
02
− b2

11
− 4b2

20
〉,

I4 = 〈b21, b11, a02〉,
I5 = 〈a02, b02b21+b11b30, 2b02b12+b12b20+b02b30, b02b11+b11b20−b21, b

2
02
+b02b20+b30, b12b20b21−

2b11b12b30 − b11b2
30
, b11b20b21 − b2

21
− b2

11
b30, b12b2

20
− 4b12b30 − b02b20b30 − 2b2

30
, b11b12b20 −

2b12b21 + b11b20b30 − b21b30,−(b12b2
21

) + b2
11

b12b30 + b2
11

b2
30
〉,

I6 = 〈b21, b12, b11, b02〉,
I7 = 〈b21, b12, b30, 3b02 + 5b20, 5a02 − b11, 6b2

11
+ 25b2

20
〉.

That is, the variety VC of system has the irreducible decomposition VC = ∪7
k=1

Vc
k
, where

Vc
k
= V(Ik) (k = 1, . . . , 7).

Proof. Necessity. For system (5) we have computed eight first focus quantities g1, g2, . . . , g8 and

then tried to find the irreducible decomposition of the variety V(I) of the ideal

I = 〈g1, g2, . . . , g8〉 (8)

over the field of rational numbers using the routine minAssGTZ Decker et al. (2010) (which

is based on the algorithm of Gianni et al. (1988)) of the computer algebra system Singular

Decker et al. (2012), but due to high complexity of calculations we have not succeeded to com-

plete them with our computational facilities. However computing in the polynomial ring

Z32003[a02, b02, b11, b12, b20, b21, b30]2

using the degree reverse lexicographic ordering with a02 > b02 > b11 > b12 > b20 > b30 > b21 we

have found that in the affine space Z7
32003

the variety of I consists of 8 irreducible components

defined by the following 8 prime ideals:

Ĩ1 = 〈b21, b20, b02〉,
Ĩ2 = 〈b30, b12, b02, b11b20 − b21〉,
Ĩ3 = 〈b30, b21, b12, a02b11−16001b2

11
−2b02b20, a02b02+16001b02b11+16001b11b20, a

2
02
−8001b2

11
−

b2
20
, b02b2

11
− 2b2

02
b20 − 16001b2

11
b20〉,

Ĩ4 = 〈b21, b11, a02〉,
Ĩ5 = 〈a02, b02b21+b11b30, b02b12−16001b12b20−16001b02b30, b02b11+b11b20−b21, b

2
02
+b02b20+

b30, b12b20b21 − 2b11b12b30 − b11b2
30
, b11b20b21 − b2

11
b30 − b2

21
, b12b2

20
− b02b20b30 − 4b12b30 −

2b2
30
, b11b12b20 + b11b20b30 − 2b12b21 − b21b30, b

2
11

b12b30 + b2
11

b2
30
− b12b2

21
〉,

Ĩ6 = 〈b21, b12, b11, b02〉,
Ĩ7 = 〈b30, b21, b12, b11 − 15273b20, b02 − 10666b20, a02 + 3346b20〉,
Ĩ8 = 〈b30, b21, b12, b11 + 15273b20, b02 − 10666b20, a02 − 3346b20〉.

Lifting these ideals into the ring Q[a02, b02, b11, b12, b20, b21, b30] using the rational recon-

struction algorithm of Wang et al. (1982) we obtain the ideals I1, . . . , I6 given in the statement of

Theorem 1 and the ideals

Î7 = 〈b30, b21, b12, b11 +
51
44

b20, b02 +
5
3
b20, a02 +

161
67

b20〉
and

Î8 = 〈b30, b21, b12, b11 − 51
44

b20, b02 +
5
3
b20, a02 − 161

67
b20〉.

2It appear, for the first time modular computations were used for studies on the center and cyclicity problems in

Edneral (1997)
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To check the correctness of the obtained decomposition we use the procedure proposed in

Romanovski and Prešern (2011).

First, using the Radical Membership Test3 we check if all focus quantities gi (i = 1, . . . , 8)

vanish on each of the varieties V(I1), . . . ,V(I6),V(Î7),V(Î8). The calculations show that all

polynomials gi are equal to zero on each of varieties V(I1), . . . ,V(I6), but not on the varieties

V(Î7),V(Î8). This means, that V(Î7) and V(Î8) are not correct components of the irreducible

decomposition of V(I). A usual recipe to find the correct components of the decomposition in

such situation is to recompute the decomposition over a few fields of larger characteristics (see

e.g. Arnold (2003)). However instead of doing this we observe that both ideals Ĩ7 and Ĩ8 contain

the polynomials b30, b21, b12 and compute with minAssGTZ of Singular the minimal associate

primes of the ideal 〈I, b30, b21, b12〉 over the field Q obtaining the component defined by the ideal

I7 of the statement of the theorem.

Now, to check the correctness of the obtained conditions we computed the ideal Ĩ = ∩7
s=1

Is,

which defines the union of all seven components listed in the statement of the theorem and have

checked that reduced Gröbner bases of all ideals 〈Ĩ, 1 − wgk〉 (where k = 1, . . . , 8 and w is a new

variable) computed over Q are {1}. By the Radical Membership Test it means that

V(Ĩ) ⊂ V(I). (9)

To check the opposite inclusion it is sufficient to check that

〈I, 1 − w f 〉 = 〈1〉 (10)

for all polynomials f from a basis of Ĩ. Unfortunately, we were not able to perform the check

over the field Q however we have checked that (10) holds over a few fields of finite characteristic.

It yields that (10) holds with high probability Arnold (2003).

Sufficiency. We now prove that if the coefficients of the system belong to one of varieties

mentioned in the statement of the theorem then the system has an analytic first integral of the

form (3).

Usually the center variety of a polynomial system contains components corresponding to

Hamiltonian, time-reversible and Darboux integrable systems.

It is easy to see that systems from VC

6
are Hamiltonian with the Hamiltonian

H =
x2 + y2

2
+

b20x3

3
+

b30x4

4
−

a02y3

3
.

All time-reversible cubic systems were found in Sibirskii (1976); Jarrah et al. (2001). To use

the results of Sibirskii (1976); Jarrah et al. (2001) we first complexify system (5) introducing the

variable z = x+iy and obtain from (5) after rescaling of time by i the complex differential equation

ż = z +
1

4
z2(ia02 − b02 − ib11 + b20) − 1

2
zz̄(ia02 − b02 − b20) +

1

4
z̄2(ia02 − b02 + ib11 + b20)

− 1

8
z3(b12+ ib21−b30)+

1

8
z2 z̄(b12− ib21+3b30)+

1

8
zz̄2(b12+ ib21+3b30)− 1

8
z̄3(b12− ib21−b30).

3 The test says that for a polynomial f and an ideal I = 〈 f1 , . . . , fm〉 in C[x1 , . . . , xn] f |V(I) ≡ 0 if and only if the

reduced Gröbner basis of the ideal 〈1−w f , f1 , . . . , fm〉 (here w is a new variable) is equal to {1}, see e.g. Cox et al. (1997);

Romanovski and Shafer (2009) for more details
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Substituting the coefficients of this differential equations into polynomials of Theorem 6

of Jarrah et al. (2001), which define the variety of all time-reversible cubic systems, and then

computing with minAssGTZ of Singular the minimal associate primes of the obtained ideal we

get the components Vc
1
,Vc

3
and Vc

4
of the statement of the theorem. Hence, all systems from the

components Vc
1
,Vc

3
and Vc

4
are time-reversible and, therefore, admit a first integral of the form

(3) (see e.g. Romanovski and Shafer (2009) for more details).

Thus, there remains to prove integrability of systems from the components Vc
2
, Vc

5
and Vc

7
.

Systems from the component Vc
2
, have the form

ẋ = −y + a02y2, ẏ = x + b20x2 + b11xy + b11b20x2y. (11)

Computing we obtain that system (11) admits the Darboux polynomial f = 1 + b11y with the

cofactor K = b11x(1 + b20x). Thus, the function µ = 1
f

is a Darboux integrating factor of (11),

which allows to construct the analytic first integral

Ψ =
1

3
(
3b11y(2(a02 + b11) − a02b11y) − 6(a02 + b11) log(b11y + 1)

b3
11

+ x2(2b20x+3)) = x2+y2+ . . . .

Systems from VC

5
are the so-called reduced Kukles systems. The center problem for such

systems has been solved in Jin et al. (1990); Christopher and Lloyd (1990), so by the results of

these papers systems from VC

5
admit first integral of the form (3).

Finally, system from the component VC

7
are of the form

ẋ = −y ± ib20y2

√
6
, ẏ = x + b20x2 ± 5ib20xy

√
6
− 5b20y2

3
(12)

The system has the Darboux polynomial

f = 1 +
b2

20
x2

3
−

b2
20

y2

18
+

4b20x

3
± 1

3
i

√
2

3
b2

20xy ± i

√
2

3
b20y

with the cofactor K = ± 1
3
ib20(

√
6x + 4iy) which allows to construct the integrating factor µ =

f −5/2.

Remark. In the statement of theorem the ideals are presented as returned by the routine

minAssGTZ of Singular. However looking for Gröbner bases of I5 with different ordering of

variables we find that the ideal I5 is the same as the ideal

Î5 = 〈b3
02 + b2

02b20 − 2b02b12 − b12b20,−b02b11 − b11b20 + b21, b
2
02 + b02b20 + b30〉. (13)

It is easy to see that the conditions defined by these polynomials are equivalent to conditions (iv)

of Theorem 3.6 of Christopher and Lloyd (1990).

4. Limit cycle bifurcations in system (5)

In this section we study bifurcations of limit cycles from each component of the real center

variety of system (5) under perturbations inside the family. It is obvious that VC

7
is the empty set

in R7. So the real variety VR of (5) consist of 6 components, VR = ∪6
k=1

Vk, where Vk is the set

VC

k
of Theorem 1 restricted to R7.
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Let I = 〈 f1, . . . , fm〉 ⊂ k[x1, . . . , xn] be an ideal and V(I) be its variety, Assume that a de-

composition of V = V(I) is known and let p be a point from V . The tangent space to V at p is

defined as Tp = p +
{
v|Jp(I)v = 0

}
, where J(I) is the Jacobian of the polynomials f1, . . . , fm and

Jp indicates that it is evaluated at p. It follows that dim Tp = n− rank(Jp(I)). It is said that p is a

smooth point of V if dim Tp = dim Vp. Let C be a component of V of codimension k and assume

that p ∈ C, rank(Jp(I)) = s. Then k ≥ s and p is a smooth point C if and only if k = s; in this

case rank(Jq(I)) = k at any smooth point of C.

The following statement is proved by Christopher (2005).

Theorem 2. Assume that for system (2) p ∈ K is a point on the center variety and that the first

k of the focus quantities gi have independent linear parts. Then p lies on a component of the

center variety of codimension at least k and there are bifurcations of (2) which produce k limit

cycles locally from the center corresponding to the parameter value p.

If, furthermore, we know that p lies on a component of the center variety of codimension k,

then p is a smooth point of the variety, and the cyclicity of the center for the parameter value p

is exactly k − 1.

In the latter case, k− 1 is also the cyclicity of a generic point on this component of the center

variety.

According to the theorem in some cases the cyclicity of generic point of a component of the

center variety can be easily determined if we know the dimension of the components of center

variety. The dimension of a complex variety can be computed using algorithms of computational

algebra, since it is equal to the degree of the affine Hilbert polynomial of any ideal defining the

variety. However determining dimensions of real varieties is more difficult problem. Neverthe-

less, it is not difficult to determine the dimension of the components of the center variety of real

system (2) and to prove the following result.

Theorem 3. The cyclicities of generic point of the components V1,V2,V4,V5,V6 of system (5)

are 2,3, 2, 3, 3 respectively. The cyclicity of generic point of V3 is at least 2.

Proof. It is clear that the codimension of the component V1 is 3. Computing the minors of the

matrix J(g1, g2, g3) evaluated on V1 we see that for any point of p ∈ V1 there is a non-zero

3-minor if f (p) , 0, where

f = −140a6
02

b12+61a4
02

b2
11

b12+9a3
02

b3
11

b12−2a2
02

b4
11

b12−36a4
02

b2
12
+9a2

02
b2

11
b2

12
+600a5

02
b11b30+

450a4
02

b2
11

b30 + 45a3
02

b3
11

b30 − 15a2
02

b4
11

b30 − 100a4
02

b12b30 + 64a3
02

b11b12b30 + 37a2
02

b2
11

b12b30 +

11a02b3
11

b12b30 + 12a02b11b2
12

b30 − 6b2
11

b2
12

b30 + 750a3
02

b11b2
30
+ 240a2

02
b2

11
b2

30
− 15a02b3

11
b2

30
−

90a02b11b12b2
30
+ 18b2

11
b12b2

30
+ 210a02b11b3

30
..

Therefore, by Theorem 2 the cyclicity of a generic point of V1 is two (more precisely, the

cyclicity of point p ∈ V1 is two if f (p) , 0).

Similar consideration and conclusion are valid for the component V4.

It is also obvious that the codimensions of the components V2 and V6 is 4 and the com-

putations show that the rank of J(g1, . . . , g4) at a generic point of the component is 4, so by

Christopher’s theorem the cyclicity of generic point of the component is 3.

To find dimensions of components V3 and V5 we look for their parametrizations. The com-

ponent V5 can be parametrized as follows:

a02 = 0, b20 = −
t2
(
t2
2
− 2t3

)

t2
2
− t3

, b30 = −
t2
2
t3

t2
2
− t3

, b11 = t1, b21 =
t1t2t3

t2
2
− t3

, b02 = t2, b12 = t3. (14)

7



To check this we eliminate from the ideal

〈1−w(t2
2 − t3), a02, b20 +

t2
(
t2
2
− 2t3

)

t2
2
− t3

, b30 +
t2
2
t3

t2
2
− t3

, b11 − t1, b21 −
t1t2t3

t2
2
− t3

, b02 − t2, b12 − t3〉

of the ring R[w, t1, t2, t3, a02, b20, b30, b11, b21, b12, b02] the variables w, t1, t2, t3 obtaining the ideal

I5 from the statement of Theorem 1. By Theorem 2 of (Cox et al., 1997, §3.3) it means that

(14) gives a rational parametrization of the variety V(I5). Now it is easy to conclude that the

dimension of the component is 3 and, hence, the codimension is 4. Checking that the rank

of J(g1, . . . , g4) is four almost everywhere on V5 we obtain by Theorem 2 that the cyclicity of

generic point of the component is 3.

A parametrization of V3 is given by

a02 = −
t1
(
t2
1
+ 4t2

2

)

2(t1 − 2t2)(t1 + 2t2)
, b20 =

2t2
1
t2

4t2
2
− t2

1

, b30 = 0, b11 = t1, b21 = 0, b02 = t2, b12 = 0.

From the parametrization we see that the component is two-dimensional, thus, it is of codimen-

sion five. However only first three focus quantities have independent linear parts, so we cannot

get an upper bound for cyclicity using Theorem 2 and only conclude that the cyclicity is at least

two.

Remark. Of course, it is often happens that there many parametrizations of the same variety.

Another parametrization of V5 can be easily obtained using the polynomial basis of I5 presented

in (13).
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