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BIRTH OF ISOLATED NESTED CYLINDERS AND LIMIT

CYCLES IN 3D PIECEWISE SMOOTH VECTOR FIELDS

WITH SYMMETRY

TIAGO CARVALHO1 AND BRUNO RODRIGUES DE FREITAS2

Abstract. Our start point is a 3D piecewise smooth vector field de-
fined in two zones and presenting a shared fold curve for the two smooth
vector fields considered. Moreover, these smooth vector fields are sym-
metric relative to the fold curve, giving raise to a continuum of nested
topological cylinders such that each orthogonal section of these cylinders
is filled by centers. First we prove that the normal form considered rep-
resents a whole class of piecewise smooth vector fields. After we perturb
the initial model in order to obtain exactly L invariant planes containing
centers. A second perturbation of the initial model also is considered
in order to obtain exactly k isolated cylinders filled by periodic orbits.
Finally, joining the two previous bifurcations we are able to exhibit a
model, preserving the symmetry relative to the fold curve, and having
exactly k.L limit cycles.

1. Introduction

Vector fields tangent to foliations, Hamiltonian systems and first integrals
of vector fields are correlated themes very exploit in the literature about
Dynamical Systems. In fact the list of papers on these subjects is extremely
large and we cite just the books [1, 7, 31, 38] for a brief notion on these
issues.

Many authors have used the theoretical aspects about vector fields tan-
gent to foliations, Hamiltonian systems and first integrals of vector fields in
order to obtain dynamical properties of models describing some system in
applied science. A far from exhaustive list of books in this sense is given by
[3, 13, 24].

In recent years, scientists are realizing the importance and applicability
of a new branch of dynamical systems that are powerful tools in phenomena
where some “on-off” phenomena take place. For example, in control theory
(see [34]), mechanics models (see [4, 17, 30]), electrical circuits (see [27]),
relay systems (see [16, 25]), biological models (with refuge see [28], foraging
predators see [33]), among others where an instantaneous change on the
system is observed when any barrier is broken. These dynamical systems
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are modeled by “pieces” and are called piecewise smooth vector fields

(PSVFs for short).
Many authors have contributed to provide a general and consistent theory

about PSVFs. We cite here the works [15, 35] where a non familiar reader
can found the main definitions, conventions and results on this theory. How-
ever, very little have been studied about PSVFs tangent to (piecewise) fo-
liations, Hamiltonian PSVFs and first integrals of PSVFs. Addressing this
topic we cite [8, 26, 32].

The present paper deals precisely with PSVFs tangent to piecewise foli-
ations. We found first integrals for them and perform bifurcations on the
unstable PSVFs obtained. In fact, a very rich behavior is observed and,
which it is very important, an almost fully exploit study area is brought to
the surface.

1.1. Setting the problem and statement of the main results. Let Σ
be a codimension one 3D manifold given by Σ = f−1(0), where f : R3 → R

is a smooth function having 0 ∈ R as a regular value (i.e. ∇f(p) 6= 0, for
any p ∈ f−1(0)). We call Σ the switching manifold that is the separating
boundary of the regions Σ+ = {q ∈ R

3 | f(q) ≥ 0} and Σ− = {q ∈ R
3 | f(q) ≤

0}.
Take X : Σ+ → R

3 (resp., Y : Σ− → R
3) smooth vector fields. We

combine them in order to constitute the PSVF Z : R3 → R
3 given by

Z(x, y, z) =

{
X(x, y, z), for (x, y, z) ∈ Σ+,
Y (x, y, z), for (x, y, z) ∈ Σ−.

The trajectories of Z are solutions of q̇ = Z(q) and we will accept that Z
is multi-valued in points of Σ. The basic results of differential equations, in
this context, were stated in [20]. We use the notation Z = (X,Y ).

Given p ∈ Σ, throughout this paper we do not consider the situation where
both vector fields X and Y have trajectories arriving (resp. departing) from
p transversally. In these cases p is called in the literature as a sliding (resp.
escaping) point. So, here we assume that when an X-trajectory reaches
p ∈ Σ transversally, then there is a Y -trajectory starting at p and transversal
to Σ, i.e., generically, just crossing points will be considered.

In fact, the initial model that we consider is

(1) Z0(x, y, z) =





X0(x, y, z) =




0
−1
2y


 if z ≥ 0,

Y0(x, y, z) =




0
1
2y


 if z ≤ 0.

The phase portrait of (1) is given in Figure 1.
It is patent the symmetry of the trajectories obtained from (1). Moreover,

we get that H1(x, y, z) = x and H2(x, y, z) = z + y2 (resp., L1(x, y, z) = x
and L2(x, y, z) = z − y2) are independent first integrals of X0 (resp., Y0).
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Figure 1. Topological cylinders.

The orbits of X0 are contained in the sets {H1 = c1} ∩ {H2 = c2} ∩ {z ≥ 0}
and the orbits of Y0 are contained in the sets {L1 = c3}∩{L2 = c4}∩{z ≤ 0},
with c1, c2, c3, c4 ∈ R.

So, a pair of piecewise first integrals of (1) is

M1(x, y, z) = x and M2(x, y, z) =

{
H2(x, y, z) if z ≥ 0,
L2(x, y, z) if z ≤ 0.

Of course, the trajectories of X0 (resp., Y0) leave at the intersection of the
transversal (in fact, orthogonal) foliations H1 and H2 (resp., L1 and L2) and
X0 (resp. Y0) is a vector field tangent to both foliations. As consequence, the
PSVF Z0 = (X0, Y0) is tangent to the foliationM1 and the piecewise foliation
M2. Moreover, all orbits of Z0 are closed and topologically equivalent to S1.

We stress that, in general (where we admit sliding and escaping motion
on Σ), is false the natural aim: The piecewise smooth mapping H = h+l

2
+

sign(z)h−l
2

is a first integral of the vector field Z = (X,Y ) provided that h
and l are smooth first integrals of X and Y respectively. See [8] for examples.

Also observe that Z0 is such that Z0(x, y, z) = −Z0(−x,−y,−z) and so,
it is ϕ-reversible, where ϕ(x, y, z) = (−x,−y,−z).

Another important definition is the concept of equivalence between two
PSVFs.

Definition 1. Two PSVFs Z = (X,Y ), Z̃ = (X̃, Ỹ ) ∈ Ω, where Ω be the
set of all PSVF endowed with the Cr product topology, defined in open sets

U, Ũ and with switching manifold Σ are Σ-equivalent if there exists an

orientation preserving homeomorphism h : U → Ũ that sends U ∩ Σ to

Ũ ∩ Σ, the orbits of X restricted to U ∩ Σ+ to the orbits of X̃ restricted to

Ũ ∩Σ+, and the orbits of Y restricted to U ∩Σ− to the orbits of Ỹ restricted

to Ũ ∩ Σ−.

Now we state the main results of the paper.

Proposition 2. Let Z = (X,Y ) be a PSVF defined in a compact M pre-
senting a continuous of topological cylinders filled by periodic orbits, then Z
is Σ-equivalent to Z0 given by (1).
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Theorem A. Let Z0 be given by (1). For any neighborhood W ⊂ Ω of

Z0 and for any integer L > 0, there exists Z̃ ∈ W such that Z̃ has L Z0-
invariant planes. Moreover, in each plane there is a center of Z0.

Theorem B. Let Z0 be given by (1). For any neighborhood W ⊂ Ω of Z0

and for any integer k > 0, there exists Z̃ ∈ W such that Z̃ has k isolated
invariant topological cylinders filled by periodic orbits. The same holds if
k = ∞.

Theorem C. Let Z0 be given by (1). For any neighborhood W ⊂ Ω of Z0

and for any integers L > 0 and k > 0, there exists Z̃ ∈ W such that Z̃
has L.k hyperbolic limit cycles. The same holds if k = ∞. Moreover, the
stability of each limit cycle is obtained. See Figure 2.

Figure 2. The trajectories according to Theorem C.

Moreover, in the previous theorems, we explicitly build families of PSVFs
presenting the quoted properties.

The paper is organized as follows. In Section 2 we introduce the termi-
nology, some definitions and the basic theory about PSVFs. Sections 3, 4,
5 and 6 are devoted to prove Proposition 2, Theorem A, Theorem B and
Theorem C, respectively.

2. Preliminaries

Definition 3. Consider Z ∈ Ω. We say that q ∈ Σ is a Σ-center of Z if
q ∈ Σ and there is a codimension one manifold S such that Σ∩| S and there is
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a neighborhood U ⊂ R
3 of q where U ∩ S is filled by a one-parameter family

γs of closed orbits of Z in such a way that the orientation is preserved.

Consider the notation X.f(p) = 〈∇f(p),X(p)〉 and, for i ≥ 2, Xi.f(p) =〈
∇Xi−1.f(p),X(p)

〉
, where 〈., .〉 is the usual inner product in R

3. We say

that a point p ∈ Σ is a Σ-fold point of X if X.f(p) = 0 but X2.f(p) 6= 0.
Moreover, p ∈ Σ is a visible (respectively invisible) Σ-fold point of X if
X.f(p) = 0 and X2.f(p) > 0 (respectively X2.f(p) < 0). We say that p ∈ Σ
is a two-fold singularity of Z if p is a Σ-fold point for both X and Y . In
this work, we consider only two-fold singularities of type invisible-invisible,
ie, the fold points are invisible for both, X and Y .

Remark 1. Since f(x, y, z) = z, we conclude from (1) that L = {(x, 0, 0) |x ∈
R} ⊂ Σ is the curve of invisible fold singularities of both X0 and Y0.

Consider the case when the PSVF Z = (X,Y ) has q as two-fold singu-
larity. We can define the positive half-return map as ϕX(ρ) = ρ+, and the
negative half-return map as ϕY (ρ

+) = ρ− (see Figure 3). The complete
return map associated to Z is given by the composition of these two maps

(2) ϕZ(ρ) = ϕY (ϕX (ρ)).

q ρρ+ ρ−

Σ

Figure 3. Return map of Z = (X,Y ).

Proposition 4. The PSVF Z0 = (X0, Y0) given by (1) has a continuous
of topological cylinders and, in each cylinder, all orbits are periodic (see
Figure 1). Moreover, in each plane πM = {(x, y, z) |x = M}, there is a
Σ-center.

Proof. For a direct integration, the trajectories ofX0 and Y0 are parametrized
by

(3) φX0
(t) = (x0,−t+ y0,−t2 + 2ty0)

and

(4) φY0
(t) = (x1, t+ y1, t

2 + 2ty1),
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respectively. Note that φX0
(0) = (x0, y0, 0) and φY0

(0) = (x1, y1, 0). Thus
the positive half-return map is ϕX0

(x, y) = (x,−y). Analogously, the nega-
tive half-return map is ϕY0

(x, y) = (x,−y). Therefore, the complete return
map associated to Z0 is given by

ϕZ0
(x, y) = ϕY0

(ϕX0
(x, y)) = (x, y).

�

Note that by Proposition 4, we get ϕZ0
(x, y) = (ϕ1

Z0
(x), ϕ2

Z0
(y)), where

ϕ1
Z0
(x) = x and ϕ2

Z0
(y) = y. In order to obtain isolated Z0-invariant planes

we perturb the map ϕ1
Z0
(x) (see Theorem A), and in order to obtain isolated

Z0-topological cylinders we perturb the map ϕ2
Z0
(y) (see Theorem B). When

we perturb both we are able to obtain hyperbolic limit cycles (see Theorem
C).

Remark 2.

• In this work we decide consider only perturbations of (1) that keep
the straight line L = {(x, y, z) ∈ R

3; y = z = 0} as a two-fold
singularity. This assumption is important because in this case the
return map is always well defined.

• In this sense the return map of all trajectories considered in this
paper is given by the composition of two involutions (see [37]).

3. Proof of Proposition 2

In this section we construct homeomorphism that sends orbits of Z =
(X,Y ), that has a continuous of topological cylinders filled by periodic or-
bits, to orbits of Z0 = (X0, Y0) given by (1).

Without loss of generality consider that orbits of Z are oriented in an
anti-clockwise sense. Let L (respectively, L) be a set of two-fold singularity
of Z0 (respectively, Z) with length R1 > 0. By arc length parametrization
we identify L with L. By p (respectively, p), we mark the line segment Sp

(respectively, Sp) of length R2 orthogonal to Σ (see Figure 4). This segment

reaches a topological cylinder M of Z0 (respectively, M of Z) at a point p1

(respectively, p1).
In each point α ∈ L = [p, r] (respectively, α ∈ L) mark the line segment

Sα orthogonal to Σ (respectively, Sα) with final point in M (respectively,
M). Once L and L are identified, identify each Sα with Sα by arc length
parametrization.

By the Implicit Function Theorem (abbreviated by IFT), there exists
a smallest time t1 < 0 (respectively, t1 < 0), depending on p1 (respec-
tively, p1), such that φX0

(p1, t1) := q ∈ Σ(+) (respectively, φX(p1, t1) :=
q ∈ Σ(+)), where Σ(+) (respectively, Σ(+)) is the set of all points of Σ
situated on the right of L (respectively, L) and φW denotes the flow of

the vector field W . Identify the orbit arcs γp
1

q (X0) and γp
1

q (X) of X0 and
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X with initial points q and q and final points p1 and p1, respectively, by
arc length parametrization. Again by IFT, there exists a smallest time
t2 > 0 (respectively, t2 > 0), depending on p1 (respectively, p1), such that
φX0

(p1, t2) := q1 ∈ Σ(−) (respectively, φX(p1, t2) := q1 ∈ Σ(−)) where
Σ(−) (respectively, Σ(−)) is the set of all points of Σ situated on the left of

L (respectively, L). Identify the orbit arcs γq
1

p1
(X0) and γq

1

p1
(X) of X0 and

X with initial points p1 and p1 and final points q1 and q1, respectively, by
arc length parametrization.

R1

p

p

Sp

Spq

q

M

M

L

L
q1

q1

p1

p1

r

r

α

α

Figure 4. Topological cylinders.

Now, since Z0 (respectively, Z) presents a continuous of topological cylin-
ders, and L (respectively, L) is an invisible Σ-fold set Y0 (respectively, Y ) by
the IFT, there exists a smallest time t3 > 0 (respectively, t3 > 0), depend-
ing on q1 (respectively, q1), such that φY0

(q1, t3) := q ∈ Σ(+) (respectively,

φY (q
1, t3) := q ∈ Σ(+)). Identify the orbit arcs γq

q1
(Y0) and γq

q1
(Y ) of Y0

and Y with initial points q1 and q1 and final points q and q, respectively, by
arc length parametrization.

Do the same for all point β ∈ Sα (resp., β ∈ Sα), and for all α ∈ L (resp.,
α ∈ L).

4. A perturbation on the horizontal axis − Proof of Theorem

A

Now we consider a perturbation on the normal form (1) that keeps invari-
ant the nested cylinders and exactly L planes of the form πi = {(x, y, z) |x =
iµ}, where i ∈ {0, 1, 2, . . . ,L− 1} and µ > 0 is a small real number. In fact,
consider

(5) XL(x, y, z) =




x(x− µ)(x− 2µ) . . . (x− (L − 1)µ)
0
0


 =
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=




ΠL−1
i=0 (x− iµ)

0
0




and

(6) ZL(x, y, z) =





XL(x, y, z) =




λΠL−1
i=0

(x− iµ)
−1
2y


 if z ≥ 0,

Y0(x, y, z) =




0
1
2y


 if z ≤ 0,

where XL(x, y, z) = X0(x, y, z)+λXL(x, y, z), with λ a sufficiently smal real
number and X0 given in (1).

Remark 3. There is nothing special in the set {0, 1, 2, . . . ,L−1} of sequen-
tial positive integers and we could take any set of L integers in the previous
consideration.

Proposition 5. The topological cylinders obtained in Proposition 4 are ZL-
invariant.

Proof. By Remark 1, L = {(x, 0, 0) |x ∈ R} ⊂ Σ is the curve of invisible
fold singularities of both X0 and Y0.

The positive half-return map is ϕXL
(x, y) = (ϕ1

XL
(x),−y) and the neg-

ative half-return map is ϕY0
(x, y) = (x,−y). For a fixed β ∈ R, take

Lβ = {(x, β, 0) |x ∈ R} ⊂ Σ and let us saturate this straight line by the
ZL-flow. In fact, for all (x, β, 0) ∈ Lβ we get

(7) ϕZL
(x, β, 0) = ϕY0

(ϕXL
(x, β, 0)) = (ϕ1

XL
(x), β, 0) ∈ Lβ.

�

Proposition 6. The planes πi = {(x, y, z) |x = iµ}, where i ∈ {0, 1, 2, . . . ,L−
1}, are ZL-invariant.

Proof. Take i = i0 fixed. When x = i0µ we get that the first coordinate
of XL is null. As consequence, the plane πi0 is XL-invariant. The same
holds for all i ∈ {0, 1, 2, . . . ,L − 1}. On the other hand, for all c ∈ R, the
plane πc = {(x, y, z) |x = c} is Y0-invariant. Therefore, each plane πi is
ZL-invariant. �

Proposition 7. The PSVF ZL has a Σ-center in each plane πi, where
i ∈ {0, 1, 2, . . . ,L − 1}.

Proof. The proof is straighforward. Is enough to combine Propositions 5
and 6. �

Proposition 8. When i is even (resp. odd) the Σ-center πi behaves like a
unstable (resp. stable) center manifold where i ∈ {0, 1, 2, . . . ,L − 1}.
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Proof. From Proposition 6 the planes πi = {(x, y, z) |x = iµ} are ZL-
invariant. As stated in Equation 7, we get ϕZL

(x, y, 0) = (ϕ1
XL

(x), y, 0).
As consequence, the behavior of the complete return map is determined by
ϕ1
XL

(x). So, let us consider the first coordinate of XL, i.e., let us consider
the differential equation

(8) ẋ = ΠL−1
i=0

(x− iµ).

Note that each x = iµ, i ∈ {0, 1, 2, . . . ,L − 1}, is a solution of (8) and

d

dx
ΠL−1

i=0 (x− iµ)|x=iµ

is positive for i even and negative for i odd. The behavior in each solution
is given in the Figure 5.

0 µ 2µ 3µ 4µ 5µ 6µ

Figure 5. The phase portrait of (8) and the graph of

y = ΠL−1
i=0 (x− iµ).

Thus, when i is even (resp. odd) the Σ-center πi behaves like a unstable
(resp. stable) center manifold, where i ∈ {0, 1, 2, . . . ,L − 1}.

�

Proof of Theorem A. The Propositions 6, 7 and 8 prove Theorem A. �

5. A perturbation of the continuum of cylinders − Proof of

Theorem B

In order to prove Theorem B we need some lemmas. Observe that both
vector fields X0 and Y0 in the normal form (1) are written as W (x, y, z) =
(0,±1, g(y)) (particularly, g(y) = 2y in such expression). Next lemma gives
how are the trajectories of such systems.

Lemma 9. The trajectories of a vector field W (x, y, z) = (0, 1, g(y)), in each
plane πc = {(x, y, z) |x = c ; c ∈ R}, are obtained by vertical translations of
the graph of G(y), where ∂

∂yG(y) = g(y).

Proof. Since W (x, y, z) = (ẋ, ẏ, ż) = (0, 1, g(y)) ∈ χr we obtain that

x(t) = c1, y(t) = t+ c2 and z(t) =

∫
g(t+ c2)dt = G(t+ c2) + c3,

where c1, c2, c3 ∈ R and G is a primitive of g. Now, take u = t+ c2 and the
trajectories of W (x, y, z) are given by (c1, u,G(u) + c3) which in each plane
πc1 = {(x, y, z) |x = c1}, are vertical translations of the graph of G(u). �
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Observe that an analogous result is obtained withW (x, y, z) = (0,−1, g(y)).
In what follows, h : R → R will denote the C∞-function given by

h(y) =

{
0, if y ≤ 0,

e−1/y, if y > 0.

Lemma 10. Consider the function ξfε (y) = εh(y)(ε−y)(2ε−y) . . . (kε−y).

(i) If ε < 0 then ξfε does not have roots in (0,+∞).

(ii) If ε > 0 then ξfε has exactly k roots in (0,+∞), these roots are

{ε, 2ε . . . , kε} and
∂ξfε
∂y

(jε) = (−1)jεkh(jε)(k − j)!(j − 1)! for j ∈

{1, 2, . . . , k}. It means that the derivative at the root jε is positive
for j even and negative for j odd.

Proof. When y > 0, by a straightforward calculation ξfε (y) = 0 if, and only

if, (ε − y)(2ε − y) . . . (kε − y) = 0. So, the roots of ξfε (y) in (0,+∞) are
ε, 2ε, . . . , kε. Moreover,

∂ξfε
∂y

(y) =
∂

∂y

(
(jε − y)H(y)

)
= (jε − y)

∂H

∂y
(y)−H(y),

where H(y) = ξfε (y)/(jε − y). So,

∂ξfε
∂y

(jε) = −H(jε) = εkh(jε)(1 − j) . . . ((j − 1)− j)((j + 1)− j) . . . (k − j)

= εkh(jε)(−1)j
(
(j − 1) . . . (j − (j − 1))

)(
((j + 1)− j) . . . (k − j)

)

= (−1)jεkh(jε)(k − j)!(j − 1)!

This proves item (ii). Item (i) follows immediately. �

Lemma 11. Consider the function ξiε(y) = −h(y) sin(πε2/y). For ε 6= 0 the
function ξiε has infinity many roots in (0, ε2), these roots are {ε2, ε2/2, ε2/3, . . . }
and

∂ξiε
∂y

(ε2/j) = (−1)j+1(−πj2/ε2)h(ε2/j) for j ∈ {1, 2, 3, . . . }.

It means that the derivative at the root ε2/j is positive for j even and negative
for j odd.

Proof. When y > 0, by a straightforward calculation ξiε(y) = 0 if, and only
if, sin(πε2/y) = 0. So, the roots of ξiε(y) in (0, ε2) are ε2, ε2/2, ε2/3, . . . .
Moreover,

∂ξiε
∂y

(y) = −h′(y) sin(πε2/y)− h(y) cos(πε2/y)(−πε2/y2).

So,

∂ξiε
∂y

(ε2/j) = −h′(ε2/j) sin(πj)− h(ε2/j) cos(πj)(−πj2/ε2)

= (−1)j+1(−πj2/ε2)h(ε2/j).
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�

Since h is a C∞-function, the functions ξfε (y) in Lemma 10 and ξiε(y) in
Lemma 11 are C∞-functions. So Zρ

ε ∈ Ω given by

(9) Zρ
ε (x, y, z) =





X0(x, y, z) =




0
−1
2y


 if z ≥ 0,

Y ρ
ε (x, y, z) =




0
1

2y + ∂ξρε
∂y (y)


 if z ≤ 0,

where either ρ = f or ρ = i, is a small C∞-perturbation of Z0 given by (1)
when ε is sufficiently small. Moreover,

(10) lim
ε→0

Zρ
ε = Z0.

Lemma 12. Let ϕZρ
ε
(x, y) = (ϕ1

Zρ
ε
(x), ϕ2

Zρ
ε
(y)) be the return map of Zρ

ε

where either ρ = f or ρ = i. For all y > 0 we have that

y2 − (ϕ2

Zρ
ε
(y))2 − ξρε (ϕ

2

Zρ
ε
(y)) = 0.

Proof. Let (x0, y0, 0) ∈ Σ. According to Lemma 9, in each plane πx0
=

{(x, y, z) |x = x0}, the trajectories of X0 are the graphs of Fc(y) = −y2 + c
for c ∈ R. The constant c ∈ R that satisfy Fc(y0) = 0 is c = y20. The
parabola z = −y2 + y20 in the plane πx0

intersects the plane z = 0 at the
points (x0, y0, 0) and (x0,−y0, 0). So, ϕX0

(x0, y0) = (x0,−y0) and thus
ϕ2
X0

(y0) = −y0. Again by Lemma 9, in each plane πx0
, the trajectories of

Y ρ
ε are the graphs of Gc(y) = y2 + ξρε (y) + c for c ∈ R. The constant c ∈ R

that satisfy Gc(−y0) = 0 is c = −y20. So, in the plane πx0
, the first return

ϕ2

Y ρ
ε
(−y0) is the first coordinate of the point in Σ given by the intersection

of the graph of the function z = G(y) = y2+ξρε (y)−y20 with the plane z = 0.
So ϕ2

Zρ
ε
(y) satisfies

(11) y2 − (ϕ2

Zρ
ε
(y))2 − ξρε (ϕ

2

Zρ
ε
(y)) = 0,

where either ρ = f or ρ = i. �

Lemma 13. Let ϕ2

Zf
ε

be the second component of return map of Zf
ε . Then

y > 0 is a fixed point of ϕ2

Zf
ε

if, and only if, y = jε for j = 1, 2, . . . , k.

Moreover, for j even (ϕ2

Zf
ε

)′(jε) < 1 and for j odd (ϕ2

Zf
ε

)′(jε) > 1.

Proof. According to Lemma 12, y = ϕ2

Zf
ε

(y) if, and only if, ϕ2

Zf
ε

(y) is a

zero of the function ξfε (y), i.e., by Lemma 10, y = jε for j = 1, 2, . . . , k.
Differentiating (11) with respect to y we obtain 2y − 2ϕ2

Zf
ε

(y)(ϕ2

Zf
ε

)′(y) −



12 T. CARVALHO AND B.R. FREITAS

∂ξfε
∂y (ϕ

2

Zf
ε

(y))(ϕ2

Zf
ε

)′(y) = 0, and so

(ϕ2

Zf
ε
)′(jε) =

2jε

2jε + ∂ξfε
∂y (jε)

.

According to Lemma 10, if j is even then ∂ξfε
∂y (jε) > 0 and it implies that

(ϕ
Zf
ε
)′(jε) < 1. And if j is odd then (ϕ

Zf
ε
)′(jε) > 1. �

Remark 4. A similar result obtained in Lemma 13, for the PSVF Zi
ε, also

holds.

With the previous lemmas we can stated the following proposition.

Proposition 14. Consider Zρ
ε given by (9). Then, for ε = 0, Zρ

ε = Z0

given by (1) has a continuous of topological cylinders and

(I) For ρ = f

(I.i) Zf
ε has k isolated topological cylinders when ε > 0,

(I.ii) The topological cylinder passing through y = jε, z = 0 is attrac-
tor (respectively, repeller) if j is even (respectively, odd), with
j ∈ {1, 2, . . . k}.

(II) For ρ = i
(II.i) Zi

ε has infinitely many isolated topological cylinders when ε 6= 0,
(II.ii) The invariant cylinder passing through y = ε2/j, z = 0 is at-

tractor (respectively, repeller) if j is even (respectively, odd).

Proof. According to Lemma 12, y = ϕ2

Zρ
ε
(y) if, and only if, ϕ2

Zρ
ε
(y) is a zero

of the function ξρε (y).
Therefore when ρ = f , by Lemma 10, the fixed points of ϕ2

Zf
ε

are given by

y = jε for j = 1, 2, . . . , k. Since an isolated fixed point of ϕ2

Zf
ε

corresponds to

a hyperbolic invariant cylinder of Zf
ε , items (I.i) and (I.ii) follow immediately

from Lemma 10 (item (ii)), and Lemma 13.
On other hand when ρ = i, by Lemma 11, the fixed points of ϕ2

Zi
ε
are

given by y = ε2/j for j = 1, 2, 3, . . . . Since an isolated fixed point of ϕ2
Zi
ε

corresponds to a hyperbolic invariant cylinder of Zi
ε, items (II.i) and (II.ii)

follow immediately from Lemma 11 and Remark 4. �

Finally, we can prove Theorem B.

Proof of Theorem B. Let W ⊂ Ω be an arbitrary neighborhood of Z0. Ac-
cording to (10), for ε > 0 sufficiently small we have that Zρ

ε ∈ W. The

conclusion of the proof follows from Proposition 14 just taking Z̃ = Zρ
ε . �
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6. Combining the two previous perturbations − Proof of

Theorem C

Now we combine the perturbations (6) and (9) of the normal form (1)
given in the two previous sections in order to obtain Theorem C. In fact, it
gives rise to the following PSVF

(12) ZkL(x, y, z) =





XL(x, y, z) =




ΠL−1
i=0 (x− iµ)

−1
2y


 if z ≥ 0,

Yk(x, y, z) =




0
1

2y + ∂ξρε
∂y (y)


 if z ≤ 0.

where i ∈ {0, 1, 2, . . . ,L − 1}, either ρ = f or ρ = i, ξρε is given in the
previous section and µ, ε ∈ R are small numbers.

Proof of Theorem C. First of all note that the two perturbations considered
are uncoupled.

Theorem A ensures the existence of exactly L ZkL-invariant planes πi.
Moreover, the Proposition 8 guarantees that these planes are repellers (resp.,
attractors) for i even (resp., odd).

Theorem B ensures the existence of exactly k ZkL-invariant topological
cylinders. Moreover, items I.ii and II.ii of Proposition 14 guarantees that
these nested cylinders are repellers (resp., attractors) for j odd (resp., even),
where j = 1, 2, . . . , k.

The intersection of the L planes of Theorem A and the k cylinders of
Theorem B, gives rise to the born of k.L limit cycles. Moreover, Propositions
8 and 14 ensures that these limit cycles are hyperbolic.

The stability of the limit cycle living at the intersection of the plane πi
with the cylinder j is of attractor kind when i is odd and j is even, of repeller
kind when i is even and j is odd and of saddle kind otherwise. �
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