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Abstract

We study the existence of limit cycles in planar piecewise linear Hamilto-

nian systems with three zones without equilibrium points. In this scenario,

we have shown that such systems have at most one crossing limit cycle.
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1 Introduction and statement of the main re-

sults

The study of piecewise smooth vector fields, especially the planar case, has

grown over the last thirty years mainly due to its great applicability as a

mathematical model of a series of applied phenomena in relay systems, me-

chanics, electrical circuits, among others. As a landmark for such studies, we

cited the book of Andronov et al. [1], and more recently Filippov’s book [5]

and the book of di Bernardo et al. [2].

Many of the studies developed so far consider piecewise smooth vector

fields with two zones and few studies are found with more zones. A piecewise

smooth vector field with three zones in the plane is composed of three Cr

vector fields X , Y and Z, r ≥ 1, defined on R2 and separated by a pair

of disjoint connected unbounded smooth curves Σ1 and Σ2. The separation

curves Σi are obtained by considering Σi = h−1
i (0), where hi : R2 −→ R

are differentiable functions having 0 as a regular value, for i = 1, 2. Thus

R2 = R1∪R2∪R3∪Σ1∪Σ2, where the zones Ri, i = 1, 2, 3, are unbounded

disjoint regions defined on the complement of the separation curves. So, a

piecewise smooth vector field with three zones in the plane can be written as

W (x, y) =





X(x, y), h1(x, y) ≤ 0,

Y (x, y), h1(x, y) ≥ 0 and h2(x, y) ≤ 0,

Z(x, y), h2(x, y) ≥ 0.

(1)

System (1) will be denoted by W = (X, Y, Z,Σ1,Σ2), or simply by W =

(X, Y, Z) when the separation curves Σ1 and Σ2 are well understood.

We will use the vector field X and the separation curve Σ1 in the next

definitions. However, they can be easily adapted to the vector fields Y and

Z and the separation curve Σ2.

The contact between the smooth vector field X and the separation curve

Σ1 is characterized by the derivative of h1 in the direction of the vector field

X , that is, by the expression Xh1(p) = 〈∇h1(p), X(p)〉, where 〈·, ·〉 is the
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usual inner product in R2. Some important subsets of Σ1 are the following

ones (the same for Σ2):

(a) Crossing set: Σc
1 = {p ∈ Σ1 |Xh1(p) · Y h1(p) > 0};

(b) Sliding set: Σs
1 = {p ∈ Σ1 |Xh1(p) < 0, Y h1(p) > 0};

(c) Escaping set: Σe
1 = {p ∈ Σ1 |Xh1(p) > 0, Y h1(p) < 0}.

When p ∈ Σ1 and Xh1(p) = 0 we say that p is a tangential singularity

of X . A tangential singularity is called a fold point of X if Xh1(p) = 0

but X2h1(p) 6= 0, where X2h1(p) = 〈∇Xh1(p), X(p)〉. Moreover, p ∈ Σ1 is a

visible (invisible, respectively) fold point ofX ifXh1(p) = 0 andX2h1(p) > 0

(X2h1(p) < 0, respectively).

In order to define a trajectory of a piecewise smooth vector field with three

zones in the plane passing through a crossing point p ∈ Σ1, it is enough

to concatenate the trajectories of X and Y by p. However, in the sliding

and escaping sets we need to define an auxiliary vector field and use the

Filippov’s convention (see [5]). We say that an equilibrium point p of X is

real if h1(p) < 0 and it is virtual if h1(p) > 0.

A piecewise smooth vector field with three zones in the plane W =

(X, Y, Z,Σ1,Σ2) is called continuous if

X(p) = Y (p), ∀p ∈ Σ1 and Y (q) = Z(q), ∀q ∈ Σ2.

Otherwise, it is called discontinuous.

Without being exhaustive we present some results relative to the study

of piecewise smooth systems with three zones in the plane. A beautiful and

simple example can be found in the introductory chapter of the book [4]

where the authors studied the problem of a particle under the gravity law

rolling in an inclined plane followed by a horizontal displacement and next

moving in another inclined plane. This problem is modeled by a piecewise

linear system with three zones in the plane with a continuous of equilibria.
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In fact, as far as we know, the studies found in the pertinent literature deal

with piecewise smooth systems with three zones in the plane with at least

one equilibrium point which can be real or virtual. This is the case, for

instance, in the studies carried out in [3], [6], [7], [8], [9], [10]. We emphasize

that in these articles the authors studied the existence and the number of

limit cycles under the hypothesis of the continuity of the vector fields in the

separation curves which are straight lines.

In this article we are mainly interested in the study of the existence

and the number of crossing limit cycles of a piecewise smooth vector field

with three zones in the plane W = (X, Y, Z,Σ1,Σ2) under the following

assumptions:

H1. The separation curves Σ1 and Σ2 are straight lines.

H2. The vector fields X , Y and Z are linear.

H3. The vector fields X , Y and Z are Hamiltonian.

H4. The vector fields X , Y and Z have no equilibrium points, neither real

nor virtual.

We emphasize that when the vector fields X , Y and Z are Hamiltonian

the solution curves of the respective differential equations are contained in the

level sets of the Hamiltonian functions. This greatly simplifies the analysis

of the transitions maps in and between the separation curves by seeking for

points in Σi that are on the same level curves of these Hamiltonian functions.

In this case, we avoid working with transition times.

We can state the main results of this article.

Theorem 1. Continuous planar piecewise linear Hamiltonian systems with

three zones separated by two straight lines and without equilibrium points,

neither real nor virtual, have no crossing limit cycles.
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Theorem 2. Discontinuous planar piecewise linear Hamiltonian systems

with three zones separated by two straight lines and without equilibrium points,

neither real nor virtual, have at most one crossing limit cycle.

The article is organized as follows. In section 2 are presented the proofs

of Theorems 1 and 2. Examples of discontinuous planar piecewise linear

Hamiltonian systems with three zones separated by two straight lines and

without equilibrium points, neither real nor virtual, are analyzed in section

3. In particular, we give an example of a discontinuous planar piecewise

linear Hamiltonian system with three zones separated by two straight lines

and without equilibrium points, neither real nor virtual, with one crossing

limit cycle.

2 Proofs of Theorems 1 and 2

Without loss of generality, from the assumption H1, we can take h1, h2 :

R2 −→ R given by h1(x, y) = x + 1 and h2(x, y) = x − 1. Thus, the

separation lines can be written as

Σ1 = h−1
1 (0) = {(x, y) ∈ R2 : x = −1},

Σ2 = h−1
2 (0) = {(x, y) ∈ R2 : x = 1}.

These two straight lines decompose the plane into three regions: RL =

{(x, y) ∈ R2 : x < −1}, RC = {(x, y) ∈ R2 : −1 < x < 1}, RR = {(x, y) ∈
R2 : x > 1}. Thus, R2 = RL ∪RC ∪ RR ∪ Σ1 ∪ Σ2.

Taking into account the assumptions H2, H3 and H4, we can write

a piecewise linear Hamiltonian vector field with three zones and without

equilibrium points in the plane as

W (x, y) =





XL(x, y), x ≤ −1,

XC(x, y), −1 ≤ x ≤ 1,

XR(x, y), x ≥ 1,

(2)
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where

XL(x, y) =
(
−λLbLx+ bLy + γL,−λ2

LbLx+ λLbLy + δL
)
,

XC(x, y) =
(
−λCbCx+ bCy + γC,−λ2

CbCx+ λCbCy + δC
)
,

XR(x, y) =
(
−λRbRx+ bRy + γR,−λ2

RbRx+ λRbRy + δR
)
,

and δk 6= λkγk, k ∈ {L,C,R}. In fact, in order to satisfy conditions H2 and

H4 these vector fields can be written as

Xk(x, y) = (akx+ bky + γk, λkakx+ λkbky + δk) , (3)

where δk 6= λkγk, k ∈ {L,C,R}. Then in order to satisfy condition H3 the

divergence of (3) must be zero, that is ak = −λkbk.

If bk = 0 for some k ∈ {L,C,R}, then the vector field Xk has the form

Xk(x, y) = (γk, δk), with δk 6= λkγk. So the trajectories are straight lines

implying that W has no periodic orbits. Henceforth, we consider bk 6= 0, for

k ∈ {L,C,R}.
As the vector fields XL, XC and XR in (2) are linear and Hamiltonian,

there are quadratic functions Hk : R2 −→ R (Hamiltonian functions) such

that

Xk(x, y) =

(
−∂Hk

∂y
(x, y),

∂Hk

∂x
(x, y)

)
, k ∈ {L,C,R}.

By elementary calculations, we found

Hk(x, y) = −λ2
kbk
2

x2 + λkbkxy −
bk
2
y2 + δkx− γky, k ∈ {L,C,R}. (4)

From the assumption of the continuity of W expressed in Theorem 1, we

obtain

XL(−1, y) = XC(−1, y) and XC(1, y) = XR(1, y), ∀y ∈ R.

These equalities imply that

λL = λC = λR = λ, bL = bC = bR = b,

γL = γC = γR = γ, δL = δC = δR = δ.
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Therefore, from (2), a continuous piecewise linear Hamiltonian vector field

with three zones and without equilibrium points in the plane can be written

as

W (x, y) =
(
−λbx+ by + γ,−λ2bx+ λby + δ

)
, δ 6= λγ, b 6= 0. (5)

By hypothesis this vector field has no equilibrium points. So it has no periodic

orbits and, in particular, it has no limit cycles. In short, Theorem 1 is proved.

Now we will begin the proof of Theorem 2.

From (2) a piecewise linear Hamiltonian vector field with three zones and

without equilibrium points in the plane has a crossing periodic orbit if there

are crossing points (−1, y0), (−1, y3) ∈ Σ1 and crossing points (1, y1), (1, y2) ∈
Σ2 such that

HL(−1, y0) = HL(−1, y3),

HC(−1, y0) = HC(1, y1), (6)

HR(1, y1) = HR(1, y2),

HC(1, y2) = HC(−1, y3).

In fact, in this situation, if we take

αL = H−1
L ({HL(−1, y0)}) ∩RL,

αC,1 = H−1
C ({HC(−1, y0)}) ∩RC ,

αC,2 = H−1
C ({HC(−1, y3)}) ∩RC ,

αR = H−1
R ({HR(1, y1)}) ∩RR,

then

α = αR ∪ αC,1 ∪ αL ∪ αC,2

is a crossing periodic orbit of W . See Figure 1.

7



αR

αC,2

αL
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(1, y1)

(1, y2)
(−1, y3)

Σ1 Σ2
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Figure 1: A crossing periodic orbit of W : α = αR ∪ αC,1 ∪ αL ∪ αC,2.

From the above four equations in (6) and (4), we obtain

−1

2
(y0 − y3) (2bLλL + bLy0 + bLy3 + 2γL) = 0, (7)

−λCbCy0 −
1

2
bCy0

2 − 2δC − γCy0 − λCbCy1 +
1

2
bCy1

2 + γCy1 = 0, (8)

−1

2
(y1 − y2) (−2bRλR + bRy1 + bRy2 + 2γR) = 0, (9)

λCbCy2 −
1

2
bCy2

2 + 2δC − γCy2 + λCbCy3 +
1

2
bCy3

2 + γCy3 = 0. (10)

As y0 6= y3 and y1 6= y2, equation (7) can be solved for y0 as well as

equation (9) can be solved for y2. Substituting the obtained expressions of

y0 and y2 into equations (8) and (10), respectively, we get the equations of

two hyperbolas in the plane y1y3 given by

(y1 − A)2

K
− (y3 − B)2

K
= 1,

(y1 − C)2

K
− (y3 −D)2

K
= 1, (11)
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where

A = λC − γC
bC

,

B = −2
γL
bL

− 2λL + λC +
γC
bC

,

C = −2
γR
bR

+ 2λR − λC +
γC
bC

,

D = −
(
λC +

γC
bC

)
,

K = 4
δC − λCγC

bC
.

We have the following three possibilities:

Case 1. The hyperbolas do not intersect. So, the discontinuous piece-

wise linear Hamiltonian vector field with three zones and without equilibrium

points in the plane given in equation (2) has no periodic solutions. See Ex-

ample 1.

Case 2. The hyperbolas coincide. In this case, the discontinuous piece-

wise linear Hamiltonian vector field with three zones and without equilibrium

points in the plane given in equation (2) has infinitely many periodic solu-

tions. See Example 2.

Case 3. The hyperbolas intersect at two points. Thus, the discontin-

uous piecewise linear Hamiltonian vector field with three zones and without

equilibrium points in the plane given in equation (2) has only one limit cycle.

It is easy to check that the two hyperbolas (11) at most can intersect at two

points. See Example 3.

In short, under the hypotheses of Theorem 2, a discontinuous piecewise

linear Hamiltonian vector field with three zones and without equilibrium

points in the plane has at most one limit cycle. Theorem 2 is proved.
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3 Some examples

In Figures 2, 3 and 4, related to Examples 1, 2, 3, we will use the following

notations: the separation lines Σ1 and Σ2 are illustrated in dashed lines while

the sliding sets are depicted in black solid lines. Black dots are used for fold

points.

Example 1. Consider W = (XL,XC ,XR) defined by

XL(x, y) = (−x+ y + 1,−x+ y + 3) , (12)

XC(x, y) = (−x+ y + 1,−x+ y + 2) , (13)

XR(x, y) = (−2x+ y + 1,−4x+ 2y + 1) . (14)

In this case we have

bL = 1, λL = 1, γL = 1, δL = 3,

bC = 1, λC = 1, γC = 1, δC = 2,

bR = 1, λR = 2, γR = 1, δR = 1.

The Hamiltonian functions (4) are, respectively, given by

HL(x, y) = −x2

2
+ xy − y2

2
+ 3x− y,

HC(x, y) = −x2

2
+ xy − y2

2
+ 2x− y,

HR(x, y) = −2x2 + 2xy − y2

2
+ x− y.

Then, the equations of the two hyperbolas (11) are

y21
4

− (y3 + 2)2

4
= 1,

(y1 − 2)2

4
− (y3 + 2)2

4
= 1,

It is easy to show that the two hyperbolas do not intersect.

The point (−1,−2) ∈ Σ1 is an invisible fold point of XL and a visible fold

point of XC. The point (1, 0) ∈ Σ2 is an invisible fold point of XC while the

point (1, 1) ∈ Σ2 is an invisible fold point of XR. They are the endpoints of

the sliding set in Σ2. The phase portrait of W is depicted in Figure 2.
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-5

0
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10

Figure 2: Phase portrait of W defined by (12), (13) and (14).

Example 2. Considering the parameters

bL = 1, λL = 1, γL = 1, δL = 3,

bC = 1, λC = 1, γC = 1, δC = 2,

bR = 1, λR = 1, γR = 1, δR = −1,

W = (XL,XC ,XR) can be written as

XL(x, y) = (−x+ y + 1,−x+ y + 3) , (15)

XC(x, y) = (−x+ y + 1,−x+ y + 2) , (16)

XR(x, y) = (−x+ y + 1,−x+ y − 1) . (17)
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Figure 3: Phase portrait of W defined by (15), (16) and (17).

So the Hamiltonian functions (4) have the expressions

HL(x, y) = −x2

2
+ xy − y2

2
+ 3x− y,

HC(x, y) = −x2

2
+ xy − y2

2
+ 2x− y,

HR(x, y) = −x2

2
+ xy − y2

2
− x− y.

The equations of the two hyperbolas (11) are equal and given by

y21
4

− (y3 + 2)2

4
= 1.

The point (−1,−2) ∈ Σ1 is an invisible fold point of XL and a visible fold

point of XC. The point (1, 0) ∈ Σ2 is an invisible fold point of both XC and

XR. The phase portrait of W is illustrated in Figure 3.
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Example 3. From equation (2), consider W = (XL,XC ,XR) defined by

XL(x, y) = (−x+ y + 1,−x+ y + 3) , (18)

XC(x, y) = (−x+ y − 1,−x+ y + 2) , (19)

XR(x, y) = (−2x+ y + 1,−4x+ 2y − 2) . (20)

In this case we have

bL = 1, λL = 1, γL = 1, δL = 3,

bC = 1, λC = 1, γC = −1, δC = 2,

bR = 1, λR = 2, γR = 1, δR = −2.

Then the Hamiltonian functions (4) are, respectively, given by

HL(x, y) = −x2

2
+ xy − y2

2
+ 3x− y,

HC(x, y) = −x2

2
+ xy − y2

2
+ 2x+ y,

HR(x, y) = −2x2 + 2xy − y2

2
− 2x− y.

Equations (7), (8), (9) and (10) can be written as

1

2
(y0 − y3)(y0 + y3 + 4) = 0,

1

2

(
−y20 + y21 − 4y1 − 8

)
= 0,

−1

2
(y1 − y2)(y1 + y2 − 2) = 0,

1

2

(
−y22 + 4y2 + y23 + 8

)
= 0,

which imply that the equations of the two hyperbolas (11) have the form

(y1 − 2)2

12
− (y3 + 4)2

12
= 1,

y21
12

− y23
12

= 1.

As y0 6= y3 and y1 6= y2, the real symmetric solutions of the above system are

y0 = −2−
√
5, y1 = 1− 2

√
5, y2 = 1 + 2

√
5, y3 = −2 +

√
5,

13



y0 = −2 +
√
5, y1 = 1 + 2

√
5, y2 = 1− 2

√
5, y3 = −2−

√
5.

Note that both identities provide the same four points on the separation lines

Σ1 and Σ2. The points (−1, y0), (−1, y3) ∈ Σ1, and (1, y1), (1, y2) ∈ Σ2 are

crossing points because

(XL(−1, y0) · (1, 0)) (XC(−1, y0) · (1, 0)) = 2
√
5 + 5 > 0,

(XL(−1, y3) · (1, 0)) (XC(−1, y3) · (1, 0)) = 5− 2
√
5 > 0,

(XC(1, y1) · (1, 0)) (XR(1, y1) · (1, 0)) = 2
(√

5 + 10
)
> 0,

(XC(1, y2) · (1, 0)) (XR(1, y2) · (1, 0)) = 20− 2
√
5 > 0.

So the level sets of Hk containing the points

(−1,−2−
√
5), (−1,−2 +

√
5) ∈ Σ1 and (1, 1− 2

√
5), (1, 1 + 2

√
5) ∈ Σ2

form a crossing limit cycle of W = (XL,XC,XR) defined by (18), (19) and

(20), see Figure 4. This crossing limit cycle is attractor since the associated

Poincaré map can be written as

P (y0) = −
√

y02 + 4
√

y02 + 8y0 + 28 + 8y0 + 20,

and its derivative evaluated at y0 = −2−
√
5 gives

P ′(−2−
√
5) =

1

19

(
109− 48

√
5
)
,

which satisfies 0 < P ′(−2−
√
5) < 1.

The point (−1,−2) ∈ Σ1 is an invisible fold point of XL and the point

(−1, 0) ∈ Σ1 is a visible fold point of XC . They are the endpoints of the

sliding set in Σ1. The point (1, 1) ∈ Σ2 is an invisible fold point of XR

while the point (1, 2) ∈ Σ2 is an invisible fold point of XC, and they are the

endpoints of the sliding set in Σ2.
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Figure 4: Phase portrait of W defined by (18), (19) and (20) with the attracting
crossing limit cycle.
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by Fundação de Amparo à Pesquisa do Estado de Minas Gerais – FAPEMIG

[grant number APQ–01158–17]. The second author is partially supported

by the Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal

de Investigación grants MTM2016-77278-P (FEDER), the Agència de Gestió
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