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Abstract. We study the zero-Hopf bifurcation of the Rössler differential sys-

tem
ẋ = x− xy − z, ẏ = x2 − ay, ż = b(cx− z).

where the dot denotes derivative with respect to the independent variable t

and a, b, c are real parameters.

1. Introduction and statement of the main result

Rössler, using the geometry of the 3-dimensional flows, introduced several dif-
ferential systems as prototypes of the simplest autonomous differential equations
exhibiting chaos. The simplicity of his systems is in the sense of minimal dimension,
minimal number of parameters and minimal nonlinearities. Nowadays in Math-
SciNet appear more than 114 articles with the words Rössler system in the title.
In 2006 Letellier, Roulin and Rössler [2] did a classification of chaotic attractors in
R3 in their classification they go back to the differential system

(1)
ẋ = x− xy − z,
ẏ = x2 − ay,
ż = b(cx− z),

already considered by Rössler [2, 5, 6] in 1977, showing that this system exhibits
a pure cut chaos in their terminology. As usual the dot denotes derivative with
the time t. This differential system has three families of zero-Hopf equilibria. Our
objective is to study if from these equilibria it bifurcate some periodic orbits.

Our interest in system (1) is motivated due to the fact that frequently the com-
plex dynamics of some chaotic nonlinear systems started in their equilibria. More
precisely, Cândido and Llibre in [1] studied the existence of zero-Hopf bifurcations
in 3-dimensional systems, and numerically they show that such bifurcations some-
times are the starting bifurcation of a route to the chaotic motion.

Note that system (1) is invariant under the symmetry (x, y, z) → (−x, y,−z).
A zero-Hopf equilibrium is an equilibrium point of a 3-dimensional autonomous
differential system, which has a zero eigenvalue and a pair of purely imaginary
eigenvalue.

Proposition 1. There are two one-parameter families of systems (1) for which this
system has a zero-Hopf equilibrium point namely the origin when a = 0, b = 1, c =
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1+β2 with β > 0, and the two equilibria (x, y, z) = (±
√

a(1− c), 1−c,±c
√
a(1− c))

when c = a, b = 0, and (2− 3a)a > 0.

A zero-Hopf bifurcation is a two-parameter unfolding (or family) of a 3-dimensional
autonomous differential system with a zero-Hopf equilibrium. Here we are mainly
interested in the periodic solutions which can bifurcate from a zero-Hopf equilibrium
point of system (1). Our main results on the periodic solutions of the differential
system (1) are the following.

Theorem 2. Let (a, b, c) = (εa1, 1+εb1, 1+β2+εc1) where ε is a small parameter.
Then the Rössler system (1) has a zero-Hopf bifurcation at the zero-Hopf equilib-
rium point localized at the origin of coordinates, and a periodic orbit borns at this
equilibrium when ε = 0 and it exists for ε > 0 sufficiently small.

Theorem 3. Let (b, c) = (εb1, a+εc1) where ε is a sufficiently small parameter. By
using the averaging theory we cannot detect periodic orbits bifurcating from the zero-
Hopf equilibria localized at the points (x, y, z) = (±

√
a(1− c), 1−c,±c

√
−a(c− 1)).

Theorems 2 and 3 are proved in section 2 and in section 3, respectively. Their
proofs are based in the averaging theory for computing periodic orbits, see the
appendix. For others applications of the averaging theory for studying limit cycles,
see for instance [1, 3, 4].

2. Proof of proposition 1 and Theorem 2

Proof of Proposition 1. System (1) possesses the equilibrium points (0, 0, 0) and

(±
√
a(1− c), 1−c,±c

√
a(1− c)), i.e. system (1) has three equilibria if a(1−c) > 0,

two equilibria if a = 0 and c ̸= 1, and one equilibria otherwise. The Jacobian matrix
of system (1) is




1− y −x −1
2x −a 0
bc 0 −b


 .

The characteristic polynomial which correspond to the equilibrium point (0, 0, 0)
is p(λ) = −λ3 + (1 − a − b)λ2 + (a + b − ab − bc)λ − ab(c − 1). In order to study
the zero-Hopf bifurcation we impose that p(λ)=−λ(λ2 + β2) with β > 0, and we
obtain one family of zero-Hopf equilibrium points when a = 0, b = 1, c = 1 + β2.

The characteristic polynomial which correspond to the equilibria (±
√
a(1− c), 1−

c,±c
√
a(1− c)) is q(λ) = −λ3+(−a−b+c)λ2−a(2+b−3c)λ+2ab(c−1). In order

to study the zero-Hopf bifurcation we impose that q(λ)=−λ(λ2 + β2) with β > 0,

we obtain one family of zero-Hopf equilibria when c = a, b = 0 and β =
√

(2− 3a)a
if (2− 3a)a > 0. �

We shall see that from the zero-Hopf equilibrium (0, 0, 0) one periodic orbit
bifurcate in a zero-Hopf bifurcation.
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Proof of Theorem 2. If (a, b, c) = (εa1, 1+εb1, 1+β2+εc1) with ε ̸= 0 a sufficiently
small parameter, then system (1) becomes

(2)
ẋ = x− xy − z,
ẏ = x2 − εa1y,
ż = (1 + εb1)((1 + β2 + εc1)x− z).

We need to write the linear part of system (2) at the equilibrium point (0, 0, 0) in
its real Jordan normal form, i.e. into the form




0 −β 0
β 0 0
0 0 0


 .

In the new variables (X,Y, Z) defined by (x, y, z) = (X,Z,X + βY ) we obtain the
differential system

(3)

Ẋ = −βY −XZ,

Ẏ = βX +
1

β
XZ + ε

(
(βb1 +

c1
β
)X − b1Y

)
+ ε2

1

β
b1c1X,

Ż = −εa1Z +X2.

Consider the change to cylindrical coordinates (r, θ, Z) defined by X = r cos θ, Y =
r sin θ we obtain the differential system
(4)

ṙ =
1

β
(rZ cos θ(sin θ − β cos θ)) + ε

1

β
r sin θ((c1 + b1β

2) cos θ − b1β sin θ),

θ̇ =
1

2β
(2β2 + (1 + cos 2θ + β sin 2θ)Z) + ε cos θ((

c1
β

+ b1β) cos θ − b1 sin θ),

Ż = r2 cos2 θ − εa1Z.

We take θ as the new independent variable of the differential system and we get
(5)

r′ =
2

A
(2rZ cos θ(sin θ − β cos θ)) + ε

4

A2
(rβ(Z cos θ + β sin θ)(c1 + b1β

2) cos θ − b1β sin θ),

Z ′ =
1

A
2βr2 cos2 θ − ε

2

A2
β(2r2(c1 + b1β

2) cos4 θ − 2βb1 cos
3 θ sin θr2 + a1ZA),

where A = 2β2 + (1 + cos 2θ + β sin 2θ)Z.

Here the prime denotes the derivative with respect to the variable θ. Since we
want to study the zero-Hopf bifurcation we scale the variables (r, Z) with the small
parameter ε and we shall study the periodic solutions of the scaled differential
system. These periodic solutions, if they exist, will tend to the origin when ε tends
to zero and consequently there will be periodic solutions in a zero-Hopf bifurcation
at the origin. Hence by putting (r, Z) = (εR, εU), we obtain the following system.
(6)

R′ = ε
R

β2
((c1 + b1β

2 + U) cos θ sin θ − βb1 sin
2 θ − βU cos2 θ) = εF1(θ,R, U),

U ′ = ε
1

β(R2 cos2 θ − a1U)
= εF2(θ,R, U).

We shall apply the averaging theory described in the appendix to the differential
system (6). Using the notation of the appendix, we have t = θ, T = 2π, x = (R,U)T
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and

F (θ,R, U) =

(
F1(θ,R, U)
F2(θ,R, U)

)
, f(R,U) =

(
f1(R,U)
f2(R,U)

)
,

where

f1(R,U) =
1

2π

∫ 2π

0

F1(θ,R, U)dθ,

f2(R,U) =
1

2π

∫ 2π

0

F2(θ,R, U)dθ.

It is immediate to check that differential system (6) satisfies all the assumptions of
Theorem 4 of the appendix. So we will apply it to system (6). Now we compute
the integrals (15), i.e. We obtain

f1(R,U) = −R(b1 + U)

2πβ
, f2(R,U) = −R2 − 2a1U

4πβ
.

The system f1(R,U) = 0, f2(R,U) = 0 has a unique solution (R∗, U∗) with
R∗ > 0, namely (R∗, U∗) =

(√
−2a1b1,−b1

)
if a1b1 < 0. The corresponding

Jacobian (16) at (R∗, U∗) takes the value
−a1b1
β2

> 0. Theorem 4 guarantees for ε

sufficiently small the existence of a periodic solution (R(θ, ε), U(θ, ε)) of system (6)
such that (R(0, ε), U(0, ε)) −→ (R∗, U∗) when ε −→ 0. That is system (6) has the
periodic solution

(R(θ, ε), U(θ, ε)) = (R∗ +O(ε), U∗ +O(ε)).

So system (5) has a periodic solution

(r(θ, ε), Z(θ, ε)) = (εR∗ +O(ε2), εU∗ +O(ε2)),

and consequently system (4) has a periodic solution

(r(t, ε), θ(t, ε), Z(t, ε)) = (εR∗ +O(ε2), βt+O(ε), εU∗ +O(ε2)).

Therefore system (3) has a periodic solution

(X(t, ε), Y (t, ε), Z(t, ε)) = (εR∗ cos(βt) +O(ε2), εR∗ sin(βt) +O(ε2), O(ε2)).

Finally system (2) has a periodic solution

(x(t, ε), y(t, ε), z(t, ε)) = (εR∗ cos(βt)+O(ε2), O(ε2), εR∗(cos(βt)+β sin(βt)+O(ε2)).

This completes the proof of the theorem. �

3. Proof of Theorem 3

Proof of Theorem 3. Consider the second equilibrium point (x, y, z) = (−
√

a(1− c), 1−
c,−c

√
a(1− c)) with a(1− c) > 0. We assume that a(1− c) > 0 and (2− 3a)a > 0.

The corresponding second family of perturbed parameters is (b, c) = (εb1, a+ εc1).

We translate this equilibrium point to the origin (x, y, z) 7→ (x−
√

a(1− c), y+1−
c, z − c

√
a(1− c)), and we obtain the differential system

(7)
ẋ = −z + (a− y + c1ε)x+

√
a(1− a− εc1)y,

ẏ = −2
√

a(1− a− εc1)x− ay + x2,
ż = εb1(a+ εc1)x+ εb1z.
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The Jacobian matrix at the origin and for ε = 0 is




a
√

(1− a)a −1

−2
√

(1− a)a −a 0
0 0 0.


 .

Its eigenvalues are (0,±
√

(2− 3a)ai). We need to write the linear part of system
(2) at the equilibrium point (0, 0, 0) in its real Jordan normal form, i.e. into the
form




0 −
√
(2− 3a)a 0√

(2− 3a)a 0 0
0 0 0


 .

In the new variables (X,Y, Z) defined by
(8)

x = X +
Z

3a− 2
,

y =
3a2

√
2− 3aX − 4

√
aY + 12a3/2Y − 9a5/2Y + 2

√
2− 3a(aX + (1 + a)Z)

(2− 3a)3/2
√

(1− a)a
,

z = Z,

we obtain the differential system
(9)

Ẋ =
aX2

√
(1− a)a

+
2
√
1− aZ2

(2− 3a)2
√
a
+ Y

(
− Z√

(2− 3a)(1− a)
−
√
(2− 3a)a(1− a− c1ε)√

1− a

)

+X

(
a+

√
2− 3aY√
1− a

+
(2− a)Z√

(1− a)a(3a− 2)
+ εc1 −

a
√

a(1− a− c1ε)√
(1− a)a

− b1ε(a+ εc1)

3a− 2

)

+
Z

(2− 3a)2a
(4
√

(1− a)a2(1− a− εc1) + a(−6a2 − (2 + εb1)(2 + εc1)

−6
√

(1− a)a2(1− a− εc1) + a(10 + 2εb1 + 3εc1))),

Ẏ = − X2

√
(2− 3a)(1− a)

− 3
√
1− aZ2

(2− 3a)5/2
+ Y (−a+

√
aZ√

(2− 3a)(1− a)
+

√
a2(1− a− εc1)√

1− a
)

+
1

(2− 3a)3/2
√

(1− a)a
Z(−4a2

√
1− a− εb1

√
1− a(2 + εc1)− 4

√
a2(1− a− εc1)

+4
√

a4(1− a− εc1) + a
√
1− a(4 + 2εb1 + εc1)) +X

(
−

√
aY√
1− a

+
(4− 3a)Z

(2− 3a)3/2
√
1− a

+
1√

(2− 3a)(1− a)a
(−2a2

√
1− a+ εa

√
1− a(b1 − c1) + ε2b1c1

√
1− a+ 2

√
a2(1− a− εc1)

−a3/2
√

a(1− a− εc1))
)
,

Ż = ε
b1Z(2− 2a+ εc1)

3a− 2
+ εb1(a+ c1ε)X.

Consider the cylindrical coordinates (r, θ, Z) defined by X = r cos θ, Y = r sin θ
after we take θ as the new independent variable and doing the scaling (r, Z) =
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(εR, εU) we obtain the following system.

(10)

R′ = ε

√
1− a

2(2− 3a)3
√

a(1− a)

(
1

A
+

1

B

)
= εF1(θ,R, U),

U ′ = −εb1

√
1− a(2(1− a)U + a(3a− 2)R cos θ)

(2− 3a)3/2
√

a(1− a)
= εF2(θ,R, U),

where
(11)

A =
√

a(1− a)(U + (3a− 2)R cos θ)(−2(2− 3a)3/2aR cos(2θ) + 6(a− 1)
√
aU sin θ

−2 cos θ(2
√
2− 3a(a− 1)U +

√
a(9a2 − 9a+ 2)R sin θ)),

B = (a− 1)
√
a(4

√
2− 3a(a− 1)

√
a(a− 1)b1 + (3a− 2)c1)U cos θ

+(2− 3a)3/2
√
a(−4c1 + a(2(a− 1)b1 + (8− 3a)c1))R cos2 θ + (3a− 2) sin θ

(2(1− a)(2(a− 1)b1 + 3ac1)U + a(3a− 2)R(2((a− 1)b1 + c1) cos θ

+
√

a(2− 3a)c1 sin θ))).

As usual the prime denotes derivative with respect to θ. We shall apply the av-
eraging theory described in the appendix to the differential system (10). Using
the notation of the appendix, it is immediate to check that differential system (10)
satisfies all the assumptions of Theorem 4 of the appendix. So we will apply it to
system (10). Now we compute the integrals (15), and we obtain

(12)

f1(R,U) =
R(a2(b1 − 3c1) + 2ac1 − 2

√
a(1− a)U)

2a3/2(2− 3a)3/2
,

f2(R,U) =
2(a− 1)b1U√
a(2− a)3/2

.

The system f1(R,U) = 0, f2(R,U) = 0 has the unique solution (R∗, U∗) = (0, 0). In
order to go to averaging of second order, we need that a = 1, but then (2−3a)a < 0,
and this is not possible. So with the averaging theory we cannot detect periodic
orbits bifurcating from the equilibrium point (−

√
a(1− c), 1 − c,−c

√
a(1− c)).

This completes the proof of the theorem. �

Appendix:averaging theory of first order

We work with the two initial value problems

(13) ẋ = εF1(t,x) + ε2F2(t,x, ε), x(0) = x0,

and

(14) ẏ = εf(y), y(0) = x0,

with x , y and x0 in some open Ω of Rn, t ∈ [0,∞), ε ∈ (0, ε0]. Let F1 and F2 be
periodic functions of period T in the variable t, and we define

(15) f(y) =
1

T

∫ T

0

F1(t,y)dt.

Theorem 4. By hypotheses the functions F1, DxF1 ,DxxF1 and DxF2 are con-
tinuous, bounded by a constant independent of ε in [0,∞) × Ω × (0, ε0], and that
y(t) ∈ Ω for t ∈ [0, 1/ε]. Then the next statements are satisfied.
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(1) For t ∈ [0, 1/ε] it follows that x(t)− y(t) = O(ε) as ε → 0.
(2) If p ̸= 0 is an equilibrium point of system (14) and

(16) detDyf(p) ̸= 0,

then there is a periodic solution ϕ(t, ε) of period T for system (13) such
that ϕ(0, ε)− p = O(ε) as ε → 0.

The notation Dxg means the Jacobian matrix of g with respect to the compo-
nents of x, and Dxxg means the Hessian matrix of g.

For a proof of Theorem 4 see [7].
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