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Abstract

We introduce the asymmetric wedge billiard as a generalization of the wedge billiard

first introduced and studied by Lehtihet and Miller in 1986. This is a billiard system in

which the billiard ball moves under the influence of a constant gravitational field, colliding

elastically with two wedge walls with the collisions obeying the reflection law. Collision maps

are given from which derivatives and area-preservation (or lack thereof) were determined.

Expressions for the fixed points of the collision maps were also calculated and discussed.

Long-term dynamics were determined computationally from which we observed integrable,

quasi-periodic and chaotic behaviour which were all dependent on the wedge angles.

1 Introduction

A dynamical billiard system consists of a particle represented as a geometric point moving freely

within a bounded region in the plane, its collisions with the boundary of the region are elastic

and obey the reflection law.

G.D. Birkhoff [6] introduced dynamical billiards as a means to prove Poincaré’s last geometric

conjecture. Others [4, 22, 28] continued his work on convex billiards with some open questions

remaining to this day. The seminal work by Y.G. Sinai [32] introduced a new class of billiards,
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Figure 1: The (symmetric) wedge billiard.

called dispersing billiards, as an application to modelling Lorentz gas and was the first to show

that these billiard systems are chaotic. Another class of billiards, i.e., polygonal billiards, arose

naturally from the study of another mechanical system, that of two point particles moving on

a straight line between two walls. This shows the utility of dynamical billiards, as Birkhoff

himself stated that most Hamiltonian systems with two degrees of freedom could be studied by

the appropriate transform to a dynamical billiard. Standard billiard dynamics are quite rich and

numerous open problems remain.

Research has also been done on modifications of classical billiard systems. It would be natural

to consider the particle moving in the quantum realm [7, 37, 39] or moving relativistically [11,

12, 13]. Other billiard systems consider modifications to the region of motion itself, for example,

a hole or multiple holes within the region—these are the so-called “open billiards”; billiard

systems where the boundary changes in time [18, 19, 21, 24, 25, 26]; and billiard systems where

the billiard moves under the influence of a constant force field, either magnetic [3, 10, 14, 30, 38]

or gravitational [9, 20, 23].

The wedge billiard (illustrated in Figure 1) is a billiard system where the particle moves

within a constant gravitational force field, it was first studied by Lehtihet and Miller [23]. They

showed that the dynamics of the billiard was dependent on the wedge angle θ. Richter, Scholz,

and Wittek [29] classified the symmetric periodic orbits of the wedge billiard using symmetry

lines [5, 15, 27] which lead to the description of the so-called “breathing chaos”—the regular

variation between chaotic and quasi-periodic behaviour for certain parameter values of the wedge.

Szeredi [33, 34, 35, 36, 37] studied the wedge billiard in the quantum context whilst Korsch and
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Lang [20] modified the wedge billiard by changing the shape of the boundary to a parabola

and found that the dynamics are integrable. Hartl, Miller, and Mazzoleni [17] studied the

dynamics of various gravitational billiards, including the wedge billiard, with boundaries which

were driven sinusoidally. The wedge billiard has found some applications in engineering and

physics. Sepulchre and Gerard [31] applied the wedge billiard model with some modification

to stabilize an elementary impact control system which applications in robotics, whilst Choi,

Sundaram and Raizen [8] applied the wedge billiard model to the problem of single-photon

cooling.

One of the main assumptions of the wedge billiard is that the wedge is symmetric with

respect to the vertical axis as seen in Figure 1. We considered the case of the asymmetric wedge

in which no assumptions were made about the wedge angle(s). There are only two references

[23, 41] about the asymmetric wedge billiard in the literature. Lehtihet and Miller [23] mentions

the asymmetric wedge in the context of their self-gravitating system with three different mass

densities. Their assumption that lead to the wedge billiard were that the mass densities were

similar while unequal mass densities would result in an asymmetric wedge billiard. Wojtkowski

[41] studied a system of one-dimensional balls under the influence of gravity to illustrate his

principles [40] for the design of billiards with nonvanishing Lyapunov exponents. Wojtkowski

then provided a transformation between the system and the asymmetric wedge and established

that the asymmetric wedge billiard will have nonvanishing Lyapunov exponents for θ1+θ2 > π/2.

The purpose of this paper is to further the study of some of the dynamics of the asymmetric

wedge billiard.

2 Model

Consider the two planar regions defined as

Q1 =
{

(x, y) ∈ R
2 : x ≥ 0, y > x cot(θ1)

}

, (1a)

Q2 =
{

(x, y) ∈ R
2 : x < 0, y > −x cot(θ2)

}

(1b)
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Figure 2: Geometry of the asymmetric wedge billiard.

with respective boundaries defined as

∂Q1 =
{

(x, y) ∈ R
2 : x ≥ 0, y = x cot(θ1)

}

, (2a)

∂Q2 =
{

(x, y) ∈ R
2 : x < 0, y = −x cot(θ2)

}

. (2b)

Here R2 is a normed space with inner product 〈x,y〉 and induced norm ‖x‖ =
√

〈x,x〉, where

x,y ∈ R2. We define the standard basis of R2 as Bs := {e1, e2} which correspond to the hori-

zontal and vertical references axes illustrated in Figure 2. The angles θ1 and θ2 are respectively

measured clockwise and anticlockwise from the reference axis e2 to the straight lines representing

∂Q1 and ∂Q2 as illustrated in Figure 2.

We consider the motion of a point particle of mass m within a (constant) gravitational field

g within the region Q̄ := Q̄1 ∪ Q̄2, where Q̄j := Qj ∪ ∂Qj (j ∈ {1, 2}). We shall call Q̄ the

allowed region of motion for the particle. We shall refer to the set ∂Q := ∂Q1 ∪ ∂Q2 as the

asymmetric wedge; when θ1 = θ2 we shall call ∂Q the symmetric wedge. The boundaries ∂Qj,

j = {1, 2}, are referred to as wedge walls ; the line ∂Q1 (∂Q2 respectively) is called the right-hand

wall (left-hand wall respectively). The intersection of ∂Q1 and ∂Q2 is called the wedge vertex.

Respectively, let q := q(t) ∈ Q̄ be the position vector, p := p(t) ∈ R
2 be the momentum

vector (such that p
2 = 〈p,p〉 = 1), and E ∈ R

+ be the mechanical energy of the particle.

If we fix an angle φ with respect to the fixed basis vector e1, then we may rewrite p as p =
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ē(t)1ē(t)2
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Figure 3: Reference frames used in the study of the asymmetric wedge billiard.

(cos(φ), sin(φ)) ∈ S1 where S1 = {x ∈ R2 : ‖x‖ = 1}. The phase space of the particle may be

described by the set

P := Q̄ × S
1 =

{

(q,p) : q ∈ Q̄, p ∈ S
1
}

(3)

together with the projection mappings πq : P → Q̄, πp : P → S1 such that πq(x) = q and

πp(x) = p, where x = (q,p). On this phase space we may define the energy function (or

Hamilton function) H : P → R such that

H(q,p) =
p
2

2
+ U(q) (4)

where U is a scalar potential satisfying ∂U/∂q = −g. The energy function is independent of

time and hence it is constant along solution curves, therefore we may set H(q,p) = E.

By careful transformation [2] the vector components and the energy become dimensionless

quantities such that m = g = E = 1, which we shall assume throughout the rest of the article.

We shall let x and y denote the components of q with respect to e1 and e2 and, similarly, we

denote by u and w the components of p with respect to e1 and e2. We shall also make use

of a secondary reference system, as illustrated by Figure 3, with basis vectors Br = {ē1, ē2}.

Transformation between the two bases is accomplished through a rotation by the angle ϕ := ϕ(t)
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measured from e1 to the position vector q(t), i.e.







ē1

ē2






= R(ϕ)







e1

e2






, R(ϕ) :=







cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)






(5)

We denote by ū := p cos(φ − ϕ) and w̄ := p sin(φ − ϕ) the components of p with respect to the

Br basis; it follows that we may consider p ∈ S1 with angle parameter φ − ϕ in this instance.

From the transformation (5) we obtain







ū

w̄






=







cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)













u

w






(6)

which relates the components of p in the Bs and Br bases to each other. In terms of the x, y, u, w

coordinates the energy function becomes

H(x, y, u, w) =
u2 + w2

2
+ y (7)

and in the x, y, ū, w̄ coordinates the energy function becomes

H(x, y, ū, w̄) =
ū2 + w̄2

2
+ y. (8)

2.1 Collision maps

It can be shown from first principles [2] by solving the Hamilton equations of motion derived

from (4) that the particle moves along a parabolic path between collisions with the wedge walls.

Collisions are elastic due to energy conservation; these collisions obey the law of reflection, that

is, the angle of incidence equals the angle of reflection (the standard assumption for billiard

systems). We assume any other type of dissipation is completely absent from the system. We

also assume that the particle will keep moving until such time that it collides with the wedge

vertex at which point the motion will stop. Thus the time interval of the motion can either be

finite (a collision with the vertex) or infinite (no collision with the vertex at all) depending on

the initial conditions.
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Furthermore, the x and y variables are related by the straight line equations describing ∂Q1

and ∂Q2. The value of the y variable can easily be determined from (7) or (8). Hence the only

variables that need to be determined at collisions are the momentum components u, w or ū, w̄.

We keep to the convention established [23] and make use of the coordinates ū, w̄ in the Br basis.

For successive collisions on ∂Q1 we define the map FA : ∂Q1 → ∂Q1, (ūj , w̄
2
j ) 7→ (ūj+1, w̄

2
j+1)

with

ūj+1 = ūj − 2w̄j cot(θ1), w̄2
j+1 = w̄2

j . (9)

For a collision between the particle, starting from ∂Q1, with ∂Q2 we define the map FB : ∂Q1 →

∂Q2, (ūj, w̄
2
j ) 7→ (ūj+1, w̄

2
j+1) with

ūj+1 =
w̄j cos(θ1)− w̄j+1 cos(θ2)− ūj sin(θ1)

sin(θ2)
,

w̄2
j+1 =

2 sin(θ2) sin(θ1 + θ2)

cos(θ1)

(

1−
ū2
j + w̄2

j

2

)

+ (ūj sin(θ1 + θ2) + w̄j cos(θ1 + θ2))
2.

(10)

Setting θ1 = θ2 = θ in (9) and (10) and simplifying results in the maps for the symmetric wedge

billiard [23, 29].

Similarly, for successive collisions on ∂Q2 we define the map GA : ∂Q2 → ∂Q2, (ūj , w̄
2
j ) 7→

(ūj+1, w̄
2
j+1) with

ūj+1 = ūj + 2w̄j cot(θ2), w̄2
j+1 = w̄2

j . (11)

For a collision between the particle, starting from ∂Q2, with ∂Q1 we define the map GB : ∂Q2 →

∂Q1, (ūj, w̄
2
j ) 7→ (ūj+1, w̄

2
j+1) with

ūj+1 =
−w̄j cos(θ2)− w̄j+1 cos(θ1)− ūj sin(θ2)

sin(θ1)
,

w̄2
j+1 =

2 sin(θ1) sin(θ1 + θ2)

cos(θ2)

(

1−
ū2
j + w̄2

j

2

)

+ (ūj sin(θ1 + θ2) + w̄j cos(θ1 + θ2))
2.

(12)

We note that the maps (11) and (12) can be transformed into those of the symmetric wedge

billiard by setting θ1 = θ2 and taking into consideration of an appropriate substitution to factor

in the symmetry about the vertical axis. A full derivation, from first principles, of the maps

(9)-(12) found in the first author’s thesis [2].
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3 Dynamics

The choice between using FA and FB is determined from the inequality (ūj − 2w̄j cot(θ1))
2
+w̄2

j ≤

2 which may be derived from the energy equation (8). Similarly, the choice between using GA and

GB is determined from the inequality (ūj + 2w̄j cot(θ2))
2+ w̄2

j ≤ 2. Choosing between mappings

F and G is determined completely by the value of horizontal component of the particle’s position.

We now define the collision space C = ∂Q×S
1. The tuple (C, {FA, FB , GA, GB}) constitutes a

discrete dynamical system. The orbit of collisions points is determined from compositions of the

maps (9)-(12), that is, if x = (x, y, ū, w̄) ∈ C we determine, for example, Fi ◦Gj(x) or G
k
i ◦FB(x)

where i, j = {A,B} and k ∈ N. However, not all combinations of compositions correspond to

physically possible collisions. Compositions which are excluded are

GA ◦ FA, GB ◦ FA, FA ◦GA, FB ◦GA,

FA ◦ FB , GA ◦GB , FB ◦ FB, GB ◦GB.

while compositions which correspond to physically possible collisions are

FA ◦ FA, GA ◦GA, GA ◦ FB, FB ◦GB,

FB ◦ FA, GB ◦GA, FB ◦GB, GB ◦ FB .

Any number of combinations from this last collection may constitute the orbit O(x0) of some

initial point x0 ∈ C.

3.1 Derivative of the collision maps

The derivative of a map may be used to determine if the map is area-preserving or to linearize

the map in a neighbourhood of any of its fixed points [16]. In the case of the linear maps FA

and GA we have

DFA :=







1 −2 cot(θ1)

0 1






, DGA :=







1 2 cot(θ2)

0 1






(13)
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with determinants equal to unity for both these matrices. The derivative of FB is

DFB :=







∂ūj+1/∂ūj ∂ūj+1/∂w̄j

∂w̄j+1/∂ūj ∂w̄j+1/∂w̄j






(14)

where

∂w̄j+1

∂ūj

=
1

w̄j+1

[

(

− sin(θ2) sin(θ1 + θ2)

cos(θ1)
+ sin2(θ1 + θ2)

)

ūj +
w̄j sin (2(θ1 + θ2))

2

]

,

∂w̄j+1

∂w̄j

=
1

w̄j+1

[

(

− sin(θ2) sin(θ1 + θ2)

cos(θ1)
+ cos2(θ1 + θ2)

)

w̄j +
ūj sin (2(θ1 + θ2))

2

]

,

∂ ūj+1

∂ūj

= − cot(θ2)
∂w̄j+1

∂ūj

− sin(θ1)

sin(θ2)
,

∂ ūj+1

∂w̄j

= − cot(θ2)
∂w̄j+1

∂w̄j

+
cos(θ1)

sin(θ2)
.

The determinant of DFB is

det (DFB) =
w̄j cos(θ2)

w̄j+1 cos(θ1)
(15)

Similarly, the derivative of GB is

DGB :=







∂ūj+1/∂ūj ∂ūj+1/∂w̄j

∂w̄j+1/∂ūj ∂w̄j+1/∂w̄j






(16)

where

∂w̄j+1

∂ūj

=
1

w̄j+1

[

(

− sin(θ1) sin(θ1 + θ2)

cos(θ2)
+ sin2(θ1 + θ2)

)

ūj +
w̄j sin (2(θ1 + θ2))

2

]

,

∂w̄j+1

∂w̄j

=
1

w̄j+1

[

(

− sin(θ1) sin(θ1 + θ2)

cos(θ2)
+ cos2(θ1 + θ2)

)

w̄j +
ūj sin (2(θ1 + θ2))

2

]

,

∂ ūj+1

∂ūj

= cot(θ1)
∂w̄j+1

∂ūj

− sin(θ2)

sin(θ1)
,

∂ ūj+1

∂w̄j

= cot(θ1)
∂w̄j+1

∂w̄j

− cos(θ2)

sin(θ1)

with determinant

det (DGB) =
w̄j cos(θ1)

w̄j+1 cos(θ2)
. (17)
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We note that the maps FB and GB are only area-preserving whenever det (DFB) = 1 and

det (DGB) = 1, that is, w̄j cos(θ2)/w̄j+1 cos(θ1) = 1 for FB and w̄j cos(θ1)/w̄j+1 cos(θ2) = 1 for

GB . Thus the maps FB and GB are area-preserving whenever w̄j+1 = w̄j and θ2 ≡ θ1 + 2kπ,

k ∈ Z. For any value of k 6= 0, we would obtain a value for θ2 /∈ (0, π/2) irrespective of the chosen

value of θ1, therefore θ2 = θ1 and hence we conclude that the maps are only area-preserving at

the fixed point of the symmetric wedge billiard [23].

3.2 Fixed points of the collision maps

The map FA has a family of fixed points given by

(ū∗, w̄∗) = (cF , 0), cF ∈ R. (18)

This corresponds, physically, to the particle sliding up or down the wall ∂Q1 depending on

whether cF is positive or negative. This is the same family of fixed point as derived for the

symmetric wedge billiard by Lehtihet and Miller [23] and Richter et al [29]. We note that for

cF = 0 we obtain (ū∗, w̄∗) = (0, 0) which is the wedge vertex. The fixed point of the map FB

can be shown to be

ū∗ = w̄∗ tan

(

θ2 − θ1
2

)

,

w̄2
∗
=

2 sin(θ2) sin(θ1 + θ2)
[

1 + g(θ1, θ2)− (f(θ1, θ2))
2
]

cos(θ1)

(19)

where

f(θ1, θ2) :=
cos((3θ1 + θ2)/2)

cos((θ2 − θ1)/2)
,

g(θ1, θ2) :=
sin(θ2) sin(θ1 + θ2)

cos(θ1) cos2((θ2 − θ1)/2)
.

(20)

Similarly, the family of fixed points for GA is given by

(ū∗, w̄∗) = (cG, 0), cG ∈ R, (21)
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and the fixed point of GB given by

ū∗ = w̄∗ tan

(

θ2 − θ1
2

)

,

w̄2
∗
=

2 sin(θ1) sin(θ1 + θ2)
[

1 + g(θ1, θ2)− (f(θ1, θ2))
2
]

cos(θ2)

(22)

with f and g as given in (20).

We were not able to determine the stability of the family of fixed points (18) and (21)

analytically, since the eigenvalues of the matrices (13) are both equal to unity. However, we can

determine stability via informal argument. For example, if we were to choose cF < 0, supposing

the particle is situated on ∂Q1, which is a member of the family (18), the particle would slide

down toward the wedge vertex at which point its motion would stop. Hence the subset of the

family (18) is stable in the sense that all the fixed points in this subset are attracted to the wedge

vertex. Similarly, if we were to choose cF > 0, the particle would slide up the slope and away

from the wedge vertex. Since we assumed no dissipation at all, the particle would keep sliding up

for all eternity and hence this subset of the family (18) is repelled away from the wedge vertex.

Stability analysis of the eigenvalues of (14) and (16) would, of necessity, require a numerical

study and was not attempted during our original research. However, in Figure 4 and Figure 5

we illustrate the values ū∗ and w̄∗ take for various values of θ1, θ2 ∈ (0, π/3). For θ1 → π/2 and

θ2 → π/2, simultaneously, it was observed that the “fixed point surfaces” nears a singularity

which agrees with the physical model—both walls would be horizontal in the limit and the

motion would be equivalent to one-dimensional motion under the influence of gravity with elastic

collisions on a horizontal surface.

3.3 Computational Results

For general dynamics, we iterated the maps (9)-(12) for 10,000 collisions for a particle always

starting on ∂Q1. Initial conditions were determined using an angle ϑ which is measured anticlock-

wise from ∂Q1 to the forward direction of the momentum vector of the particle, as illustrated

in Figure 6. From this launch angle we then set u0 = − sin(ϑ − θ1) and w0 = cos(ϑ− θ1), with

y0 determined using the energy equation (7), and x0 = y0 tan(θ1); using u0 and w0 we then

11
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Figure 4: [Colour online] Fixed point “surfaces” for FB for various θ1, θ2 ∈ (0, π/3).
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Figure 5: [Colour online] Fixed point “surfaces” for GB for various θ1, θ2 ∈ (0, π/3).

e2

e1
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φ

ϕ

ϑ

Figure 6: Graphical representation of initial conditions for computational simulation.
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Figure 7: Reflection symmetry about the vertical axis in configuration space. Note that the
momentum vector also needs to be reflected accordingly, otherwise a different orbit will be
obtained.

determine ū0 and w̄0 using the rotation transformation (6).

We note that there exists a reflection symmetry about the vertical axis on condition that

the particle also be reflected accordingly, as illustrated in Figure 7 for (θ1, θ2) = (7π/18, 5π/18).

This reflective symmetry corresponds to a reflection about the line θ1 = θ2 in the parameter

space. Hence we only considered parameters θ1, θ2 such that 0 < θ1 < π/2 and 0 < θ2 ≤ θ1.

To illustrate the dynamics observed during simulation, we plotted the results in the dynamical

system’s phase space which should not be confused with the previously defined phase space (3).

We define the dynamical phase space as the set

Ω :=
{

(ū, w̄2) ∈ R
2 : w̄2 ≥ 0, |ū| ≤

√
2E
}

. (23)

Furthermore, the parabola

Γp :=
{

(ū, w̄2) ∈ Ω : w̄2 > 0, ū2 + w̄2 − 2E = 0
}

(24)
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Γ0

ΓF
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ΓG
1

Figure 8: [Colour online] The phase space for the asymmetric wedge billiard if we follow the
convention for the symmetric wedge billiard.

forms the upper boundary on the phase space with the lower boundary given by

Γℓ :=
{

(ū, w̄2) ∈ Ω : w̄2 = 0, |ū| ≤
√
2E
}

. (25)

The area inclosed by ∂Ω := Γp ∪ Γℓ defines the set of allowed values that ū and w̄ may take

during the particle’s motion. Points on the parabola Γp corresponds to vertex collisions while

points on the straight line Γℓ corresponds to the particle sliding up or down the wedge walls.

The lines

ΓF
1
:=
{

(ū, w̄2) ∈ Ω : (ūj − 2w̄j cot(θ1))
2

+w̄2
j − 2E = 0

}

, (26)

ΓG
1
:=
{

(ū, w̄2) ∈ Ω : (ūj + 2w̄j cot(θ2))
2

+w̄2
j − 2E = 0

}

(27)

are the preimages of vertex collisions for the maps FA and GA respectively. We note that the

lines coincide when θ1 = θ2 and that the line ΓF
1 lies above ΓG

1 in the phase space Ω whenever

θ1 > θ2, as illustrated in Figure 8, and vice versa. We may suggest a division of the phase space

into two or three regions possibly, as was done for the symmetric wedge billiard; however, we

note that the maps (9) and (11) once again map points in Ω horizontally, which might lead to
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Figure 9: [Colour online] The “separated” phase space we propose for the asymmetric wedge
billiard to complement the one in Figure 8.

a point mapped under FA being beneath the line ΓG
1 and thus possibly inferred to have been

mapped there by GA or possibly FB. Hence we propose that consideration should be given to

a “separation” of the phase space into two copies, one indicating only collisions which occur on

∂Q1 and the other indicating collisions which only occur on ∂Q2, as illustrated in Figure 9.

The region A1 contains points invariant under the map FA and the region A2 contains points

invariant under the map GA. The region B1 contains points mapped from ∂Q2 by the map GB

and, similarly, the region B2 contains points mapped from ∂Q1 by the map FB . Hence the map

FB maps points into either A2 or B2 and the map GB maps points of ∂Q2 into either A1 or B1.

From our simulations we noted that the case θ1 + θ2 = π/2 is completely integrable with

the phase space filled with horizontal lines, which is similar to the dynamics of the orthogonal

symmetric wedge billiard [33, 34]. A complete analysis of this case will be the subject of a future

article by the first author [1].

Furthermore, we determined that the asymmetric wedge billiard is also completely chaotic

whenever θ1 + θ2 > π/2 which agrees with the asymmetric wedge billiard having nonvanishing

Lyapunov exponents as established by Wojtkowski [41].

For θ1 + θ2 < π/2 the behaviour once again varies between chaotic and quasi-periodic. How-

ever, we also noted for some parameters the phase space was completely chaotic similar to the

case of θ1 + θ2 > π/2. We can only describe this to the broken symmetry of the asymmetric
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Figure 10: Phase space for θ1 = 32◦, θ2 = 54◦

wedge and requires further investigation. Generally, for each fixed θ1 and θ2, the phase portraits

had points only in B1 and B2 (see Figure 9) whenever the launch angle φ was in a neighbourhood

around π/2; this corresponds to phenomena observed in the symmetric wedge billiard.

It was interesting to notice from our study of the phase portraits that the asymmetric wedge

billiard also bifurcated for θ1 + θ2 in regions close to arccos((
√
3− 1)/2) and arccos((

√
5− 1)/2)

in correspondence with the bifurcation angles of the symmetric wedge billiard [29], even though

the correspondence was not exact (see § 3.4).

3.4 Rotated Symmetric Wedge Billiard

Our model enables us to consider the case of a symmetric wedge billiard with full wedge angle

rotated clockwise (or anticlockwise) from the vertical. Let

ω := θ1 + θ2, γ :=
θ1 − θ2

2
(28)

be the full wedge angle and rotation angle respectively, as illustrated in Figure 11. For the rest

of this section we shall assume that ω and γ are the given parameters. We may solve equations

(28) for θ1, θ2 to obtain

θ1 = γ +
ω

2
, θ2 =

ω

2
− γ. (29)
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Figure 11: The rotated symmetric wedge billiard.

Assume that we rotate the wedge clockwise, then it is more likely for θ2 → 0 before θ1 → π/2.

From the physics of the model, it follows that 0 < θ2 < π/2 and it follows from the second

equation of (29) that 0 < ω/2−γ < π/2 from which then follows (ω−π)/2 < γ < ω/2. However,

(ω − π)/2 < 0 for ω ∈ (0, π/2) and therefore we obtain a restriction on γ which depends on the

full wedge angle ω, that is, 0 < γ < ω/2. Hence we may not rotate the symmetric wedge further

than half its full wedge angle, which was also confirmed in our simulations.

Note that the second equation of (28) implies that θ1 > θ2 if the rotation is clockwise. Of

course, we could equally have that θ1 < θ2 from which would then follow that γ < 0 which

implies anticlockwise rotation from the vertical. In this scenario, the equations in (29) become

θ1 = ω/2− γ and θ2 = γ + ω/2.

From our simulations of the rotated wedge billiard, we found that the dynamics remain close

to the symmetric case for very small γ. However, as the wedge was rotated further away from

the vertical, it appeared that the phase portraits were correspondingly deformed in the vertical

direction of the phase diagrams. As previously stated, the bifurcation angles of the symmetric

wedge billiard [29] seem to be preserved albeit not exactly. For example, for the bifurcation angle

θ∗1 = arccos((
√
3−1)/2)/2 rotated ϕ = 15◦ clockwise from the vertical, our simulations indicated

that the bifurcation seems to happen at θ∗1 = arccos((
√
3− 1)/2)/2+ 5/4. Further investigation

is required to determine whether the extra term added to θ∗1 will remain a rational number and

in which way it is related to the rotation angle γ.
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4 Conclusion

We generalized the physical example of the wedge billiard, introduced by Lehtihet and Miller [23]

and subsequently studied by Richter et al [29] and Szeredi [33, 34] amongst others, by breaking

the symmetry of the wedge walls with respect to the vertical and considering two separate angles

θ1 and θ2 measured with respect to the vertical.

Due to the nature of the resulting nonlinear collision maps (9)-(11), we undertook a compu-

tational study of the asymmetric wedge billiard and found that the billiard is completely chaotic

when θ1+θ2 > π/2, completely integrable when θ1+θ2 = π/2, and varies between quasi-periodic

and chaotic motions when θ1 + θ2 < π/2. The complete chaos observed ratifies an analytical

result by Wojtkowski [41].

There are some aspects which require further study. The stability of the fixed points of FB

and GB need to be determined, the authors suspect that these fixed points are unstable for

all parameter values. There is also the matter of the bifurcation angles which are almost in

exact correspondence with the symmetric wedge billiard. From our simulations we noted that

the bifurcation occurs close to a value of the bifurcation angle of the symmetric wedge billiard,

with an added rational number. We suspect that there is some relationship between this rational

number and the rotation angle γ.
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