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We analyze the collective dynamics of an ensemble of globally coupled, externally forced, identi-
cal mechanical oscillators with cubic nonlinearity. Focus is put on solutions where the ensemble
splits into two internally synchronized clusters, as a consequence of the bistability of individual
oscillators. The multiplicity of these solutions, induced by the many possible ways of distributing
the oscillators between the two clusters, implies that the ensemble can exhibit multistability.
As the strength of coupling grows, however, the two-cluster solutions are replaced by a state
of full synchronization. By a combination of analytical and numerical techniques, we study the
existence and stability of two-cluster solutions. The role of the distribution of oscillators between
the clusters and the relative prevalence of the two stable solutions are disclosed.
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1. Introduction

Multistability –namely, the coexistence of two or more stable stationary orbits for a given parameter set
in a nonlinear dynamical system– plays a key role in modelling several natural processes, ranging from
phase transitions [Mayergoyz, 2003] to biological diversification [Skelton, 1996]. The possibility of selecting
among a set of stationary orbits by a suitable choice of the initial condition, or switching between orbits
by perturbing the motion, is also functional to numerous up-to-date technological applications. These
include, for instance, quantum-based computing systems [Nielsen & Chuang, 2000] and semiconductor
optical devices [Klingshirn, 2012]. In an ensemble of coupled dynamical systems, multistability underlies
self-organized clustering, where the ensemble spontaneously splits into internally synchronized groups, each
of them with its own trajectory. These clustered states possess rich dynamical properties [Ku et al., 2015],
reminiscent of such complex systems and processes as neural networks [Abarbanel et al., 1996; Tass, 1997],
biochemical reactions [Kaneko & Tsuda, 2013], and cell differentiation [Furusawa & Kaneko, 2001].

Because of their interest from the viewpoints of theory and applications, multistable dynamical sys-
tems keep getting attention in several areas of research. In the last few years, a major area of appli-
cation of multistability notions has been life sciences. A list of specific subjects, by no means exhaus-
tive, comprises ecosystems [Melchionda et al., 2017], neural networks and brain function [Lai et al., 2016;
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Chopek et al., 2019], perception [Sterzer et al., 2017; Kondo, 2020], cell function and growth [Fatehi et al.,
2019; Kemwoue et al., 2020], and synthetic genetics [Li et al., 2018]. A technological field of extensive
current application of those same notions is optoelectronics [Schulz et al., 2016; Chizhevsky & Kovalenko,
2019; Grigorieva & Kaschenko, 2019]. In this field, as well as in other technological applications where the
existence of multiple stable states can be pernicious, the control and suppression of multistability constitutes
a topic of research by itself [Pisarchik & Feudel, 2014; Fozin et al., 2019; Chizhevsky & Kovalenko, 2019].
More on the side of fundamental research, multistability has recently been studied in high-dimensional
flows [Li et al., 2017; Natiq et al., 2019], and in generalizations of well-known dynamical systems such as
the van der Pol-Duffing oscillator [Chudzik et al., 2011], the Lorenz system [Chen, 2018], and piecewise-
linear dissipative maps [Anzo-Hernández et al., 2018], among others.

The connection between bistability in a single dynamical system and multistability in an ensemble
of coupled systems of the same kind was advanced for a class of mechanical oscillators with nonlinear
friction and restoring force [Chudzik et al., 2011], and subsequently demonstrated for Duffing oscillators
[Jaros et al., 2016]. In this latter study, it was shown that a ring of three unidirectionally coupled Duffing
oscillators exhibits a rich bifurcation scenario, including regions where two or more stable solutions coexist.
Likely, this multistability is a direct consequence of combined nonlinearities in the individual dynamics
and in the coupling function. Consideration of the Duffing oscillator is interesting not only due to its
paradigmatic role in the study of nonlinear mechanical systems [Drazin, 2012], but also because of its
relevance in applications to micro-technology. A favorite design for mechanical micro-oscillators, used in
pacemaking devices [van Beek & Puers, 2012] and in sensors [Okamoto et al., 2014; Reinhardt et al., 2016],
consists of a tiny material beam clamped at the two ends [Cleland & Roukes, 2002; Ekinci & Roukes, 2005].
The main nonlinear response of these clamped-clamped beams to an external excitation is well described by
a mechanical oscillator subject to a cubic force of the same sign as the elastic restoring force. [Narasimha,
1968; Molteno & Tufillaro, 2004]. Namely, they behave as a Duffing oscillator with a hardening nonlinearity,
where the restoring force grows faster than linearly with the oscillation amplitude [Lifshitz & Cross, 2009;
Antonio et al., 2012; Polunin et al., 2016].

In this contribution, we characterize multistability in an ensemble of identical Duffing oscillators cou-
pled all-to-all by an elastic interaction, and excited by an external harmonic force. As it is well known,
for each suitably chosen parameter set, a harmonically forced Duffing oscillator can perform two possible
stationary stable oscillations [Drazin, 2012; Nayfeh & Mook, 1995]. The two oscillations have the same fre-
quency as the excitation, but differ from each other in their amplitude and phase shift with respect to the
external forcing. As a consequence of this individual bistability, an ensemble of uncoupled Duffing oscillators
obviously exhibits multistability. This corresponds to the various configurations in which the oscillators
can be distributed between their two accessible stationary oscillations, forming two internally synchro-
nized clusters with mutually different orbits. The main question addressed in the present paper is whether
these two-cluster stationary states persist when the oscillators become mutually coupled by an attractive
force. Attractive coupling, by which individual trajectories are led to converge to each other, is in fact
the most generic mechanism leading to synchronization of interacting dynamical systems [Pikovsky et al.,
2003; Manrubia et al., 2004]. For globally coupled bistable Duffing systems prepared to oscillate along
different stable orbits, we expect that a competition emerges between their individual tendency to stay in
separate trajectories and the all-to-all interaction. We demonstrate that the existence and stability of the
two-cluster oscillations critically depend on the strength of coupling and on the distribution of oscillators
between the two groups.

In Sect. 2, we first review the main features of the individual dynamics of a bistable Duffing oscillator,
and then define a mechanism of global (mean field) coupling between identical oscillators of that kind.
Combining analytical and numerical techniques, we show in Sect. 3 that the ranges of existence and stability
of two-cluster solutions sensibly differ from each other for certain parameter values. Meanwhile, they are
practically coincident in other zones of parameter space. As may be expected, two-cluster oscillations
eventually become unstable as the strength of coupling grows. Beyond this threshold, they are replaced by
a fully synchronized solution with all oscillators belonging to a single cluster. Depending on the parameters,
however, the disappearance of two-cluster solutions is associated with different kinds of critical phenomena.
Results are summarized and commented in Sect. 4.
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2. Globally coupled Duffing oscillators

2.1. Individual dynamics

The equation of motion for a harmonically forced Duffing oscillator with spatial coordinate x(t) can be
written as

ẍ+Q−1ẋ+

(

1 +
4

3
βx2

)

x = f cos(Ωt). (1)

Here, we have chosen time units in such a way that the natural oscillation frequency in the linear unforced
limit (β = 0, f = 0) equals one. The non-dimensional quantity Q > 0 is the quality factor, and β weights
the nonlinear restoring force. We here consider a hardening nonlinearity, β > 0 (see Introduction), but
the same line of analysis can be pursued for negative β. In the right-hand side, f is the forcing amplitude
per unit mass and Ω is the frequency of the external force. Without generality loss, both f and Ω are
assumed to be positive. Note that, with our choice of time units, f has the same dimensions as x, and Ω
is non-dimensional.

The exact solution to Eq. (1) is not known, but an efficient approximate description is provided by the
multiple-scale method [Nayfeh & Mook, 1995]. This approximation assumes that the typical variation times
for the oscillation amplitude and phase are large as compared with the period. Generically, such condition
is verified when the quality factor is large, Q ≫ 1, so that energy dissipation occurs over relatively long
time scales. To the leading order in the multiple-scale approximation, the stationary solution to Eq. (1)
has the form of a harmonic oscillation with the same frequency as the external force, x(t) = A cos(Ωt−φ).
The amplitude A and the phase shift φ must satisfy

(1− Ω2 + βA2)A = f cosφ,
Q−1ΩA = f sinφ.

(2)

Squaring and adding up these two equations, we get a third-order polynomial equation for A2. By con-
vention, we only pay attention to real solutions with A > 0. The corresponding negative amplitudes are
trivially obtained by changing φ → φ± π. As it is well known [Drazin, 2012], three real positive solutions
for the amplitude can exist within a bounded interval of values of the forcing frequency Ω. This occurs
when the coefficients Q, β, and f are large enough. In qualitative terms, this is equivalent to requiring a
well-developed nonlinear response to a sufficiently strong external excitation, which in turn calls for rela-
tively weak damping. The multiple-scale method shows that, when three solutions exists for a given forcing
frequency, the solutions with the largest and the smallest amplitudes correspond to stable stationary oscil-
lations. Meanwhile, the oscillation with intermediate amplitude is unstable [Nayfeh & Mook, 1995]. Under
such conditions, thus, the system is bistable. This scenario is fully confirmed by numerical integration of
Eq. (1).

The main panel of Fig. 1 shows the resonance curve of the Duffing oscillator, namely, the oscillation
amplitude A as a function of the forcing frequency Ω, calculated from Eqs. (2) for Q = 10, β = 0.1,
and f = 1. For these parameters, three solutions exist in an interval of forcing frequencies bounded by
Ωmin ≈ 1.365 and Ωmax ≈ 1.924. For Ω = 1.6 (dashed vertical line), full dots indicate the stable solutions
of maximal (s1) and minimal (s2) amplitude, and the intermediate unstable solution (u). The inset to the
left shows the phase shift φ as a function of Ω, which varies between 0 and π as the frequency grows. Note
that the solution with minimal phase (s1) is that of maximal amplitude, and vice versa.

Open dots in the main panel of Fig. 1 are estimations of the amplitude of stationary oscillations
obtained from numerical resolution of the equation of motion (1), using a standard integration algorithm
(see details in Sect. 3.2). The coincidence with the solution to Eqs. (2) is an indication of the high quality
of the harmonic approximation obtained as the leading order of the multiple-scale method. Deviations only
appear for large amplitudes, where nonlinear effects are expected to be more relevant, and in some specific
frequency ranges, as marked by the vertical arrow just below Ω = 0.5. There, the small amplitude peak
reveals a higher-harmonic resonance [Parlitz & Lauterborn, 1985] –in this case, when Ω is around 1/3 of
the oscillator’s natural frequency– which naturally escapes the harmonic approximation. In the bistability
range (Ωmin,Ωmax), where we focus our analysis, these higher-order effects are however absent.
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Fig. 1. Resonance curve (amplitude A vs. forcing frequency Ω) of the Duffing oscillator in the harmonic approximation,
Eqs. (2), for Q = 10, β = 0.1, and f = 1. The inset to the left shows the phase shift φ as a function of the forcing frequency.
Vertical dashed lines stand at Ω = 1.6, for which most of the analysis of Sect. 3 is performed. Full dots indicate the two stable
solutions, s1 and s2, and the unstable solution u for that frequency. Open dots correspond to estimations of the amplitude,
resulting from numerical integration of the equation of motion (1). The arrow points to a higher-harmonic resonance. The
inset to the right shows the basins of attraction of each stable oscillation, in the plane spanned by the initial coordinate x0
and velocity v0, for Ω = 1.6, as obtained from numerical results.

Also resulting from numerical integration of Eq. (1), in the inset to the right of Fig. 1 we show the basins
of attraction of the two stable oscillations for Ω = 1.6, over the plane spanned by the initial coordinate
x0 = x(0) and velocity v0 = ẋ(0). In Sect. 3, we use this information to numerically build stationary states
with a controlled number of oscillators in each stable oscillation.

2.2. Mean-field global coupling and two-cluster equations

A set of N identical Duffing oscillators, individually satisfying Eq. (1), can be globally coupled to each
other by introducing, for each oscillator i, a coupling force

fK
i = −

K

N

N
∑

j=1

(xi − xj) = −K(xi − 〈x〉). (3)

Here, xi(t) is the coordinate of oscillator i and the non-dimensional parameter K is the coupling strength.
This all-to-all coupling is equivalent to a linear attractive force of elastic constant K, centered at the average
coordinate 〈x〉 = N−1

∑

j xj . Consequently, its physical effect is to lead the individual coordinate of each

oscillator to approach 〈x〉. The average coordinate thus plays the role of a mean field [Ku et al., 2015;
Zhang et al., 2017], collectively driving the oscillators towards a common trajectory. This effect, however,
competes with the tendency of each oscillator to remain in its individual stable orbit. The globally coupled
equations of motion read

ẍi +Q−1ẋi +

(

1 +
4

3
βx2i

)

x = f cos(Ωt)−K(xi − 〈x〉), (4)

for i = 1, . . . , N .
As advanced in the Introduction, we seek stationary oscillations where the globally coupled ensemble

is split into two clusters, generally, with different numbers of oscillators. While within each cluster all
oscillators are mutually synchronized and follow identical orbits, the two clusters perform oscillations with
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different amplitudes and phases. In the absence of coupling, this situation can be obviously attained just
by distributing the ensemble between the two stable oscillations accessible to each individual element. The
question thus is to which extent these collective states survive when coupling is turned on. To solve this
problem to the leading order in the multiple-scale approximation, we suppose that the ensemble is divided
into two clusters 1 and 2, respectively containing N1 and N2 oscillators (N1 + N2 = N). The clusters
perform stationary harmonic oscillations with coordinates X1,2(t) = A1,2 cos(Ωt−φ1,2). The corresponding
mean field reads

〈x〉 = r1A1 cos(Ωt− φ1) + (1− r1)A2 cos(Ωt− φ2), (5)

with r1 = N1/N (0 < r1 < N). Under these assumptions, the multiple-scale method yields

(K + 1− Ω2 + βA2
1
)A1 = f cosφ1 +Kr1A1 +K(1− r1)A2 cos(φ1 − φ2),

(K + 1− Ω2 + βA2
2
)A2 = f cosφ2 +K(1− r1)A2 +Kr1A1 cos(φ2 − φ1),

Q−1ΩA1 = f sinφ1 +K(1− r1)A2 sin(φ1 − φ2),
Q−1ΩA2 = f sinφ2 +Kr1A1 sin(φ2 − φ1).

(6)

These are four algebraic equations for the amplitudes A1 and A2, and the phases φ1 and φ2 of the stationary
oscillations performed by the two clusters. Although a full analytical treatment is not possible, the existence
of solutions can be efficiently dealt with by numerical methods. On the other hand, a full assessment
of stability for the corresponding oscillations would require considering all possible perturbations from
the stationary motion. In particular, it would be necessary to allow the trajectory of each individual
oscillator to be perturbed. The treatment of this much higher-dimensional problem within the multiple-
scale approximation is impractical, and will here be dealt with by direct numerical integration of the
equations of motion (4).

3. Two-cluster stationary oscillations

3.1. Existence

For a given choice of parameters, and within the harmonic approximation, two-cluster stationary oscillations
exist if Eqs. (6) have real solutions for the amplitudes A1,2 and the phases φ1,2. Since we must ultimately
resort to numerical methods to solve the equations, our attention will be focused on the dependence on
the parameters r1 and K, which are the most relevant to the problem addressed in the Introduction. The
fraction r1, in fact, characterizes the multiplicity of states associated with the distribution of oscillators
between the two clusters. Meanwhile, the coupling strengthK is expected to control the stability of the two-
cluster oscillations. The remaining parameters are chosen in such a way that the analysis is representative
of more general situations. The results presented below mostly correspond to the choice Q = 10, β = 0.1,
f = 1, and Ω = 1.6 (cf. Fig. 1).

As expected, in the absence of coupling (K = 0) and for any value of r1, Eqs. (6) reduce to Eqs. (2) for
each pair Ai, φi (i = 1, 2). In this limit, and within the bistability regime, the solutions for A1,2 and φ1,2

are given by the nine possible combinations of the three solutions to Eqs. (2) for the individual amplitude
A and phase φ. These nine solutions should play the role of “precursors” of the solutions to Eqs. (6)
when K becomes positive –at least, for small K– in the sense that, when coupling is turned on, each
solution should be the continuation of one of the solutions for K = 0. Specifically, we are interested in
the solutions for A1,2 and φ1,2 whose precursors correspond to stable oscillations of the two clusters. To
be concrete, in the following we focus the attention on the solution where, in the limit K = 0, clusters 1
and 2 respectively oscillate in the stable solutions s1 (maximal amplitude, minimal phase) and s2 (minimal
amplitude, maximal phase), as shown in Fig. 1. We call this precursor {s1, s2} and denote by S12 its
continuation for K > 0. We show below that, as K grows, solution S12 eventually merges with another
two-cluster solution and, from then on, both cease to exist.

A convenient way to deal with the solutions for A1,2 and φ1,2 –and, at the same time, to visualize
them– is to note that the last two lines in (6) are linear equations for A1,2, with coefficients depending on
φ1,2. Therefore, the amplitudes can be immediately obtained from these two equations and replaced into
the first two lines of (6), to get equations for the phases alone. These equations involve rather complicated
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Fig. 2. The intersections of the light (cyan) and dark (blue) curves are the solutions to Eqs. (6) for the phases φ1 and φ2.
Upper and lower rows respectively correspond to r1 = 0.2 and 0.8, with the values of K indicated inside each panel. Other
parameters are Q = 10, β = 0.1, f = 1, and Ω = 1.6; cf. Fig. 1. Dotted lines indicate the diagonals φ1 = φ2. Full and empty
dots in the three first panels of each row respectively indicate the two-cluster solution S12, and the solution which merges
with S12 at the point where both disappear.

combinations of sines and cosines of φ1,2 but, once a parameter set has been selected, finding their roots by
the standard multivariate Newton-Raphson method is straightforward. Panels in Fig. 2 show the solutions
for several combinations of r1 and K, over the plane spanned by φ1 and φ2. The problem for the phases is
periodic with period π. Therefore, each axis is limited to the interval (0, π).

Each set of curves (plotted in light or dark shade) stands for the solutions of one of the two equations
for the phases. Thus, the intersections between curves give the pairs (φ1, φ2) which solve the problem.
Note that, in all the panels, three intersections occur over the diagonal φ1 = φ2. These solutions, for which
we also have A1 = A2, represent the trivial cases where the two clusters have the same coordinates –i.e.,
where the ensemble is not split at all. Six additional intersections are seen in the panels corresponding
to low values of K but, as coupling grows stronger, the curves become heavily distorted and some of
the intersections disappear. For sufficiently large values of K, in fact, we expect that the only surviving
solutions are those over the diagonal, with the whole ensemble collapsed into a single fully synchronized
cluster, due to the strong coupling between oscillators.

We also point out the symmetry with respect to the diagonal between the curves of different shades
in the second panel of the upper row and in the third panel of the lower row, corresponding to the same
value of K and complementary values of r1. This symmetry reflects the invariance of the problem under
the swap of labels 1 and 2 between the clusters, for a fixed set of parameters, which implies the exchanges
φ1 ↔ φ2 and r1 ↔ 1− r1.

The full dot in each one of the three leftmost panels of each row in Fig. 2 indicates the phases (φ1, φ2)
corresponding to solution S12. The empty dot, in turn, stands for the solution that, as K grows, merges
with S12. In the third panel of each row the two solutions have closely approached each other, while in
the fourth panel they have disappeared. Note that the merging of the two solutions occurs though what
seemingly is a typical saddle-node bifurcation scenario.
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For both values of r1, the empty dot represents the continuation of a solution where, for K = 0, one
of the two clusters is in the intermediate unstable state u (see Fig. 1). On the one hand, for r1 = 0.2,
this solution is the continuation of {u, s2}, in which clusters 1 and 2 are in states u and s2, respectively.
On the other, for r1 = 0.8, it is the continuation of {s1, u}. Following the notation used for S12, we call
these solutions Su2 and S1u, respectively. The fact that, depending on the value of r1, S12 disappears by
merging with a different solution points to the existence of two distinct regimes in the critical behavior
of our system. In particular, the critical value of the coupling constant at which S12 disappears, KD, is
sensibly different in the two cases, with KD ≈ 0.912 for r1 = 0.2 and KD ≈ 0.314 for r1 = 0.8.

The contrast between the two regimes better manifest itself in the dependence of the oscillation am-
plitudes on the coupling constant. Figure 3 shows, in full lines, the amplitudes for the solution S12 as
functions of K, for several values of r1. Other parameters are as in Fig. 2. Note that, for each parameter
set, the solution is represented by two curves, the upper one corresponding to A1 and the lower one to
A2. Pairs of dashed lines with the same shade stand for the amplitudes A1 and A2 corresponding to the
solution S1u. Dash-dotted lines, in turn, are the corresponding amplitudes for Su2. For large values of r1,
it is S1u which merges with S12 at the critical coupling KD, while for small r1 merging occurs between S12

and Su2. The values of r1 have been chosen in such a way that two of them, r1 = 0.6 and 0.62, are just
below and above the switching between regimes.

0.0 0.2 0.4 0.6 0.8 1.0
0

1
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3

4

0.6

0.62

0.62r1 0.8

r1 0.8

0.6

r1 0.2

 

 

A
1,2

 

K

r1 0.2

Fig. 3. Stationary oscillation amplitudes A1,2, solutions to Eqs. (6), as functions of the coupling strength K, for four values
of the fraction of oscillators in cluster 1, r1. Other parameters are as in Fig. 2. Full, dashed, and dash-dotted lines respectively
indicate the amplitudes corresponding to solutions S12, S1u, and S2u. For large and r1, the disappearance of S12 respectively
occurs by merging with S1u and S2u at the critical coupling KD. Open dots stand for numerical estimations of the amplitude
for r1 = 0.2, 0.6, and 0.8, obtained from integration of the equations of motion (4) for N = 100.

The amplitude A1 of S12, represented by the upper set of full curves in the figure, decreases mono-
tonically as K grows, irrespectively of the value of r1, until it disappears at the corresponding critical
coupling KD. This behavior is consistent with the fact that, as coupling becomes stronger, the coordinates
of the two clusters should approach each other. On the other hand, the amplitude A2, given by the lower
full curves, behaves differently depending on r1. In the small-r1 regime, A2 grows for small K, reaches a
maximum, and then decreases to splice itself with the branch corresponding to Su2, coming from below.
As r1 increases and approaches the switching between regimes, the maximum in A1 becomes higher and
sharper. In the large-r1 regime, in contrast, A1 grows monotonically with K and, at the critical coupling
KD, it splices itself with the dashed branch above it, corresponding to S1u. Comparing the curves for
r1 = 0.6 and 0.62, it becomes clear that the regime switching entails an abrupt drop of KD, in the form of
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a finite discontinuity.
Open dots in Fig. 3 are numerical estimations of the amplitudes A1,2 of two-cluster stationary oscilla-

tions, obtained as detailed in Sect. 3.2, for r1 = 0.2, 0.6, and 0.8 in an ensemble of 100 oscillators. We find
a good general agreement with the solutions yielded by the harmonic approximation, although –much as in
Fig. 1– the discrepancy grows with the amplitude, as expected due to the effect of nonlinearity. However,
for r1 = 0.6, we note that the numerical results are limited to K . 0.4, while the harmonic approximation
predicts that the solution reaches much larger values of the coupling constant. This substantial difference,
which turns out to be related to the destabilization of S12 in the numerical integration of Eqs. (4), is
analyzed in Sect. 3.2.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

 

 

K
D

r
1

Fig. 4. Critical coupling strength KD as a function of the fraction r1, for several values of the excitation frequency Ω in the
bistability range. For each Ω, the vertical dashed line stands at rD1 , the fraction at which the change between the small- and
large-r1 regimes takes place.

It turns out that the overall picture described so far for Ω = 1.6 is also found for other values of the
forcing frequency within the bistability interval (Ωmin,Ωmax). Naturally, however, the parameter values at
which solutions disappear and regimes switch depend on Ω. Figure 4 shows the critical coupling KD as a
function of r1 for several values of the forcing frequency. Dashed vertical lines stand at rD

1
, the value of r1

at which regime switching takes place. From these results, we point out the monotonous growth of rD
1

as
Ω increases, accompanied by a sustained decrease in the size of jump of KD at rD

1
. Additionally, leaving

aside the effects of the discontinuity in KD, we remark that the critical coupling varies non-monotonically
with Ω for a given value of r1. For r1 = 0.1, for instance, KD has a relatively low value for Ω = 1.5, grows
to attain a maximum for Ω ≈ 1.7, and then decreases to very low values for large Ω.

3.2. Stability

As advanced above, we study the stability of two-cluster oscillations by directly integrating the equations of
motion (4) by numerical means. This is motivated by the fact that the two-cluster harmonic approximation
disregards the individual degrees of freedom of each oscillator, whose deviation from the two-cluster tra-
jectories might destabilize those states. Indeed, the results presented in this section suggest that this is the
case. On the other hand, the analytical formulation of the harmonic approximation for the full N -oscillator
ensemble is impractical in the study of both existence and stability.

Integration of Eqs. (4) –as well as of Eqs. (1), for the numerical results shown in Fig. 1– was performed
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using a standard fourth-order Runge-Kutta algorithm. The integration step was fixed at δt = 0.01, namely,
well below 1% of the typical oscillation period. In the cases where we integrated Eqs. (4) for successive
values of a given parameter –such as Ω for the results of Fig. 1, and K for those of Fig. 3– our strategy
was to run the integration for each value of the parameter until the stationary oscillation was clearly
established. Then, this stationary oscillation was used as initial condition for the next value. For each
value of the fraction r1, in turn, two-cluster initial states were prepared in the absence of coupling (K = 0)
by suitably choosing the initial coordinates of individual oscillators within each of the basins of attraction
depicted in the rightmost inset of Fig. 1. Higher values of K were then reached by the “sweeping” procedure
described just above. Finally, in order to numerically test the stability of stationary solutions, we added
small-amplitude random forces to the equations of motion, as a generic representation of a perturbation
over all the degrees of freedom in the system. For each oscillator and at each integration step, the random
force was independently drawn from a uniform distribution around zero, with a maximal absolute value of
0.01, namely, 1% of the amplitude of the external excitation (f = 1).

For the evaluation of the critical coupling strength at which two-cluster stationary oscillations become
unstable, KU , we run the numerical integration for each possible value of r1 (= 0.01, 0.02, . . . 0.99 for
N = 100). We started with the two-cluster state from K = 0 and gradually increased the coupling strength
by steps of size δK = 10−3. Keeping record of the oscillation amplitudes, we were able to detect the
coupling strength at which the two-cluster solution ceased to exist. Since our system was being continually
perturbed by a random force, we identified this coupling strength with KU . In all cases, we observed
that, for coupling strengths just above KU , the two clusters collapsed into a single group. In this group,
all oscillators performed fully synchronized motion (up to the minor fluctuations induced by the random
force) in one of the two stable states of the Duffing equation (1), s1 or s2 (see Fig. 1). This procedure was
repeated for each value of the excitation frequency Ω considered in Fig. 4.
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0.2
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1.0
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Fig. 5. Dots correspond to the numerical estimation of the two-cluster destabilization coupling strength KU as a function of
r1, for the same values of Ω as in Fig. 4. Full and open symbols indicates the cases where destabilization of the two-cluster
solution leads the whole ensemble to states s1 and s2, respectively. Vertical dashed lines stand at the critical fraction rU1 where
KU is discontinuous. For comparison, full thin lines show the same results for KD as in Fig. 4. Horizontal double arrows
indicate the difference between rU1 and rD1 , for each Ω ≥ 1.5.

Figure 5 shows, as dots, the numerical estimation of the two-cluster destabilization coupling strength
KU as a function of r1, for each value of Ω. For comparison, full thin lines show the same results as in
Fig. 4, namely, the critical coupling strengths KD at which two-cluster solutions cease to exist as K grows.
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Except for Ω = 1.4, we find that KU has the same overall dependence on r1 as KD. In particular, as r1
increases, KU displays a sharp drop at a critical value rU

1
, indicated by vertical dashed lines. This drop,

however, is systematically to the left of the drop in KD, i.e. r
U
1
< rD

1
. The horizontal double arrows mark

the difference for each Ω ≥ 1.5. Note that if, for a given Ω, r1 lies in the interval (rU
1
, rD

1
), there generally

is a sizable difference between the coupling constant at which two-cluster solutions become unstable and
the value of K at which they disappear. For Ω = 1.4, where there is no positive value for rU

1
, KU is well

below KD for all r1 < rD
1
. The large difference between KU and KD for r1 in (rU

1
, rD

1
) suggests that, at

least within this interval, destabilization of the two-cluster solution is controlled by the perturbation of
degrees of freedom other than those involved in the harmonic approximation of Sect. 2.2.

For r1 outside the interval (rU
1
, rD

1
), there is a reasonably good agreement between KU and KD. This

is particularly true for r1 > rD
1
. For r1 < rU

1
, on the other hand, systematic differences appear, with KU

becoming increasingly larger than KD as Ω grows. Note that, since the interval of existence of two-cluster
solutions should always include that of stability, the critical coupling of destabilization should never lie
above that of their disappearance. The discrepancy between KU and KD in Fig. 5 should therefore be
ascribed to the fact that the former were obtained from direct numerical integration of the equations of
motion, while the later originate in the two-cluster harmonic approximation.

Full and open dots in Fig. 5 indicate the cases in which, upon destabilization, the two clusters collapse
to the solutions s1 and s2, respectively (see Fig. 1). Generally, for large values of r1, destabilization leads
the whole ensemble to solution s1 (full dots), while for small r1 the collapse occurs towards s2 (empty dots).
For intermediate values of r1, full and open dots alternate with each other in a non-systematic manner.
This indicates that, in that zone, the state reached upon collapse of the two clusters sensibly depends on
the initial conditions.

3.3. Physical interpretation

Some of the main results obtained in Sects. 3.1 and 3.2 can be semi-quantitatively understood in terms
of a few arguments of physical inspiration. These invoke, first, the dynamical dominance of either cluster
according to the number of oscillators it contains. Second, they take into account the relative prevalence of
the two stable solutions of the one-oscillator Duffing equation, s1 and s2, depending on the distance of each
of them to the unstable solution u. Concretely, when the fraction r1 of oscillators in cluster 1 is large, the
continuation of solution s1 is very similar to s1 itself. In this case, cluster 1 moves in a trajectory close to
s1. Conversely, when most of the oscillators are in cluster 2, the tendency is to keep that cluster close to s2.
Moreover, the motion of the largest cluster dominates the dynamics of the mean field 〈x〉 in Eq. (4). The
fraction r1, therefore, controls how close from either s1 and s2 is the largest part of the system expected
to oscillate, as well as its weight in the mean-field interaction.

In turn, the relative stability of s1 and s2 is controlled by the excitation frequency Ω. For Ω & Ωmin,
just above the lower bound of the bistability interval (see Sect. 2 and Fig. 1), states s2 and u are close to
each other. Therefore, the basin of attraction of s2 is expected to be much smaller than that of s1. Vice
versa, for Ω . Ωmax, s2 is relatively more stable than s1. In either situation, we expect that the collective
motion of the oscillator ensemble stays preferentially in the vicinity of the state with stronger stability.

The existence of the two regimes in the disappearance of the two-cluster solution (see Sect. 3.1 and
Figs. 2, 3) can be interpreted in terms of the dominance of either cluster in the collective dynamics of
the whole ensemble. For small r1, the cluster in the continuation of s1 is relatively underpopulated. Its
interaction with cluster 2, which contains a larger number of oscillators, makes its amplitude to rapidly
decrease with K, as seen for r1 = 0.2 in the upper set of curves of Fig. 3. In contrast, the dependence on
K of the amplitude of cluster 2 (lower set of curves) is more moderate. The rapid change with K in the
oscillation amplitude of cluster 1 leads to its encounter with the continuation of the unstable solution u,
causing the disappearance of S12 by merging with Su2. For large r1, on the other hand, most oscillators are
in cluster 1. It is now the amplitude of cluster 2 which varies rapidly with K (see the lower curve for r1 = 0.8
in Fig. 3). As a consequence, the continuations of s2 and u encounter each other, and disappearance occurs
by merging of S12 and S1u.

The distribution of oscillators between the two clusters also plays a role in the outcome of destabilization
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as K grows. This is clearly seen from the results shown in Fig. 5. In the low-r1 regime, where most oscillators
are in cluster 2, destabilization at KU leads the whole ensemble to synchronize on solution s2 (open dots in
the figure). Conversely, for large r1, most oscillators are in cluster 1, and destabilization makes the system
to collapse to solution s1 (full dots). This general trend, however, is strongly modulated by the value of
the excitation frequency Ω. As Ω becomes larger, due to the increasing proximity of the unstable state u,
the basin of attraction of s1 decreases by comparison with that of s2. As a result, the value of r1 necessary
to switch between the two regimes grows –namely, a larger and larger fraction of the ensemble must lie in
cluster 1 for its dynamics to prevail in the collective behavior of the system.

4. Conclusion

We have studied the collective dynamics of an ensemble of globally coupled, externally forced, identical
Duffing oscillators, within their bistable regime. From the leading order in the multiple-scale approximation,
we have shown the existence of stationary solutions where the ensemble is split into two clusters. Within
each cluster all oscillators are synchronous and follow the same orbit, while the two clusters generally have
different numbers of oscillators, amplitudes and phases. These two-cluster solutions exist as a consequence
of the bistability of each individual oscillator. They are expected to disappear as the coupling between
oscillators becomes strong enough and the whole ensemble collapses into a fully synchronized state. Since,
for weak coupling, two-cluster oscillations exist for any possible splitting of the ensemble into two groups,
this class of solutions represent a large multiplicity in the states accessible to the system.

In a multiple-scale harmonic approximation, we have shown that there is a critical value KD of the
coupling strength above which two-cluster oscillations cease to exist as a solution to our problem. Depending
on the fraction of oscillators in each cluster, this critical phenomenon is due to the merging with a different
two-cluster state, which is a continuation of an unstable solution at K = 0. This difference defines two well
differentiated regimes, mediated by an abrupt jump on the threshold KD.

When comparing these results with numerical integration of the equations of motion, we have found
systematic discrepancies between the values of KD and the coupling strength KU at which the two clus-
ters collapse into a single one. These discrepancies derive from the fact that, while in our multiple-scale
approximation only the coordinates of the two clusters are involved, the numerical integration accesses the
dynamics of all individual oscillators. The selection of the final state into which the two clusters collapse
upon destabilization mainly depends on a balance between the proportion of oscillators in each cluster,
and the distance of the final state to the unstable solution. While the presence of a large fraction of the
ensemble in one of the clusters favors the collapse into the closest stable state, the proximity of the unstable
solution may cause the system to collapse into the farthest one.

The ensemble of coupled identical Duffing oscillators studied here provides an example of multistable
self-organized clustering stemming from the individual dynamics of each oscillator. Besides their intrinsic
interest for the field of nonlinear dynamics, our results may be relevant to the technology of micromechanical
devices [Lifshitz & Cross, 2009], where the Duffing oscillator is a paradigmatic model for the motion of
pacemaking components.
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