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The aim of the present paper is to show the existence and properties of an exact universal exci-
tation waveform for optimal enhancement of directed ratchet transport (in the sense of the average
velocity). This is deduced from the criticality scenario giving rise to ratchet universality, and con-
firmed by numerical experiments in the context of a driven overdamped Brownian particle subjected
to a vibrating periodic potential. While the universality scenario holds regardless of the waveform
of the periodic vibratory excitations involved, it is shown that the enhancement of directed ratchet
transport is optimal when the impulse transmitted by those excitations (time integral over a half-
period) is maximum. Additionally, the existence of a frequency-dependent optimal value of the
relative amplitude of the two excitations involved is illustrated in the simple case of harmonic exci-
tations.

PACS numbers:

The possibility of generating directed transport from a
fluctuating environment without any net external force,
the ratchet effect [1-3], has been a major research topic
in distinct areas of science over the last few decades. The
reasons are its potential applications for understanding
such systems as molecular motors [4], protein transloca-
tion processes [5], and coupled Josephson junctions [6],
and its wide range of potential technological applications
including the design of micro- and nano-devices suitable
for on-chip implementation. Directed ratchet transport
(DRT) is now understood qualitatively to be a result of
the interplay of nonlinearity, symmetry breaking [7], and
non-equilibrium fluctuations including temporal noise [2],
spatial disorder [8], and quenched temporal disorder [9].
But only recently have several fundamental aspects be-
gun to be elucidated, including current reversals [10] and
the quantitative dependence of DRT strength on the sys-
tem’s parameters [11]. At first sight, this aspect of con-
trollability should be easier to investigate in non-chaotic
physical contexts such as those of certain extremely small
systems, including many nanoscale devices and systems
occurring in biological and liquid environments, in which
DRT is often suitably described by overdamped ratchets
[2,12-14]. Thus, the interplay between thermal noise and
symmetry breaking in the DRT of a Brownian particle
moving on a periodic substrate subjected to a homoge-
neous temporal biharmonic excitation has been explained
quantitatively in coherence with the degree-of-symmetry-
breaking (DSB) mechanism [15], as predicted by the the-
ory of ratchet universality (RU) [16]. For determinis-
tic ratchets subjected to biharmonic forces, it has been
shown [16] that there exists a universal force waveform
which optimally enhances directed transport by symme-
try breaking. Specifically, such a particular waveform
has been shown to be unique for both temporal and spa-

tial biharmonic forces. This universal waveform is a di-
rect consequence of the DSB mechanism: It is possible
to consider a quantitative measure of the DSB on which
the strength of directed transport by symmetry breaking
must depend. This mechanism has led to the unveiling of
a criticality scenario for DRT. Indeed, it has been shown
that optimal enhancement of DRT is achieved when max-
imal effective (i.e., critical) symmetry breaking occurs,
which is in turn a consequence of two reshaping-induced
competing effects: the increase of the DSB and the de-
crease of the (normalized) maximal transmitted impulse

over a half-period (I [f ] ≡
∣

∣

∣

∫

T/2
f(t)dt

∣

∣

∣
[16]), thus im-

plying the existence of a particular force waveform which
optimally enhances DRT. The definition of the DSB of
the symmetries of a T -periodic zero-mean ac force f (z)
is included here for the sake of completeness:

Ds (f) ≡
〈−f (z + T/2)

f(z)

〉

T

≡ 1

T

∫ T

0

−f (z + T/2)

f(z)
dz,

D+ (f) ≡
〈

f (−z)

f (z)

〉

T

≡ 1

T

∫ T

0

f (−z)

f (z)
dt,

D− (f) ≡ −D+ (f) , (1)

where increasing deviation ofDs,+,− (f) from 1(unbroken
shift and reversal symmetries, respectively) indicates an
increase in the DSB and z = {t, x} (see [16] for additional
details). Given the existence of such a universal wave-
form whose biharmonic approximation is now known, the
following fundamental questions naturally arise: What is
the exact waveform of such a universal periodic force?
What are the geometric properties of the associated op-
timal ratchet potential?
We shall here deduce the existence and properties of

such an exact universal excitation waveform from the

http://arxiv.org/abs/1901.03119v2


2

criticality scenario by providing two alternative deriva-
tions, and explore its implications in the case of a driven
Brownian particle moving in a back-and-forth travelling
periodic potential [2] described by the overdamped model

.
x+ sin [x− γf (t)] =

√
σξ (t) + γg (t) , (2)

where f(t), g(t) are temporal excitations with zero
mean, f(t) is T -periodic, γ is an amplitude factor,
ξ (t) is a Gaussian white noise with zero mean and
〈ξ (t) ξ (t+ s)〉 = δ (s), and σ = 2kbT

′ with kb and T ′

being the Boltzmann constant and temperature, respec-
tively. Note that Eq. (2) is equivalent to

.
z + sin z =

√
σξ (t) + γF (t) ,

F (t) ≡ g (t)−
.

f (t) , (3)

where z(t) ≡ x(t) − γf (t), and z and x are the parti-
cle phases relative to the vibrating potential frame and
the laboratory frame, respectively. Since the mean ve-
locity on averaging over different realizations of noise is
the same in both frames,

〈〈 .
x
〉〉

=
〈〈 .
z
〉〉

, we shall con-
sider Eq. (3) for convenience in our analysis. For the
sake of clarity, we shall confine ourselves to the regime
where the DSB mechanism dominates over the thermal
inter-well activation mechanism [15]. Also, we shall show
how RU allows the dependence of DRT velocity on the
system’s parameters to be explained quantitatively, and
works effectively in two significant cases: (1) when F (t)
is a truncated Fourier series of the exact universal peri-
odic excitation after N > 2 terms, and (2) when f(t) and
g(t) are harmonic excitations. For deterministic ratchets,
the effectiveness of the theory of RU has been demon-
strated in diverse physical contexts in which the driving
excitations are chosen to be biharmonic. Examples are
cold atoms in optical lattices [17], topological solitons [9],
Bose-Einstein condensates exposed to a sawtooth-like op-
tical lattice potential [18], matter-wave solitons [11], and
one-dimensional granular chains [19].
Exact universal excitation waveform.−Let us assume

in this section that the excitation’s amplitude and pe-
riod are fixed. The criticality scenario giving rise to the
existence of a universal excitation waveform which opti-
mally enhances DRT is a consequence of two competing
reshaping-induced effects: the increase in DSB and the
decrease in the (normalized) maximal transmitted im-
pulse over a half-period [16]. This means that the greater
the impulse transmitted by a periodic excitation having
its shift symmetry broken, the lower the DSB needed to
yield the same strength of DRT, and vice versa. Since the
strength of any transport (induced by symmetry break-
ing or not, i.e., by non-zero-mean forces), in the sense of
the mean kinetic energy per unit of mass on averaging

over different realizations of noise
〈〈

.
x
2
〉〉

/2, depends

upon the impulse transmitted by the driving excitation
(see the Appendix for a detailed deduction), and the
waveform yielding maximal transmitted impulse is that
of a square-wave, the exact universal waveform should

present a constant positive value, A, over a certain range
t ∈ [0, τ ] , 0 < τ < T , and a constant negative value, −B,
over the remaining range t ∈ ]τ, T ], i.e., it should belong
to the parameterized family of functions

F(t) ≡ 2(A+B)

π

∞
∑

n=1

sin (nπτ/T )

n
cos

[

2nπ

T
(t− τ/2)

]

=
(A+B)

π

∞
∑

n=1

[an (τ) cos (nωt) + bn (τ) sin (nωt)] ,

an (τ) ≡
sin (nωτ)

n
, bn (τ) ≡

1− cos (nωτ)

n
, (4)

where ω ≡ 2π/T . Clearly, the constraintsA 6= B and τ 6=
T/2 are necessary conditions to satisfy two requirements:
the breaking of the shift symmetry and the zero-mean
property of the exact universal excitation fu(t). This
further requirement implies the relationship

τ = T/(1 +A/B), (5)

i.e., one only has to obtain the suitable value of either the
asymmetry parameter τ or A/B that makes the DSB
maximally effective, thus providing the exact universal
excitation waveform.
The suitable value of τ can be calculated from the ob-

servation that the exact universal excitation waveform
cannot be independent of the biharmonic universal ex-
citation waveform due to the unique character of both
waveforms. This is due to the latter should inevitably be
contained in the Fourier series of the former in the form
of an infinity of harmonic pairs whose frequencies are one
double the other while having the same waveform than
that of the biharmonic universal excitation. Indeed, the
biharmonic universal excitation is equivalently described
by the expressions [16]

fsin,sin,±(t) ≡ ε

[

sin (ωt)± 1

2
sin (2ωt)

]

,

fcos,sin,±(t) ≡ ε

[

cos (ωt)± 1

2
sin (2ωt)

]

, (6)

which satisfy the symmetries

fsin,sin,+(t+ T/2) = −fsin,sin,−(t),

fcos,sin,+(t+ T/2) = −fcos,sin,−(t),

fsin,sin,±(t+ T/4) = fcos,sin,∓(t) (7)

(see Fig. 1, top panel). From the Fourier series of F(t)
[Eq. (4)], one has four harmonic pairs having frequencies
ω and 2ω in each pair:

b1 (τ) sin (ωt) + b2 (τ) sin (2ωt) , (8a)

a1 (τ) cos (ωt) + b2 (τ) sin (2ωt) , (8b)

b1 (τ) sin (ωt) + a2 (τ) cos (2ωt) , (8c)

a1 (τ) cos (ωt) + a2 (τ) cos (2ωt) . (8d)

We see that the waveforms of the biharmonic expressions
(8c) and (8d) do not correspond to that of the biharmonic
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universal excitation (cf. Eq. (6)), the biharmonic ex-
pression (8b) with a1 (τ) = ±2b2 (τ) does but presents
a phase difference of T/4 with respect to F(t), while
the biharmonic expression (8a) with b1 (τ) = ±2b2 (τ)
does and is in phase with F(t). Therefore, the compati-
bility between the exact universal excitation waveform
and the biharmonic universal excitation requires that
|b1 (τ) /b2 (τ)| = 2, i.e.,

1− cos (ωτ) = ±1− cos (2ωτ)

2
. (9)

After defining z ≡ cos (ωτ), Eq. (9) can be put into
the form 2z2 − z − 1 = 0, 2z2 − z − 3 = 0, for the
signs +,−, respectively. The solutions z = −3/2 and
z = 1 of the latter algebraic equation lack mathematical
sense (z = −3/2 < −1) and physical sense (z = 1 ⇒
A/B = 0, cf. Eq. (5)), respectively. The solutions of
the former algebraic equation are z = {1,−1/2}. For the
only meaningful solution, z = −1/2, one has

ωτ ≡ 2πτ

T
=

{

4π/3 ⇒ τ = 2
3T

2π/3 ⇒ τ = 1
3T

}

. (10)

Thus, after using Eq. (5), one finally obtains the condi-
tions τ = 2T/3 ⇔ A/B = 1/2 and τ = T/3 ⇔ A/B = 2
for the cases A < B and A > B, respectively. There-
fore, the values τ = 2T/3, A/B = 1/2 (or equivalently
τ = T/3, A/B = 2) fix the exact universal waveform of
the excitation fu(t) which yields DRT having the same
strength but opposite direction in the cases A/B = 1/2
and A/B = 2. It is worth noting that, for these two val-
ues of τ , τu ≡ {T/3, 2T/3}, the Fourier coefficients of the
exact universal excitation satisfy the properties (cf. Eq.
(4))

(n+ 3) bn+3(τ = τu) = nbn(τ = τu), (11a)

(n+ 3)an+3(τ = τu) = nan(τ = τu), (11b)

a3n(τ = τu) = b3n(τ = τu) = 0, (11c)

bn(τ = τu) = 2b2n(τ = τu), (11d)

an(τ = τu) = 2a2n(τ = τu), (11e)

bn(τ = τu) =
√
3 (−1)

n
an(τ = τu). (11f)

Properties (11a) and (11b) indicate a subtle pe-
riodicity of the coefficients, while property (11c)
makes explicit the periodic absence of an infinity
of coefficients. Remarkably, properties (11d) and
(11e) indicate that the harmonic pairs of the types
bn (τ) sin (nωt)+ b2n (τ) sin (2nωt) and an (τ) cos (nωt)+
a2n (τ) cos (2nωt), respectively, also satisfy the require-
ment of the biharmonic universal excitation regarding the
relative amplitude of the two harmonics of each pair. No-
tice that property (11d) also shows that the biharmonic

universal excitation waveform is present in an infinite

series of harmonic pairs. Moreover, property (11f) to-
gether with properties (11a), (11b), and (11c) suggest
that the complete Fourier series of the exact universal
excitation fu(t) can be understood as the sum of two

complementary series: a series consisting only of sine
terms containing all the ratcheting effect, and another
series consisting only of cosine terms yielding the maxi-
mization of the transmitted impulse. Indeed, for the case
A/B = 1/2 for instance, one has

2πfu(t)

3
√
3A

≡ − cos(ωt) +
1

2
cos(2ωt)− 1

4
cos (4ωt)

+
1

5
cos (5ωt)− 1

7
cos (7ωt) +

1

8
cos (8ωt)− ...

+
√
3 sin(ωt) +

√
3

2
sin(2ωt) +

√
3

4
sin (4ωt)

+

√
3

5
sin (5ωt) +

√
3

7
sin (7ωt) +

√
3

8
sin (8ωt)

+ ... ≡ Cu(t) + Su(t), (12)

where Cu(t), Su(t) represent the aforementioned comple-
mentary series, while Cu,N (t), Su,N (t) denote the corre-
sponding truncated series afterN terms, respectively (see
Fig. 1, middle and bottom panels).
Alternatively, the suitable value of A/B can be calcu-

lated from the quantifier of the DSB associated with the
shift symmetry of fu(t), Ds(fu) [cf. Eq. (1)]. To this
end, we properly require that the (positive and negative)
amplitudes of F(t) and a suitable (symmetry-breaking-
inducing) biharmonic excitation, for example fbh(t) =
γ [η sin (ωt) + (1− η) sin (2ωt+ ϕ)] with γ > 0, η ∈
[0, 1] , ϕ = ϕopt ≡ π/2 [16], should be the same, i.e., A =
maxt fbh(t;ϕopt ≡ π/2), B = −mint fbh (t;ϕopt ≡ π/2).
One thus obtains straightforwardly

Ds (fu) ≡
1

T

∫ T

0

−fu (t+ T/2)

fu(t)
dt =

A

B
=

T − τ

τ

=

{

1− η + η2

8(1−η) , η 6
4
5

2η − 1, η >
4
5

}

, (13)

with A < B (and hence T/2 < τ < T ), and where
an increase in the deviation of Ds (fu) from 1 (unbro-
ken symmetry) indicates an increase in the DSB. One
finds that Ds (fu) has the value Ds (fu) |η=0,1= 1, and
presents, as a function of η, a single extremum at η = 2/3
(see Fig. 2, top panel), and hence the DSB is maxi-
mum when A/B = 1/2, τ = 2T/3 [cf. Eqs. (5) and
(13)]. As expected from a symmetry analysis, we ob-
tained the same behaviour when using any other alter-
native form for fbh(t) together with the corresponding
suitable values of ϕopt in each case [16]. In particular,
for the other optimal value, ϕopt ≡ 3π/2 correspond-
ing to fbh(t) = γ [η sin (ωt) + (1− η) sin (2ωt+ ϕ)], one
straightforwardly obtains maxt fbh(t;ϕopt ≡ 3π/2) =
−mint fbh (t;ϕopt ≡ π/2), mint fbh (t;ϕopt ≡ 3π/2) =
−maxt fbh(t;ϕopt ≡ π/2), and Ds (fu) = B/A =
τ/ (T − τ) with A > B (and hence 0 < τ < T/2).
This value of Ds (fu) presents the same dependence on
η than that corresponding to ϕopt ≡ π/2 [Eq. (13)], and
hence the DSB is maximum when A/B = 2, τ = T/3
and the DRT has the same strength but opposite di-
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FIG. 1: Top: Functions fsin,sin,±(t) and fcos,sin,±(t) [cf. Eq.
(6)] representing the biharmonic universal excitation vs t.
The horizontal and vertical arrows indicate the symmetries
that relate the different representations [cf. Eq. (7)]. Mid-
dle: Truncations of the series Su(t) and Cu(t) [cf. Eq. (12)]
after N = 2, 6, 14 terms vs t (solid curves of respectively
decreasing thickness), Su,N(t) (upper panel) and Cu,N (t),
respectively. Bottom: Functions Su,N=10(t), Cu,N=10(t) +
Su,N=10(t) (upper panel, solid and dashed lines, respectively)
and Cu,N=10(t), Su,N=10(t), Cu,N=10(t) + Su,N=10(t) (solid
and dashed lines, respectively) vs t.

rection to that corresponding to ϕopt ≡ π/2. There-
fore, the values A/B = 1/2, τ = 2T/3 (or equivalently
A/B = 2, τ = T/3) again fix the exact universal wave-
form of the excitation fu(t) as well as the properties of
the associated ratchet potential Uu (x) ≡ −

∫

fu(x)dx
(see Fig. 2, middle and bottom panels). In this regard, it
is worth mentioning that the biparametric (A,B) family
of dichotomous driving waveforms predicted in Ref. [20]
for optimal enhancement of DRT in overdamped, adia-
batic rocking ratchets includes (without indicating that
it is a special case) the exact universal waveform of fu(t)
for the particular choice A/B = 1/2. Also, the exact
universal waveform was used (without indicating the rea-
son of its choice) in the experimental realization of a
relativistic-flux-quantum-based diode [12]. After calcu-
lating the Fourier series of the universal excitation and
potential,

fu(t) ≡
6A

π

∞
∑

n=1

sin (2nπ/3)

n
cos [2nπ (t/T − 1/3)] ,

(14)

Uu(x) ≡ −3Aλ

π2

∞
∑

n=1

sin (2nπ/3)

n2
sin [2nπ (x/λ− 1/3)] ,

(15)

where λ is the spatial period, one obtains the geometric
properties of the universal ratchet potential per unit of
amplitude and unit of spatial period [Eq. (15); see Fig. 2,
bottom panel].
Next, we consider the case g(t) = 0 and f(t) =

− (1/A)
∫

fu,N (t)dt [cf. Eq. (15)], i.e., F (t) ≡ fu,N(t)/A
in Eq. (3), with fu,N (t) being the Fourier series of fu(t)
truncated after N terms [cf. Eq. (14)]. Our numerical
results systematically indicate an overall increase of the
maximum value of

〈〈 .
z
〉〉

with the number of terms N ,
while keeping the remaining parameters constant. More-
over, the typical instance shown in Fig. 3 (top panel) in-
dicates that the average velocity (absolute value) quickly
increases with N , and reaches its asymptotic value for
N ∼ 13. This behaviour is found to be correlated with
that of the impulse per unit of amplitude transmitted by
fu,N(t) over a half-period,

IN ≡ 1

T

∫ T/2

0

fu,N(t)dt

=
3

π2

N
∑

i=1

sin
(

2iπ
3

) [

sin
(

iπ
3

)

+ sin
(

2iπ
3

)]

i2
, (16)

as expected from the theory of RU [16] (see Fig. 3, bottom
panel).
Harmonic excitations.−For the sake of completeness,

we next explore the standard case [2] in which the two
temporal excitations involved are harmonic: f(t) ≡
η cos (ωt), g(t) ≡ (1− η) cos (2ωt+ ϕ) , ω ≡ 2π/T, η ∈
[0, 1] in Eq. (2), i.e.,

F (t) ≡ ηω sin (ωt) + (1− η) cos (2ωt+ ϕ) (17)



5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

Η

1
-

D
s

0.0 0.2 0.4 0.6 0.8 1.0

-2

-1

0

1

t � T

f u
�

A

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

x � Λ + 2 � 3

U
u
�
H

A
Λ
L

FIG. 2: Top: Quantifier of the DSB associated with the shift
symmetry Ds vs amplitude factor η [cf. Eq. (13) and the text]
for the exact universal excitation fu(t) [cf. Eq. (14)]. Mid-
dle: Function fu(t) and the truncations of its Fourier series
after N = 2, 7, 25 terms vs t (solid curves of respectively de-
creasing thickness). Bottom: Exact universal potential Uu(x)
[cf. Eq. (15)] and the truncations of its Fourier series after
N = 2, 7, 25 terms vs x (solid curves of respectively decreas-
ing thickness). The values of the steep and shallow slopes are
2 and −1, respectively.

in Eq. (3). Leaving aside the effect of noise (an effective
change of the potential barrier which is in turn controlled
by the DSB mechanism [15]), RU predicts (for σ = 0)
that the optimal value of the relative amplitude η comes
from the condition that the amplitude of sin (ωt) must be
twice as large as that of cos (2ωt+ ϕ) in Eq. (3) with F (t)
given by Eq. (17), and the optimal values of the initial
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v N
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v N
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 2
  ,

  I
N
 / 

I N
 =

 2
 

N

FIG. 3: Top: Average velocity vN ≡
〈〈 .
z
〉〉

[cf. Eq. (3); dots]
as a function of the number, N , of harmonics which are re-
tained in the truncated Fourier series of fu(t) [cf. Eq. (14)].
The horizontal line indicates the asymptotic value of the av-
erage velocity corresponding to the complete series of fu(t).
Bottom: Normalized average velocity (dots) and normalized
impulse [cf. Eq. (16); stars] as functions of the number of
harmonics, N . The horizontal lines indicate the respective
asymptotic values when N → ∞. The dashed lines connect-
ing the symbols are solely to guide the eye. Fixed parameters:
γ = 8, T = 4π, σ = 0.8.

phase difference are ϕ = ϕopt ≡ {0, π} [16]. Thus, RU
predicts the existence of a frequency-dependent optimal
value of η:

ηopt ≡ 2/ (2 + ω) , (18)

and, equivalently, an optimal frequency for each value
of η: ωopt ≡ 2 (1− η) /η. Numerical simulations con-
firmed this prediction over a wide range of frequencies
(see Fig. 4, top panel). As mentioned above, the numer-
ical estimate of the η value at which the average velocity
presents an extremum, ησ>0

opt , is slightly lower than the
corresponding value ηopt [Eq. (18)], as expected [15] (see
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FIG. 4: Top: Average velocity
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z
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[cf. Eq. (3)] vs rela-
tive amplitude η and frequency ω for F (t) ≡ ηω sin (ωt) +
(1− η) cos (2ωt+ ϕ) [cf. Eq. (17)]. Also plotted is the theoret-
ical prediction for the maximum average velocity [cf. Eq. (18);
solid curve]. Bottom:

〈〈 .
z
〉〉

vs η for three values of the
frequency: ω = 0.5, 1.5, 3. The vertical dashed lines indi-
cate the respective predicted optimal values of η for σ = 0
[cf. Eq. (18)]. Fixed parameters: ϕ = ϕopt = 0, σ = 10, γ =
15.

Fig. 4, bottom panel). It is worth noting that the prop-
erty Eq. (18) represents a genuine feature of the back-
and-forth travelling potential ratchet [Eq. (2)] which is
absent in the case of an overdamped rocking ratchet [15].
Also, this finding is in sharp contrast with the predic-
tion coming from all the earlier theoretical approaches
[3,7, 21-23], namely, that the dependence of the average
velocity should scale as

〈〈 .
z
〉〉

∼ γ3ω2η2 (1− η) , (19)

which fails to explain the observed phenomenology
(cf. Fig. 4). Indeed, this amplitudes catastrophe comes
from the assumption that the contributions of the ampli-
tudes of the two harmonic excitations to the average ve-
locity are independent. However, the existence of a uni-
versal waveform which optimally enhances DRT implies
that the two amplitudes are correlated in the sense men-

tioned above. It is worth mentioning that the case where
the roles played by the harmonic excitations η cos (ωt)
and (1− η) cos (2ωt+ ϕ) are interchanged presents dif-
ferent optimal values of the initial phase ϕ and a differ-
ent dependence on the frequency of the optimal value of
η, and that numerical simulations again confirmed these
predictions from RU (see the Appendix for analytical and
numerical details). To confirm the aforementioned char-
acteristics of the criticality scenario giving rise to the
existence of the exact universal excitation waveform, we
compared the ratchet effectiveness of the biharmonic ex-
citation [Eq. (17)] with that of F (t) ≡ F(t) [cf. Eq. (4)]
subjected to the requirement that both excitations have
the same (positive and negative) amplitudes for each
value of η. Recall that varying the amplitudes of F(t) im-
plies varying the asymmetry parameter τ , and vice versa
[cf. Eq. (5)], whence both τ and A/B will be η-dependent
so as to allow a proper comparison of the ratchet effec-
tiveness of these excitations. Indeed, the results shown in
Fig. 5 indicate that the DRT strength of the dichotomous
excitation is greater than that of the biharmonic excita-
tion over (almost) the entire range of η values, i.e., en-
hancement of DRT occurs when the impulse transmitted
is maximum regardless of the DSB of the two excitations.
One clearly sees in Fig. 5 that the greater the impulse
transmitted, the lower the DSB needed to yield the same
strength of DRT, and vice versa, as predicted from the
criticality scenario. Note that the noise-induced decrease
of the optimal value of η with respect to the correspond-
ing deterministic prediction, ησ=0

opt − ησ>0
opt [ησ=0

opt = 0.8;
cf. Eq. (18)], is slightly lower when the transmitted im-
pulse is maximum. This provides additional evidence for
the impulse being the main quantifier of the driving effec-
tiveness of a periodic excitation. Additionally, robustness
of the present universality scenario is also observed when
the external periodic excitation is replaced by a chaotic
excitation having the same underlying main frequency in
its Fourier spectrum (see the Appendix).

Conclusions.–In summary, from the criticality scenario
giving rise to ratchet universality we have demonstrated
the existence and properties of an exact universal ex-
citation waveform for optimal enhancement of directed
ratchet transport by providing two alternative deriva-
tions. Our numerical experiments confirmed those find-
ings, as well as revealed other unanticipated properties
for the standard case of harmonic excitations in the gen-
eral context of a driven overdamped Brownian particle
subjected to a vibrating periodic potential. The exact
universal waveform is the simplest possible (a particu-
lar dichotomous waveform), and is far more efficient that
its biharmonic approximation, and the waveform of the
associated optimal ratchet potential is therefore a partic-
ular case of the simplest piecewise waveform as is used,
for instance, in a flashing ratchet. Since most models of
biological Brownian motors are compatible with a sim-
plified description based on the flashing ratchet, we are
tempted to conjecture that the universal optimal ratchet
potential could underlie the complex biological machin-
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FIG. 5: Average velocity
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z
〉〉

[cf. Eq. (3)] vs parame-
ter η (see the text) for two choices of the excitation F (t):
ηω sin (ωt) + (1− η) cos (2ωt+ ϕ) [cf. Eq. (17); dots] and
F(t) [cf. Eq. (4); stars]. The lines connecting the sym-
bols are solely plotted to guide the eye. Fixed parameters:
γ = 8, T = 4π, ϕ = ϕopt = 0, σ = 4.

ery operating at the nanoscale as a result of evolutionary
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I. APPENDIX: SUPPLEMENTARY

CALCULATION DETAILS AND RESULTS

This Appendix provides details on the energy analysis,
the case where the roles of the harmonic excitations are
interchanged, and the case where the external periodic
excitation is substituted by a chaotic excitation.

A. Energy-based analysis

In this subsection we deduce an analytical expression for
the mean kinetic energy per unit of mass on averaging
over different realizations of noise of a Brownian particle
of mass m which satisfies the general equation of motion

m
..
x+

dU

dx
= −µ

.
x+ γf (t) +

√
σξ (t) , (A1)

where U(x) is a potential subject to a lower bound (i.e.,
∃ α ∈ R / U(x) > α ∀x), f(t) is a unit-amplitude T -
periodic function with zero mean, ξ (t) is a Gaussian
white noise of zero mean and 〈ξ (t) ξ (t+ s)〉 = δ (s), and

σ = 2µkbT
′

with kb and T
′

being the Boltzmann con-
stant and temperature, respectively. Also, we assume
without loss of generality that f (0 6 t 6 T ∗) > 0 and
redefine here the impulse transmitted by f(t) (per unit
of amplitude) as

I ≡
∫ nT+T∗

nT

f (t) dt > 0, n = 0, 1, 2, ... . (A2)

Equation (A1) has the associated energy equation

dE

dt
= −µ

.
x
2
+ γ

.
xf (t) +

√
σ

.
xξ (t) , (A3)

where E(t) ≡ (m/2)
.
x
2
(t) + U [x (t)] is the energy

function. Integration of Eq. (A3) over the intervals
[nT, nT + T ∗] and [nT + T ∗, (n+ 1)T ], n = 0, 1, 2, ...,
yields

E (nT + T ∗) = E(nT )− µ

∫ nT+T∗

nT

.
x
2
(t) dt

+
√
σ

∫ nT+T∗

nT

.
x (t) ξ (t) dt

+ γ

∫ nT+T∗

nT

.
x (t) f (t) dt, (A4)

E [(n+ 1)T ] = E(nT + T ∗)− µ

∫ (n+1)T

nT+T∗

.
x
2
(t) dt

+
√
σ

∫ (n+1)T

nT+T∗

.
x (t) ξ (t) dt

+ γ

∫ (n+1)T

nT+T∗

.
x (t) f (t) dt, (A5)

respectively, where the second integrals in Eqs. (A4) and
(A5) are considered in the Stratonovich sense. After ap-
plying the first mean value theorem for integrals [24] to
the last integrals on the right-hand sides of Eqs. (A4)
and (A5), using Eq. (A2), and recalling that f(t) is a
zero-mean function, one obtains

E (nT + T ∗) = E(nT )− µ

∫ nT+T∗

nT

.
x
2
(t) dt (A6)

+
√
σ

∫ nT+T∗

nT

.
x (t) ξ (t) dt+ γ

.
xnI,

E [(n+ 1)T ] = E(nT + T ∗)− µ

∫ (n+1)T

nT+T∗

.
x
2
(t) dt (A7)

+
√
σ

∫ (n+1)T

nT+T∗

.
x (t) ξ (t) dt− γ

.
x
′

nI,

respectively, where the discrete variables
.
xn ≡

.
x (tn) ,

.
x
′

n ≡ .
x (t′n), with tn and t′n being unknown in-

stants which only have to satisfy the respective relation-
ships nT 6 tn 6 nT + T ∗ and nT + T ∗ 6 t′n 6 (n+1)T ,
according to the first mean value theorem for integrals.
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After adding Eqs. (A6) and (A7) from n = 0 to n = N−1
and dividing the result by NT , one obtains

E (NT )− E (0)

NT
= − µ

NT

∫ NT

0

.
x
2
(t) dt

+ γI

N−1
∑

n=0

[

.
xn − .

x
′

n

NT

]

+

√
σ

NT

∫ NT

0

.
x (t) ξ (t) dt. (A8)

Upon taking the limit N → ∞ in Eq. (A8), averaging
over different realizations of noise, and recalling that the
system (A1) is dissipative and that ξ (t) is a stationary
random process which cannot contain a shot noise com-
ponent, one finally obtains

〈〈

.
x
2
〉〉

=
γI

µ

[

〈〈 .
xn

〉〉

−
〈〈

.
x
′

n

〉〉]

+

√
σ

µ

〈〈 .
xξ

〉〉

. (A9)

The following remarks are now in order. First,
〈〈 .
xn

〉〉

provides the average of the particle’s velocity when
.
x is

measured exclusively at certain instants for which f(t)
has the same sign as the acceleration

..
x [cf. Eq. (A1)],

i.e., when f(t) tends to yield an increase in the parti-

cle’s velocity, while
〈〈

.
x
′

n

〉〉

does the same when f(t)

has the opposite sign to
..
x, i.e., when f(t) tends to

yield a decrease in the particle’s velocity. One sees
from Eq. (A9) that the effect of the difference

〈〈 .
xn

〉〉

−
〈〈

.
x
′

n

〉〉

on the average kinetic energy per unit of mass

is modulated by the impulse per unit of amplitude,
while keeping the remaining parameters constant. Sec-
ond, increasing the noise strength from σ = 0 acti-
vates the term

〈〈 .
xξ

〉〉

, which can be positive or nega-
tive. Third, one has limm→0 [E(NT )− E(0)] /(NT ) =
[U(NT )− U(0)] /(NT ) and hence Eq. (A9) remains
valid in the overdamped limiting case.

B. Complementary case of harmonic excitations

Let us consider the case of harmonic excitations in
Eq. (2) when the roles of the excitations η cos (ωt) and
(1− η) cos (2ωt+ ϕ) are interchanged, i.e., the Langevin
equation now reads

.
x+ sin [x− γ(1− η) cos (2ωt+ ϕ)] =

√
σξ (t)

+ γη cos (ωt) .
(A10)

In the reference frame associated with the vibrating po-
tential, one then obtains

.
z + sin z = γ [η cos (ωt) + 2ω (1− η) sin (2ωt+ ϕ)]

+
√
σξ (t) , (A11)

where z(t) ≡ x(t) − γ(1 − η) cos (2ωt+ ϕ). Once again,
ratchet universality predicts that the optimal value of the
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FIG. 6: Average velocity
〈〈 .
z
〉〉

[cf. Eq. (A11)] vs relative
amplitude η and frequency ω for the parameters ϕ = ϕopt =
π/2, σ = 4, γ = 8. Also plotted (solid line) is the theoretical
prediction for the maximum average velocity [cf. Eq. (A12)].

relative amplitude η comes from the condition that the
amplitude of cos (ωt) must be twice as large as that of
sin (2ωt+ ϕ) in Eq. (A11), while the optimal values of
the initial phase difference are ϕ = ϕopt ≡ {π/2, 3π/2}
[16]. It therefore predicts the existence of a different

(with respect to the case considered above, cf. Eq. (18))
frequency-dependent optimal value of η:

ηopt ≡
4ω

1 + 4ω
, (A12)

and, equivalently, a different optimal frequency for each
value of η:

ωopt ≡
η

4 (1− η)
. (A13)

Numerical simulations (as shown in Fig. 6) confirmed
this new prediction over a wide range of frequencies.

C. Robustness against chaotic excitations

In this subsection, we study the robustness of the univer-
sality scenario against the presence of a bounded chaotic
excitation instead of an external periodic excitation. We
shall consider the simple case f(t) ≡ η cos (ωt+ ϕ/2),
g(t) ≡ (1− η)α

.
y(t), ω ≡ 2π/T, η ∈ [0, 1] in Eq. (2), i.e.,

F (t) = Fchaos(t) ≡ ηω sin (ωt+ ϕ/2) + (1− η)α
.
y(t)
(A14)

in Eq. (3), where
.
y(t) is a chaotic response of a master

system exhibiting the same underlying main frequency,
2ω, in its Fourier spectrum [cf. Eq. (17)], but cannot
itself yield DRT. The value of α is chosen in order for
the excitations cos (2ωt+ ϕ) and α

.
y(t) to have simi-

lar ranges. We considered the following master system
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FIG. 7: (a) Velocity time series of
.
y(t), and (b) the corre-

sponding power spectrum (log
10

|S (ω)| versus ω/ω0) associ-
ated with the damped driven pendulum given by Eqs. (A14)
and (A15). Fixed parameters: ω0 = 0.5, K = 2.25, δ =
0.375, F = 2.48625.

(damped driven pendulum)

..
y +K sin y = −δ

.
y + F cos (2ω0t) , (A15)

with the parameter values ω0 = 0.5,K = 2.25, δ =
0.375, F = 2.48625, for which the pendulum presents
a chaotic attractor irrespective of the initial conditions.
Figure 7(a) shows the time series corresponding to the ve-
locity

.
y(t), and Fig. 7(b) shows the corresponding power

spectrum which presents its main peak at the frequency
2ω0. Note the presence of additional peaks at the fre-
quencies 6ω0, 10ω0, 14ω0, ..., i.e., the underlying periodic
solution, f(t), only presents odd harmonics and hence
satisfies the shift symmetry f(t + T/2) = −f(t) with
T = π/ω0. This means that the function f(t) itself can-
not yield directed ratchet transport.

We found numerically the same dependence of the av-
erage velocity on η as in the biharmonic case [Eq. (17)],
but with a drastic decrease of the DRT strength (see
Fig. 8, top). Indeed, the presence of other noticeable
harmonics in the Fourier spectrum of

.
y(t) [cf. Fig. 7(b)]

yields interferences with the excitation ηω sin (ωt) which
leads Fchaos(t) to deviate from the optimal biharmonic
approximation [cf. Eq. (10)]. This phenomenon and the
inherent noise background lead to Fchaos(t) losing DRT
effectiveness, but without deactivating the DSB mecha-
nism, and also to an additional decrease in the optimal
value of η with respect to the corresponding deterministic
prediction [cf. Eq. (18)]. This robustness is also manifest
in the dependence of the average velocity on ϕ (see Fig.
8, bottom).
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FIG. 8: Top: Average velocity
〈〈 .
z
〉〉

[cf. Eq. (3)] vs parame-
ter η for f(t) = η cos (ωt+ ϕ/2), ϕ = ϕopt = 0, and two exci-
tations g(t) having the same underlying main frequency, 2ω,
in their Fourier spectrum: chaotic excitation [cf. Eqs. (A14)
and (A15); dots] and biharmonic excitation [cf. Eq. (17);
stars]. Bottom:

〈〈 .
z
〉〉

vs ϕ for the chaotic excitation and
η = {0.7, 0.8}. The lines connecting the symbols are solely to
guide the eye. Fixed parameters: γ = 8, T = 4π, σ = 5, α =
0.25.


