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Abstract

Generic results for degenerate Chenciner (generalized Neimark-Sacker) bifurcation are ob-
tained in the present work. The bifurcation arises in two-dimensional discrete-time systems with
two independent parameters. We define in this work a new transformation of parameters, which
enables the study of the bifurcation when the degeneracy occurs. By the four bifurcation diagrams
we obtain, new behaviors hidden by the degeneracy are brought to light.

1 Introduction

Many real-world applications are modeled using dynamical systems described by both differential
equations and their discrete-time counterparts, namely, difference equations. A discrete-time approach
for studying various models is proved to be efficient, especially from a computational point of view.
They may uncover complex behaviors which are not easily captured by a continuous-time approach.
A review on continuous-time versus discrete-time approaches in scheduling of chemical processes is
presented in [7]. The study of discrete-time dynamical systems is an active field of research [2], [6]–[10],
[12]–[16]. The analysis of bifurcations is among the most relevant topics in the qualitative theory of
dynamical systems, particularly, in discrete-time systems [17].

In this work, we focus our attention on the Chenciner bifurcation (known also as the generalized
Neimark-Sacker bifurcation) [Chenciner, 1985, 1988], [5], which arises in two-dimensional discrete-time
dynamical systems with two real parameters. The presence of this bifurcation in a three-mass chain
model has been reported in [1]. The non-degenerate case of this bifurcation has been studied earlier
[11], while a degenerate case has been recently presented in [15].

The purpose of this paper is to further study the degenerate case from [15], by considering a
different approach, which reduces the number of bifurcation diagrams that are needed to describe the
bifurcation in the degenerate case.

The paper is organized as it follows. After the introduction, in section two we present the main
ingredients of the bifurcation and establish the research objectives to be explored later in the work.
Section three presents briefly the general results which are needed for studying the bifurcation in a
degenerate framework. The main results of the paper are comprised in section four, where we define
a new transformation of parameters for the degeneracy we study. Using this change we obtain four
bifurcation diagrams, which describe the behavior of the system when the degeneracy occurs. The
last section contains conclusive remarks on our results.
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2 Preliminaries

Consider the discrete-time system
xn+1 = f (xn, α) , (1)

where xn ∈ R2, n ∈ Z, α = (α1, α2) ∈ R2 and f is a smooth function of class Cr with r ≥ 2. Another
form of (1) which avoids indices is

x 7−→ f (x, α) . (2)

Using complex coordinates, (2) can be written as

z 7−→ δ (α) z + g (z, z̄, α) , (3)

where δ and g are smooth functions, δ (α) = r (α) eiθ(α) and g (z, z̄, α) =
∑

k+l≥2
1

k!l!gkl (α) z
kz̄l, with

r (0) = 1 and θ (0) = θ0; gkl (α) are smooth complex-valued functions.
Equation (3) can be further transformed as in [11] to

w 7−→
(
r (α) + b1 (α)ww̄ + b2 (α)w

2w̄2
)
weiθ(α) +O

(
|w|6

)
, (4)

where bk (α) = ak (α) e
−iθ(α), k = 1, 2.

Remark 2.1. Equation (3) becames (4) by using the following invertible smoothly parameter change
of complex coordinate

z = w +
∑

2≤k+l≤5

1

k!l!
hkl(α)w

kw̄l, h21(α) = h32(α) = 0.

Denoting by
β1 (α) = r (α)− 1 and β2 (α) = Re (b1(α)) , (5)

and using polar coordinates, (4) becomes{
ρn+1 = ρn

(
1 + β1 (α) + β2 (α) ρ

2
n + L2 (α) ρ

4
n

)
+ ρnO

(
ρ6n
)

φn+1 = φn + θ (α) + ρ2n

(
Im(b1(α))
β1(α)+1 +O (ρn, α)

)
, (6)

where L2 (α) =
Im2(b1(α))+2(1+β1(α))Re(b2(α))

2(β1(α)+1) .

A bifurcation in the system (6) satisfying r (0) = 1, Re (b1(0)) = 0 and L2 (0) ̸= 0, is known as the
Chenciner bifurcation. Since β1 (0) = 0, it follows that

L2 (0) =
1

2

(
Im2 (b1 (0)) + 2Re (b2 (0))

)
.

When the transformation of parameters

(α1, α2) 7−→ (β1 (α) , β2 (α)) (7)

is regular at (0, 0) , then β1 and β2 become the new parameters of the system (6). This is the non-
degenerate case of the bifurcation.

The aim of this paper is to study the bifurcation in the degenerate case with respect to the
transformation of parameters (7), namely, when (7) is not regular at (0, 0) . Hence, we cannot use β1,2

as new parameters of the system (6), due to this degeneracy condition. Alternatively, we could keep
on working with the initial parameters α1,2 in the polar form (6), as it is done in [15], or explore for
another regular transformation of the parameters. We opt for the second method in this paper.
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3 Analysis of degenerate Chenciner bifurcation

The truncated form of the ρ−map of (6) obtained by eliminating higher order terms is

ρn+1 = ρn
(
1 + β1 (α) + β2 (α) ρ

2
n + L2 (α) ρ

4
n

)
. (8)

The φ−map of (6), which describes a rotation by an angle depending on α and ρ, can be approx-
imated by its truncated form

φn+1 = φn + θ (α) . (9)

Assume 0 < θ (0) < π. Henceforward, the system to be studied in this paper is (8)-(9), which is
known as the (truncated) normal form of the system (4). The main equation shaping the dynamics
of the system (8)-(9) is the ρ−map (8), which is independent from the φ−map and therefore, will be
studied separately.

Defining a one-dimensional dynamical system, the ρ−map has the fixed point ρ = 0, for all values
of α, which corresponds to the fixed point O (0, 0) in the normal form (8)-(9). A positive nonzero
fixed point of the ρ−map corresponds to an invariant closed curve in (8)-(9).

Observe that sign (L2 (α)) = sign (L0) for |α| =
√

α2
1 + α2

2 sufficiently small, as

L2 (α) = L0 (1 +O (|α|)) and L0 ̸= 0.

Throughout the work, O (|α|n) denotes the higher order terms in a Taylor expansion at α = 0. For
example,

O (|α|) = k10α1 + k01α2 + ... and O
(
|α|2

)
= k20α

2
1 + k11α1α2 + k02α

2
2 + ...

The next Proposition 3.1 describes the stability of O for |α| sufficiently small, while Theorem 3.2
deals with the existence of invariant closed curves in the normal form (8)-(9). Their proofs can be
obtained by studying (8) and are presented in [15].

Proposition 3.1. The fixed point O is (linearly) stable if β1 (α) < 0 and unstable if β1 (α) > 0, for
all values α with |α| sufficiently small. On the bifurcation curve β1 (α) = 0, O is (nonlinearly) stable
if β2 (α) < 0 and unstable if β2 (α) > 0, when |α| is sufficiently small. At α = 0, O is (nonlinearly)
stable if L0 < 0 and unstable if L0 > 0.

The positive nonzero fixed points of the ρ−map (8), which are the solutions of the equation

L2 (α) y
2 + β2 (α) y + β1 (α) = 0, (10)

where y = ρ2n, generate invariant closed curves (invariant circles) in the system (8)-(9).
Denote by

∆ (α) = β2
2 (α)− 4β1 (α)L2 (α) , (11)

respectively, y1 = 1
2L2(α)

(√
∆(α)− β2 (α)

)
and y2 = − 1

2L2(α)

(√
∆(α) + β2 (α)

)
the two roots of

(10), whenever they exist as real numbers.

Theorem 3.2. The following assertions are true.
1) When ∆(α) < 0 for all |α| sufficiently small, the normal form (8)-(9) has no invariant circles.
2) When ∆(α) > 0 for all |α| sufficiently small, the normal form (8)-(9) has:

a) one invariant unstable circle ρn =
√
y1 if L0 > 0 and β1 (α) < 0;
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b) one invariant stable circle ρn =
√
y2 if L0 < 0 and β1 (α) > 0;

c) two invariant circles, ρn =
√
y1 unstable and ρn =

√
y2 stable, if L0 > 0, β1 (α) > 0,

β2 (α) < 0 or L0 < 0, β1 (α) < 0, β2 (α) > 0; in addition, y1 < y2 if L0 < 0 and y2 < y1 if L0 > 0;
d) no invariant circles if L0 > 0, β1 (α) > 0, β2 (α) > 0 or L0 < 0, β1 (α) < 0, β2 (α) < 0.

3) On the bifurcation curve ∆(α) = 0, the system (8)-(9) has one invariant unstable circle ρn =√
y1 for all L0 ̸= 0.

4) When β1 (α) = 0, the system (8)-(9) has one invariant circle ρn =
√

−β2(α)
L0

whenever L0β2 (α) <

0. It is stable if L0 < 0 and β2 (α) > 0, respectively, unstable if L0 > 0 and β2 (α) < 0.

4 Bifurcation diagrams

The transformation (7) is not regular at α = 0 and, thus, the Chenciner bifurcation is degenerate,

if and only if ∂β1

∂α1

∂β2

∂α2
− ∂β1

∂α2

∂β2

∂α1

∣∣∣
α=0

= 0. Denoting the coefficients of the linear parts of β1,2 (α) by

∂β1

∂αi
(0) = ci, respectively,

∂β2

∂αi
(0) = di, i = 1, 2, the degeneracy condition becomes

c1d2 − c2d1 = 0. (12)

Assume ci ̸= 0 and di ̸= 0. Denote by L2 (α) = L0 + l1α1 + l2α2 + O
(
|α|2

)
. In general, denote

by β1 (α) = c1α1 + c2α2 +
m∑

i+j=2

cijα
i
1α

j
2 + O

(
|α|m+1

)
and β2 (α) = d1α1 + d2α2 +

n∑
i+j=2

dijα
i
1α

j
2 +

O
(
|α|n+1

)
.

Theorem 4.1. Assume the degeneracy condition (12) holds true. Then, there exists a transformation

of parameters (α1, α2)
S7−→ (µ1, µ2) given by

µ1 = β2
2 (α)− 4β1 (α)L2 (α) and µ2 = β2 (α) + L2 (α)− L0, (13)

which is regular at α = 0 iff
c1l2 − c2l1 ̸= 0. (14)

Denote by β̂1,2 (µ) = β1,2 ◦ S−1 (µ) . In the new parametric plane µ1µ2 and for |µ| sufficiently small,

β̂1 (µ) = 0 is a curve of the form

B1 =
{
(µ1, µ2) ∈ R2, µ1 = m2

2µ
4
2 (1 +O (µ2))

}
, (15)

while β̂2 (µ) = 0 a curve given by

B2 =

{
(µ1, µ2) ∈ R2, µ1 = 4L0

c1
d1

m2µ
2
2 (1 +O (µ2))

}
, (16)

where m2 is a real constant depending on the linear and quadratic coefficients of β1,2 (α) and L2 (α) .

Proof. For the transformation S, denote by A (α) =

(
∂µ1

∂α1
(α) ∂µ1

∂α2
(α)

∂µ2

∂α1
(α) ∂µ2

∂α2
(α)

)
. Using the linear terms

of β1,2 (α) and L2 (α) , the matrix A (α) at α = 0 becomes A0 =

(
−4L0c1 −4L0c2
d1 + l1 d2 + l2

)
.
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The inverse transformation (µ1, µ2)
S−1

7−→ (α1, α2) in its linear terms can be determined from

(µ1, µ2)
T
= A0 · (α1, α2)

T
, that is, (α1, α2)

T
= A−1

0 (µ1, µ2)
T
. We obtain

α1 = s10µ1 + s01µ2 and α2 = p10µ1 + p01µ2, (17)

where s10 = − d2+l2
4L0n0

, s01 = − c2
n0

, p10 = d1+l1
4L0n0

, p01 = c1
n0

, and n0 = c1d2 − c2d1 + c1l2 − c2l1.

The inverse transformation S−1 can be determined in further order terms. For example, S−1 in
quadratic terms is of the form

α1 =

2∑
i+j=1

sijµ
i
1µ

j
2 and α2 =

2∑
i+j=1

pijµ
i
1µ

j
2. (18)

The coefficients sij and pij can be determined in terms of the coefficients of β1,2 (α) and L2 (α) by
the method of undetermined coefficients in (13).

It follows from (12) that
det (A0) = −4L0 (c1l2 − c2l1) ,

thus, since L0 ̸= 0, the new transformation S is regular at α = 0 if and only if c1l2 − c2l1 ̸= 0.

Using (12) in (17), L2 (α) = L0 + l1α1 + l2α2 +O
(
|α|2

)
becomes L̂2 (µ) = L2 ◦ S−1 (µ) given by

L̂2 (µ) = L0 +
d1

4L0c1
µ1 + µ2 +O

(
|µ|2

)
, (19)

respectively, β̂2 (µ) = β2 ◦ S−1 (µ) by (13) reads

β̂2 (µ) = µ2 − L̂2 (µ) + L0 = −1

4

d1
L0c1

µ1 +O
(
|µ|2

)
.

In order to determine β̂2 (µ) in its lowest terms, write L̂2 (µ) from (19) in the form

L̂2 (µ) = L0 +
d1

4L0c1
µ1 (1 +O (|µ|)) + µ2 −m2µ

2
2 (1 +O (µ2)) ,

where m2 is assumed nonzero, m2 ̸= 0. Then,

β̂2 (µ) = − d1
4L0c1

µ1 (1 +O (|µ|)) +m2µ
2
2 (1 +O (µ2)) . (20)

Since β̂2 (0, 0) = 0 and ∂β̂2

∂µ1
(0, 0) = − 1

4
d1

L0c1
̸= 0, we can apply the Implicit Function Theorem to the

equation β̂2 (µ1, µ2) = 0 given by (20). Thus, there exists ε > 0 sufficiently small and a function

µ1 : (−ε, ε) → R, µ1 = µ1 (µ2) ,

such that µ1 (0) = 0 and β̂2 (µ1 (µ2) , µ2) = 0 for all |µ2| < ε; µ1 becomes a function of argument µ2

in (20), µ1 = µ1 (µ2) . Deriving now in − d1

4L0c1
µ1 (1 +O (|µ|)) + m2µ

2
2 (1 +O (µ2)) = 0 with respect

to µ2, where µ1 = µ1 (µ2) , we obtain ∂µ1

∂µ2
(0) = 0 and ∂2µ1

∂µ2
2
(0) = 8L0

c1
d1
m2.

Expressing µ1 = µ1 (0)+
∂µ1

∂µ2
(0)µ2+

1
2
∂2µ1

∂µ2
2
(0)µ2

2+O
(
µ3
2

)
as a Taylor series at µ2 = 0, we obtain

µ1 = 4L0
c1
d1

m2µ
2
2 (1 +O (µ2)) . (21)
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Similarly, by (12), (17), (13) and (20), β̂1 (µ) = − 1

4L̂2(µ)

(
µ1 − β̂2

2 (µ)
)
becomes

β̂1 (µ) = − 1

4L0

[
µ1 (1 +O (|µ|))−m2

2µ
4
2 (1 +O (µ2))

]
, (22)

which, by the Implicit Function Theorem, leads to B1.
The exact expression of m2 is not essential in the qualitative analysis of the Chenciner bifurcation

we aim to obtain in this article. However, since in concrete applications it is useful, we determine it.
To this end, using (18) in L2 (α) = L0+ l1α1+ l2α2+ l20α

2
1+ l11α1α2+ l02α

2
2, it follows that the term

−m2µ
2
2 of L̂2 (µ) has the coefficient m2 = −

(
l02p

2
01 + l11p01s01 + l20s

2
01 + l2p02 + l1s02

)
.

We need further the inverse transformation (18), more exactly, we need the coefficients sij and pij
with i+ j = 1 (which are already known), respectively, s02 and p02. Substituting for α1 and α2 from
(18) in the transformation (13) and using the method of undetermined coefficients, we find

p02 = d1
d3
1c02−d2

1(c1d02+c1l02−l1c02)−d2
2(c1d20+c1l20−l1c20)+d1d2(c1d11−d1c11+d2c20+c1l11−l1c11)

c1(d1l2−d2l1)
3

and
s02 =

−(d2c02+l2c02)d
3
1+(c1d02+d2c11+c1l02+l2c11)d

2
1d2−(c1d11+d2c20+c1l11+l2c20)d1d

2
2+c1d

3
2(d20+l20)

c1(d1l2−d2l1)
3 .

These yield

m2 = −c02d
3
1 − c11d

2
1d2 − c1d02d

2
1 + c20d1d

2
2 + c1d11d1d2 − c1d20d

2
2

c1 (d1l2 − d2l1)
2 . (23)

Notice that, the both curves β̂1,2 (µ) = 0 are tangent to the µ2−axis at the origin and they are
parabola-like curves. □

Remark 4.2. The new non-degeneracy condition (14) does not use any coefficient from β2 (α) but
only from β1 (α) and L (α) .

The equation (10) becomes

L̂2 (µ) y
2 + β̂2 (µ) y + β̂1 (µ) = 0, (24)

where L̂2 (µ) = L0 (1 +O (|µ|)) ̸= 0. The new discriminant of (24) is ∆̂ (µ) = ∆ ◦ S−1 (µ) , which, by
the transformation (13), becomes

∆̂ (µ) = µ1, (25)

while β̂1,2 (µ) are given in (22) and (20).

Remark 4.3. The following theorem describes the bifurcation diagrams of the system (8)-(9) in the
new parametric space µ1Oµ2. In elaborating the diagrams from Figure 1 and Figure 2, the curves
B1 and B2 are approximated by (B1) µ1 = m2

2µ
4
2 and (B2) µ1 = 4L0

c1
d1
m2µ

2
2, which are parabola-

like curves. Their relative positions one to another are given by m2, L0 and c1
d1
. By (25), the curve

∆̂ (µ) = 0 coincides to the µ2−axes.

Theorem 4.4. The behavior of the system (8)-(9) is described by four bifurcation diagrams. More
exactly, by Figure 1 if L0 < 0, respectively, Figure 2 if L0 > 0.
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Proof. Let
(
µB1
1 , µ2

)
∈ B1 and

(
µB2
1 , µ2

)
∈ B2 be two points from the two curves. Then, (15)

and (16) yield
µB2
1 − µB1

1 = k1µ
2
2 (1 +O (µ2)) ̸= 0, (26)

for |µ2| sufficiently small, µ2 ̸= 0, where k1 = 4L0
c1
d1
m2.

Notice that B1 lies in {µ1 > 0} for all m2 ̸= 0, while B2 ⊂ {µ1 > 0} if k1 > 0, respectively,
B2 ⊂ {µ1 < 0} if k1 < 0.

Assume first L0 < 0, m2 < 0 and c1d1 < 0, thus, k1 < 0. Then B2 ⊂ {µ1 < 0} and β̂1 (µ) =

− 1
4L0

(
µ1 −m2

2µ
4
2

)
> 0 inside the parabola B1 (corresponding to µ1 > 0) and β̂1 (µ) < 0 on the

exterior of B1, Figure 1. It follows from the Table 1 that, the phase portrait is 4 whenever L0 < 0
and β̂1 (µ) < 0, for any signs of β̂2 (µ) and ∆̂ (µ) , including on ∆̂ (µ) = 0. Notice that β̂2 (µ) =

− d1

4L0c1
µ1 + m2µ

2
2 < 0 on ∆̂ (µ) = µ1 > 0. On the other hand, the phase portrait is 3 if L0 < 0,

β̂1 (µ) > 0 and ∆̂ (µ) = µ1 > 0, independent on the sign of β̂2 (µ) , by Table 1. These prove the
bifurcation diagram is D1 from Figure 1.

Assume now c1d1 > 0, while L0 < 0 and m2 < 0. Then B1, B2 ⊂ {µ1 > 0} and, by (26), µB2
1 >

µB1
1 > 0, thus, the parabola B2 lies in the interior of the parabola B1, where β̂1 (µ) > 0 and ∆̂ (µ) =

µ1 > 0. Thus, by Table 1, the phase portrait is 3 in the interior of B1 for any sign of β̂2 (µ) , respectively,

4 in the exterior of B1 because β̂2 (µ) = − d1

4L0c1
µ1 +m2µ

2
2 < 0 on the exterior of B1. Thus, the same

bifurcation diagram D1, Figure 1, characterizes the dynamics of the system (8)-(9) in this case.
In the second case, assume L0 < 0 and m2 > 0, and consider first c1d1 > 0, thus, k1 < 0. Then

B2 ⊂ {µ1 < 0} and β̂1 (µ) > 0 inside of B1 ( µ1 > 0 ) and β̂1 (µ) < 0 on the exterior of B1, Figure

1(D2) . By Table 1, the phase portrait is 4 whenever L0 < 0, ∆̂ (µ) = µ1 < 0 and β̂1 (µ) < 0, for any

signs of β̂2 (µ) . On ∆̂ (µ) = 0, the phase portrait becomes 5 since β̂2 (µ) > 0 on µ1 ≥ 0, while on the

exterior of B1 and µ1 > 0, it is 7 because β̂1 (µ) < 0. On B1 and the interior of B1, it becomes 3,

because β̂1,2 (µ) > 0 and ∆̂ (µ) > 0. Thus, the bifurcation diagram corresponding to this case is D2

from Figure 1.
When c1d1 < 0, L0 < 0 and m2 > 0, the curves B1,2 ⊂ {µ1 > 0} with k1 > 0. By (26), µB2

1 >

µB1
1 > 0, thus, the parabola B2 lies again in the interior of the parabola B1, where β̂1 (µ) > 0 and

∆̂ (µ) > 0. It follows from Table 1 that, the phase portrait is 3 inside of B1, independent on the sign

of β̂2 (µ) , while it remains 3 on B1 because β̂2 (µ) > 0 on the exterior of B2. Further, on the exterior

of B1 and µ1 > 0, the phase portrait becomes 7, since L0 < 0, β̂1 (µ) < 0, ∆̂ (µ) > 0 and β̂2 (µ) > 0,

which transforms in 5 on µ1 = 0, respectively, in 4 on µ1 < 0, because L0 < 0, β̂1 (µ) < 0, ∆̂ (µ) < 0

and β̂2 (µ) > 0. Therefore, the bifurcation diagram corresponding to this case is D2 as well.
One can proceed similarly for the case L0 > 0. Two bifurcation diagrams, D3 and D4 from Figure

2, describe the dynamics of the system (8)-(9) in this case. □
The bifurcation regions we encounter in our study are among the ones given in Table 1, which

were described in Theorem 4.4. Figure 3 illustrates the possible generic phase portraits corresponding
to the regions from the two tables.
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Figure 1: Bifurcation diagrams corresponding to L0 < 0, c1d1 ̸= 0, respectively, m2 < 0 and m2 > 0.

Table 1. The regions in the parametric plane µ1µ2 defined by ∆̂(µ), β̂1,2(µ) and L0.

L0 ∆̂ (µ) β̂1 β̂2 Region L0 ∆̂ (µ) β̂1 β̂2 Region
− − − ±, 0 4 + + − ±, 0 1
− + − − 4 + + 0 − 1
− 0 − − 4 + − + ±, 0 2
− + 0 − 4 + + + + 2
− 0 0 0 4 + 0 + + 2
− + + ±, 0 3 + + 0 + 2
− + 0 + 3 + 0 0 0 2
− + − + 7 + 0 + − 6
− 0 − + 5 + + + − 8

Example 4.5. Consider a two-dimensional map (ρn, φn) 7−→ (ρn+1, φn+1) given in polar coordinates
by  ρn+1 = ρn

(
1 + β1 (α) + β2 (α) ρ

2
n + L2 (α) ρ

4
n

)
φn+1 = φn + θ0

, (27)

where θ0 is fixed, 0 < θ0 < π, β1 (α) = α1 + α2 + 2α2
1 + α2

2, β2 (α) = α1 + α2 + 2α1α2 and
L2 (α) = 1 + α1 + 2α2 + α2

1 + α3
2.

Remark 4.6. The map (27) is degenerate with respect to the change of parameters (α1, α2) 7−→
(β1, β2) since c1d2−c2d1 = 0, thus, it cannot be studied with the known methods for the non-degenerate

case. On the other hand, the transformation (13) proposed in this paper, (α1, α2)
S7−→ (µ1, µ2) , is

regular at (0, 0) since (14) is satisfied, thus, it can be applied to study the degenerate Chenciner
bifurcation in this map.

The inverse transformation S−1 in its linear terms is given by α1 = − 3
4µ1−µ2 and α2 = 1

2µ1+µ2.
In order to find m2 without applying (23), we need S−1 in its linear and quadratic terms, which is of
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Figure 2: Bifurcation diagrams corresponding to L0 > 0, c1d1 ̸= 0, respectively, m2 < 0 and m2 > 0.
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Figure 3: Generic phase portraits of the system (8)-(9).

the form

α1 = −3

4
µ1 − µ2 + s20µ

2
1 + s11µ1µ2 + s02µ

2
2 and α2 =

1

2
µ1 + µ2 + p20µ

2
1 + p11µ1µ2 + p02µ

2
2.

Using the method of undetermined coefficients in (13), we obtain a linear system in the unknowns
sij and pij , i + j = 2, whose solution is p02 = 7, p11 = 17

2 , p20 = 89
32 , s02 = −10, s11 = − 49

4 and

s20 = − 261
64 . These lead to L̂2 (µ) = 1+ 1

4µ1+µ2+5µ2
2 and β̂2 (µ) = − 1

4µ1−5µ2
2 in their lowest terms,

thus, m2 = −5.
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We notice that m2 = −5 could be obtained directly from the coefficients of β1,2 (α) and L2 (α) by
formula (23).

Using S−1 up to quadratic terms is not sufficient for finding β̂1 (µ) . However, β̂1 (µ) can be

determined from the substitution (13) by β̂2
2 (µ) − 4β̂1 (µ) L̂2 (µ) − µ1 = 0, which yields β̂1 (µ) =

− 1
4µ1 + 25µ4

2 in their lowest terms. Since L0 = 1 and m2 = −5, the corresponding bifurcation
diagram of the map (27) is D3, Figure 2.

Let us illustrate numerically the behavior of the map (27) for different values of α = (α1, α2)
corresponding to the four different regions of D3, which we denote by R1, R2, R6 and R8.

To this end, we proceed as it follows. For a given numerical value (α1, α2) , we determine µ =
(µ1, µ2) by the transformation S from µ1 = β2

2 (α)−4β1 (α)L2 (α) and µ2 = β2 (α)+L2 (α)−L0, and
find the region of D3 where µ lies. Thus, the behavior of the map (27) should be in agreement with
the corresponding region. To probe this, we integrate numerically the map in Matlab, with (α1, α2)
fixed in the begining, and find different orbits (xn, yn) , where xn = ρn cosφn and yn = ρn sinφn, for
n taking all integer values from 1 to a fixed value N. The cartesian values xn and yn are then plotted
in the same diagram.

Consider first α1 = −0.017 and α2 = 0.015, which lead to µ1 = ∆(α) = 4.8579 × 10−3 and

µ2 = 1.0782 × 10−2, respectively, β̂1 (µ) = −1.2141 × 10−3 and β̂2 (µ) = −1.7958 × 10−3, thus,
(µ1, µ2) ∈ R1 ∈ D3, with

√
y1 = 0.18876. For these values and θ0 = 0.05, three orbits are obtained

and presented in Figure 4(a). The first orbit (magenta) starts at (ρ1, φ1) = (0.17, 0) and tends to
the origin (0, 0) as n increases from 1 to N = 800. The second orbit (blue) approximates an invariant
closed curve (which is a circle); it starts at (ρ1, φ1) = (0.18876, 0) and was obtained with N = 400. The
third orbit (red) starts at (0.195, 0) ; it departs from the invariant closed curve for n increasing and
may escape to infinity. It follows that, the closed invariant circle is unstable. We notice that, the three
orbits from Figure 4(a) are in perfect agreement with the phase portrait 1 presented schematically in
Figure 3.

For the second region R2, let α1 = −0.015 and α2 = 0.015, which lead to µ1 = ∆(α) = −2.7×10−3

and µ2 = 1. 4778 × 10−2, respectively, β̂1 (µ) = 6.8 × 10−4 and β̂2 (µ) = −4 × 10−4 < 0, thus,
(µ1, µ2) ∈ R2 ∈ D3. An orbit for these values and θ0 = 0.03, N = 700, (ρ1, φ1) = (0.001, 0) , is
presented in Figure 4(b). The orbit departs from the origin and may escape to infinity, which is in
agreement with the phase portrait 2 from Figure 3. We notice that R2 may contain points (µ1, µ2)

with β̂2 (µ) > 0, which occurs, for example, at α1 = 0.015 and α2 = 0.015, which yield µ1 = −0.127

and µ2 = 0.075, respectively, β̂1 (µ) = 0.032 and β̂2 (µ) = 0.0031. The orbits simulated for these values
are also in agreement with Figure 3.

In the third case, let α1 = −0.015719 and α2 = 0.015, which lead to µ1 = ∆(α) = 0 and

µ2 = 1.3341× 10−2, respectively, β̂1 (µ) = 6.1× 10−7, β̂2 (µ) = −8.9× 10−4 and
√
y1,2 = 0.0242, thus,

(µ1, µ2) ∈ R6 ∈ D3. Setting θ0 = 0.02 and N = 1000, two orbits are depicted in Figure 4(c). One
(blue) starts at (ρ1, φ1) = (0.024223, 0) and approximates a closed invariant orbit (circle), while the
other (magenta) starts at (0.1, 0) and departs from the closed invariant orbit. Orbits starting from
the interior of the invariant circle tend slowly to the circle for n increasing. Thus, the invariant circle
is stable from the interior and unstable from the exterior. This behavior is in agreement to the phase
portrait 6 from Figure 3.

Finally, let α1 = −0.5 and α2 = 0.05. Then ∆ (α) > 0, ρ1 =
√
y1 = 0.6718 and ρ2 =

√
y2 = 0.3699,

which, by S, lead to µ1 = ∆(α) = 0.0714 and µ2 = −0.6498, respectively, β̂1 (µ) = 4.4 and β̂2 (µ)
= −2.1, that is, (µ1, µ2) ∈ R8 from D3. Numerical simulations of this case with θ0 = 0.03 are presented
in Figure 4(d). Notice the appearance of two invariant closed curves, one stable (blue) and the other
(red) unstable. This is in perfect agreement with the phase portrait 8, presented schematically in
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Figure 4: The behavior of the map (27) on the four regions of the bifurcation diagram D3.

5 Conclusions

The study we performed in this work brings to light new generic properties of a degenerate form of
the Chenciner bifurcation. The degeneracy we tackled refers at the regularity of the transformation
of parameters, which is used for obtaining a normal form in nondegenerate case. We studied the bi-
furcation when the transformation of parameters is not regular at (0, 0), thus, the classical results can
not be applied. We proposed a different change of parameters, which was proved to be successful for
approaching the degeneracy. More exactly, when the degeneracy condition occurs, the new transfor-
mation is regular at (0, 0) and, more importantly, can be used for studying the bifurcation. The cost
of using this transformation is the appearance of a different generic condition. The new condition uses
different coefficients to exist than the classical one, thus, they are complementary one to another. We
exemplified the application of the method developed in this work on a particular map, which cannot
be studied with the method used for nondegenerate case. When the both generic conditions fail, a
new study is needed for exploring the behavior of the Chenciner bifurcation. This remains an open
problem.
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