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Admissible perturbations (i.e., perturbations that do not change the Mironenko reflecting func-
tion of the system) are obtained for an autonomous three-dimensional quadratic generalized
Langford system with five parameters. The obtained non-autonomous perturbed systems retain
many of the qualitative properties of solutions of the original system. In particular, the instabil-
ity (in the sense of Lyapunov) of the equilibrium point, the presence of a periodic solution and
its asymptotic stability (instability) are proved for perturbed systems. The presence of similar
chaotic attractors in the original and perturbed systems is shown by numerical simulation.

Keywords : Mironenko reflecting function, Lyapunov stability, periodic solution, asymptotic sta-
bility, chaotic attractor.

1. Introduction

Mironenko [1984] introduced the notion of the reflecting function for the qualitative investigations of the
ODE system

ẋ = X(t, x), t ∈ R, x ∈ D ⊂ R
n (1)

under the condition that X(t, x) is continuously differentiable function. This function is known now as
Mironenko reflecting function (MRF) and has been efficiently applied by many authors to solve such prob-
lems of the qualitative theory of ODEs as the existence and stability of periodic solutions [Mironenko,
1989; Bel’skii, 2013; Liu et al., 2014; Maiorovskaya, 2009; Musafirov, 2008; Zhou & Zhao, 2020], the ex-
istence of solutions for boundary value problems [Mironenko, 1996; Musafirov, 2002; Varenikova, 2012],
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the solution of the center-focus problem [Zhou et al., 2017], study of the global behavior of families of
solutions for ODE systems [Mironenko, 2004a] and others [Mironenko, 2004a; Belokurskii & Demenchuk,
2013]. Moreover, it was proved that solutions of different ODE systems with the same MRF have many of
the same qualitative properties [Mironenko, 2004a; Mironenko & Mironenko, 2009]. Therefore, the study
of the qualitative properties of solutions for a whole class of systems with the same MRF can be reduced to
corresponding study of the simple (well-studied) system. In such cases non-autonomous systems (1) can be
investigated on the base of corresponding autonomous system. In other words, an autonomous system can
be perturbed into a non-autonomous systems (1) by using special perturbations preserving MRF which are
called as admissible perturbations (for example, admissible perturbations of the Lorenz-84 climate model
were obtained by Musafirov [2019]).

In this paper the describered approuch is applied for the generalized Langford system [Yang & Yang,
2018]:

ẋ = ax+ by + xz,
ẏ = cx+ dy + yz,
ż = ez −

(

x2 + y2 + z2
)

; (x, y, z) ∈ R
3,

(2)

where a, b, c, d, e ∈ R are parameters of the system.
Yang & Yang [2018] analyzed the stability of equilibrium points, obtained an exact expression for a

periodic orbit and some approximate expressions for limit cycles, investigated the nature of their stability,
proved the existence of two heteroclinic cycles and their coexistence with a periodic orbit.

Nikolov & Vassilev [2021] considered a particular case of system (2) for c = −b, d = a 6= 0 and showed
that system (2) in this case is equivalent to the nonlinear force-free Duffing oscillator ẍ+kẋ+ωx+x3 = 0,
where k = −(2a + e), ω = a(a + e). Such an equation is obtained, for example, when a steel console
oscillates in an inhomogeneous field of two permanent magnets [Moon & Holmes, 1979]; oscillation of a
mathematical pendulum at small angles of deflection; vibrations of mass on a spring with a nonlinear
restoring force located on a flat horizontal surface; and also when describing the motion of a particle in
a potential of two wells and other oscillations [Kovacic & Brennan, 2011]. In addition, Nikolov & Vassilev
[2021] proved that in this particular case, under one of three additional conditions (e = a or e = −a/2 or
e = −2a), the solutions of system (2) are expressed in explicit analytical form by means of elementary and
Jacobi elliptic functions.

For the particular case of system (2) when a = d = −1/3, b = −1, c = 1, e = 2/3, the presence of
chaos in the system is proved, and the chaotic attractor is also shown by Belozyorov [2015].

The admissible perturbations of the non-generalized Langford system for a = d = −2e − 1, b = −1,
c = 1 and for a = d = e− 1, b = −1, c = 1 were obtained by Musafirov [2016, 2017].

The main our purpose here is to derive a non-autonomous generalization for system (2) and detect
qualitative properties for equilibrium points and periodic solutions of the derived system.

The structure of our paper is as follows. In section 2 we recall the definition of the MRF and basic
facts for the construction of an admissible perturbations of system (1). In section 3 we represent the sets of
admissible perturbations of system (2). In section 4 we prove the instability (in the sense of Lyapunov) of the
equilibrium point O(0, 0, 0) of admissibly perturbed systems. Section 5 presents the conditions under which
admissibly perturbed systems have periodic solutions, as well as conditions for the asymptotic stability
(instability) of periodic solutions. In the last section, using numerical simulations, we show similar chaotic
attractors of the generalized Langford system (2) and an admissibly perturbed system.

2. Brief theory of the MRF

First of all, we give a brief information on the theory of the MRF from [Mironenko, 2004a].
For system (1), MRF is defined as F (t, x) := ϕ(−t; t, x), where x = ϕ(t; t0, x0) is the general solution

in the Cauchy form of system (1). Although the MRF is determined through the general solution of system
(1), it is sometimes possible to find a MRF even for non-integrable systems.

A function F (t, x) is a MRF of system (1) if and only if it is a solution of the PDE system ∂F
∂t +

∂F
∂xX(t, x) +X(−t, F ) = 0 with the initial condition F (0, x) = x.
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If the function F (t, x) is continuously differentiable and satisfies the condition F (−t, F (t, x)) ≡
F (0, x) ≡ x, then it is the MRF of a set of systems. Moreover, all systems from this set have the same
shift operator on any interval (−α; α) [Krasnosel’skĭı, 2007]. If system (1) is 2ω-periodic with respect to t,
and F (t, x) is its MRF, then F (−ω, x) = ϕ(ω;−ω, x) is the mapping of the system over the period [−ω, ω]
(Poincaré map). And therefore, all 2ω-periodic (with respect to t) systems from the set with the same
MRF have the same mapping over the period [−ω, ω].

Let 2ω-periodic (with respect to t) system (1) and the system

ẋ = Y (t, x), t ∈ R, x ∈ D ⊂ R
n (3)

have the same MRF F (t, x). If the solution ϕ(t;−ω, x) of system (1) and the solution ψ(t;−ω, x) of system
(3) are extendable to [−ω, ω], then the mapping over the period [−ω, ω] for system (1) is ϕ(ω;−ω, x) ≡
F (−ω, x) ≡ ψ(ω;−ω, x), although system (3) may be non-periodic. That is, it is possible to establish a one-
to-one correspondence between the 2ω-periodic solutions of system (1) and the solutions of the two-point
boundary value problem y(−ω) = y(ω) for system (3).

Thanks to Mironenko & Mironenko [2009], it became possible to find out whether two different systems
of ODEs have the same MRF (in this case, the MRF itself may not be known).

Theorem 1 [[Mironenko & Mironenko, 2009]]. Let the vector functions ∆i(t, x) (i = 1,m, where m ∈ N

or m = ∞) be solutions of the equation

∂∆

∂t
+
∂∆

∂x
X − ∂X

∂x
∆ = 0 (4)

and αi(t) be any scalar continuous odd functions. Then MRF of every perturbed system of the form ẋ =
X(t, x) +

∑m
i=1 αi(t)∆i(t, x), t ∈ R, x ∈ D ⊂ R

n is equal to MRF of system (1).

3. Admissible perturbations

For system (2), we were looking for admissible perturbations of the form ∆ · α(t), where

∆ =





n
∑

i+j+k=0

qijkx
iyjzk,

n
∑

i+j+k=0

rijkx
iyjzk,

n
∑

i+j+k=0

sijkx
iyjzk





T

,

qijk, rijk, sijk ∈ R, i, j, k, n ∈ N ∪ {0}; α(t) is an arbitrary continuous scalar odd function. To
do this, we looked for the values of the parameters a, b, c, d, e, qijk, rijk, sijk for which the rela-

tion (4) is valid, i.e. the relation ∂∆
∂t + ∂∆

∂(x,y,z)X(t, x, y, z) − ∂X(t,x,y,z)
∂(x,y,z) ∆ = 0 where X(t, x, y, z) =

(

ax+ by + xz, cx+ dy + yz, ez − x2 − y2 − z2
)T

is the right-hand side of the original unperturbed system
(2). As a result, we were able to obtain the following statement.

Theorem 2. Let αi(t) (i = 1, 5) be arbitrary scalar continuous odd functions. Then

(i) the MRF of system (2) coincides with the MRF of the system

ẋ = (ax+ by + xz) (1 + α1(t)) ,

ẏ = (cx+ dy + yz) (1 + α1(t)) ,

ż =
(

ez −
(

x2 + y2 + z2
))

(1 + α1(t)) ;

(ii) for c = −b, d = a, the MRF of system (2) coincides with the MRF of the system

ẋ = (ax+ by + xz) (1 + α1 (t)) + x (a+ z)α2 (t) + yα3 (t) ,

ẏ = (−bx+ ay + yz) (1 + α1 (t)) + y (a+ z)α2 (t)− xα3 (t) , (5)

ż =
(

ez − x2 − y2 − z2
)

(1 + α1 (t) + α2 (t)) ;



November 8, 2021 2:4 Musafirov

4 Eduard Musafirov, Alexander Grin, Andrei Pranevich

(iii) for c = −b, d = a, e = −2a, the MRF of system (2) coincides with the MRF of the system

ẋ = (ax+ by + xz) (1 + α1 (t)) + x (a+ z)α2 (t) + yα3 (t)

−y
(

x2 + y2
) (

4az + x2 + y2 + 2z2
)

α4 (t) ,

ẏ = (−bx+ ay + yz) (1 + α1 (t)) + y (a+ z)α2 (t)− xα3 (t) (6)

+x
(

x2 + y2
) (

4az + x2 + y2 + 2z2
)

α4 (t) ,

ż = −
(

2az + x2 + y2 + z2
)

(1 + α1 (t) + α2 (t)) ;

(iv) for c = b = 0, d = a, e = −2a, the MRF of system (2) coincides with the MRF of the system

ẋ = (ax+ xz) (1 + α1 (t)) + yα2 (t)

+y
(

4az + x2 + y2 + 2z2
) (

x2α3 (t) + xyα4 (t) + y2α5 (t)
)

,

ẏ = (ay + yz) (1 + α1 (t))− xα2 (t) (7)

−x
(

4az + x2 + y2 + 2z2
) (

x2α3 (t) + xyα4 (t) + y2α5 (t)
)

,

ż = −
(

2az + x2 + y2 + z2
)

(1 + α1 (t)) .

Proof. Let us prove the second assertion of the theorem. For c = −b, d = a, the right-hand side of system

(2) is X =
(

ax+ by + xz,−bx+ ay + yz, ez − x2 − y2 − z2
)T

and its Jacobi matrix is

∂X(t, x, y, z)

∂(x, y, z)
=





a+ z b x
−b a+ z y
−2x −2y e− 2z



 .

Let us write out the vector factors for αi(t) from the right-hand side of system (5): ∆1 =
(

ax+ by + xz,−bx+ ay + yz, ez − x2 − y2 − z2
)T

, ∆2 =
(

x (a+ z), y (a+ z), ez − x2 − y2 − z2
)T

, ∆3 =

(y,−x, 0)T. By successively checking the identity (4) for each vector-multiplier ∆i we will make sure that
it is true. Let us show this, for example, for ∆2. The Jacobi matrix is

∂∆2

∂(x, y, z)
=





a+ z 0 x
0 a+ z y

−2x −2y e− 2z



 .

Whence we obtain

∂∆2

∂t
+

∂∆2

∂(x, y, z)
X(t, x, y, z) − ∂X(t, x, y, z)

∂(x, y, z)
∆2

≡





0
0
0



+





a+ z 0 x
0 a+ z y

−2x −2y e− 2z









ax+ by + xz
−bx+ ay + yz
ez − x2 − y2 − z2





−





a+ z b x
−b a+ z y
−2x −2y e− 2z









x (a+ z)
y (a+ z)

ez − x2 − y2 − z2



 ≡





0
0
0



 .

Then the second assertion of the theorem follows from Theorem 1. The rest of the statement of the theorem
can be proved similarly. �

When modeling real processes, the time t ≥ 0 is usually considered, therefore the requirement that
the functions αi(t) be odd is not essential, since they can be extended continuously in an odd way to the
negative time semi-axis (provided that αi(0) = 0).

Theorem 2 can be used to study the qualitative behavior of the solutions of admissible perturbed
systems.
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4. Instability of equilibrium point

By Theorem 1 [Yang & Yang, 2018], for e = 0, the equilibrium point O(0, 0, 0) of system (2) is unstable.
With this in mind, let us prove a similar statement for systems (5) – (7).

Theorem 3. Let αi(t) (i = 1, 5) be scalar continuous functions (not necessarily odd).

(i) If e = 0 and α1(t) + α2(t) ≥ l > −1 ∀t ≥ 0 (l = const), then the solution x = y = z = 0 of system (5)
is unstable (in the sense of Lyapunov).

(ii) If a = 0 and α1(t) + α2(t) ≥ l > −1 ∀t ≥ 0 (l = const), then the solution x = y = z = 0 of system (6)
is unstable (in the sense of Lyapunov).

(iii) If a = 0 and α1(t) ≥ l > −1 ∀t ≥ 0 (l = const), then the solution x = y = z = 0 of system (7) is
unstable (in the sense of Lyapunov).

Proof. Consider the function V (x, y, z) = −z3. In any neighborhood of the origin of R3, the function V is
bounded and exist a region such that V > 0.

(i) For e = 0, the derivative of the function V along trajectories of system (5) is V̇ =
3z2

(

x2 + y2 + z2
)

(1 + α1(t) + α2(t)). Since α1(t) + α2(t) ≥ l > −1 ∀t ≥ 0, then ∀t ≥ 0 we have

V̇ ≥ 3z2
(

x2 + y2 + z2
)

(1 + l), where l > −1. Considering that 3z2
(

x2 + y2 + z2
)

> 0 ∀(x, y, z) 6=
(0, 0, 0), then V̇ is positive definite function. Then, by Theorem 4.7.1 [Liao et al., 2007] (taking into
account Corollary 4.7.3 [Liao et al., 2007] and its proof), the solution x = y = z = 0 of system (5) is
unstable.

(ii) For a = 0, the derivative of the function V along trajectories of system (6) is V̇ =
3z2

(

x2 + y2 + z2
)

(1 + α1(t) + α2(t)). Repeating the reasoning from item (i), we find that the solution
x = y = z = 0 of system (6) is unstable.

(iii) For a = 0, the derivative of the function V along trajectories of system (7) is V̇ =
3z2

(

x2 + y2 + z2
)

(1 + α1(t)). Since α1(t) ≥ l > −1 ∀t ≥ 0, then ∀t ≥ 0 we have V̇ ≥
3z2

(

x2 + y2 + z2
)

(1 + l), where l > −1. Further, repeating the reasoning from item (i), we find that
the solution x = y = z = 0 of system (7) is unstable.

�

5. Periodic solution

By Theorem 9 [Yang & Yang, 2018], for d = a, c = −b 6= 0 and a(a + e) < 0, system (2) has a 2π/ |b|-
periodic solution

x(t) =
√

−a(a+ e) sin (bt) ,

y(t) =
√

−a(a+ e) cos (bt) , (8)

z(t) = −a
corresponding to the cycle x2 + y2 = −a(a + e), z = −a. Moreover, this solution is asymptotically stable
for 2a+ e < 0 and unstable for 2a+ e > 0. Similar statements are valid for systems (5) and (6).

Lemma 1. Let αi(t) (i = 1, 4) be scalar continuous functions (not necessarily odd).

(i) If a(a+ e) < 0, then system (5) has a solution

x(t) =
√

−a (a+ e) sin



bt+

t
∫

0

(bα1(s) + α3(s)) ds



 ,

y(t) =
√

−a (a+ e) cos



bt+

t
∫

0

(bα1(s) + α3(s)) ds



 , (9)

z(t) = −a
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corresponding to the cycle x2 + y2 = −a(a+ e), z = −a.
(ii) System (6) has a solution

x(t) = a sin



bt+

t
∫

0

(

bα1(s) + α3(s) + a4α4(s)
)

ds



 ,

y(t) = a cos



bt+

t
∫

0

(

bα1(s) + α3(s) + a4α4(s)
)

ds



 , (10)

z(t) = −a

corresponding to the cycle x2 + y2 = a2, z = −a.

Proof. The assertions of the lemma are proved by direct substitution of (9) into system (5) and (10) into
system (6). �

Theorem 4. Let αi(t) (i = 1, 4) be scalar twice continuously differentiable odd functions, b 6= 0 and the
right-hand sides of systems (5) and (6) be 2π/ |b|-periodic with respect to time t.

(i) If a(a + e) < 0 and ∃k ∈ Z such that
−2π/|b|
∫

0

(bα1(s) + α3(s)) ds = 2πk, then solution (9) of system (5)

is 2π/ |b|-periodic and asymptotically stable for 2a+ e < 0 and unstable for 2a+ e > 0.

(ii) If ∃k ∈ Z such that
−2π/|b|
∫

0

(

bα1(s) + α3(s) + a4α4(s)
)

ds = 2πk, then solution (10) of system (6) is

2π/ |b|-periodic.

Proof.

(i) It follows from Theorem 2 that the MRF of system (5) coincides with the MRF of system (2) for c = −b
and d = a. By Theorem 9 [Yang & Yang, 2018], for d = a, c = −b 6= 0 and a(a + e) < 0, system
(2) has a 2π/ |b|-periodic solution (8), which is asymptotically stable for 2a + e < 0 and unstable for
2a + e > 0. By Lemma 1, system (5) has a solution (9). Let γ̄(t) = (x(t), y(t), z(t)) denote solution
(8) of system (2) and χ̄(t) = (x(t), y(t), z(t)) denote solution (9) of system (5). If ∃k ∈ Z such that
−2π/|b|
∫

0

(bα1(s) + α3(s)) ds = 2πk, then χ̄ (−π/ |b|) = γ̄ (−π/ |b|) and the statement of the theorem

immediately follows from Theorem 5 [Mironenko, 2004b].
(ii) It follows from Theorem 2 that the MRF of system (6) coincides with the MRF of system (2) for

c = −b, d = a and e = −2a. By Theorem 9 [Yang & Yang, 2018], for d = a, c = −b 6= 0 and
a(a+ e) < 0, system (2) has a 2π/ |b|-periodic solution (8). By Lemma 1, system (6) has a solution (10).
Let γ̄(t) = (x(t), y(t), z(t)) denote solution (8) of system (2) and χ̃(t) = (x(t), y(t), z(t)) denote solution

(10) of system (6). If ∃k ∈ Z such that
−2π/|b|
∫

0

(

bα1(s) + α3(s) + a4α4(s)
)

ds = 2πk, then χ̃ (−π/ |b|) =

γ̄ (−π/ |b|) and the statement of the theorem immediately follows from Theorem 5 [Mironenko, 2004b].

�

Theorem 5. Let αi(t) (i = 1, 4) be scalar continuous functions (not necessarily odd) and b 6= 0.

(i) Let the function bα1(t) + α3(t) be 2π/ |b|-periodic, a(a + e) < 0, and
2π/b
∫

0

(bα1(s) + α3(s)) ds = 0, then

solution (9) of system (5) is 2π/ |b|-periodic (the period is not necessarily minimal).
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(ii) Let the function bα1(t) + α3(t) + a4α4(t) be 2π/ |b|-periodic and
2π/b
∫

0

(

bα1(s) + α3(s) + a4α4(s)
)

ds = 0,

then solution (10) of system (6) is 2π/ |b|-periodic (the period is not necessarily minimal).

Proof. To prove the first assertion, it suffices to prove that
t+2π/b
∫

0

(bα1(s) + α3(s)) ds ≡

t
∫

0

(bα1(s) + α3(s)) ds. Taking into account that
t+2π/b
∫

0

(bα1(s) + α3(s)) ds ≡
t
∫

0

(bα1(s) + α3(s)) ds +

t+2π/b
∫

t

(bα1(s) + α3(s)) ds, it remains to prove that
t+2π/b
∫

t

(bα1(s) + α3(s)) ds ≡ 0. Let us introduce the

notation A(t) =
t+2π/b
∫

t

(bα1(s) + α3(s)) ds. Since bα1(t) + α3(t) is a continuous function, by the properties

of an integral with a variable upper limit, A(t) is a differentiable function and Ȧ(t) ≡ bα1(t+2π/b)+α3(t+
2π/b)− (bα1(t) + α3(t)). Since the function bα1(t) +α3(t) is 2π/ |b|-periodic, it follows that Ȧ(t) ≡ 0, that
is, A(t) ≡ const. In particular, A(t) ≡ A(0), i.e.

t+2π/b
∫

t

(bα1(s) + α3(s)) ds ≡
2π/b
∫

0

(bα1(s) + α3(s)) ds. (11)

By the hypothesis of the theorem,
2π/b
∫

0

(bα1(s) + α3(s)) ds = 0, which completes the proof of the first

statement.
The second assertion of the theorem is proved similarly to the first. �

Proposition 1. In the formulation of Theorem 5:

(i) the condition
2π/b
∫

0

(bα1(s) + α3(s)) ds = 0 can be replaced by the condition that the function bα1(t)+α3(t)

is odd;

(ii) the condition
2π/b
∫

0

(

bα1(s) + α3(s) + a4α4(s)
)

ds = 0 can be replaced by the condition that the function

bα1(t) + α3(t) + a4α4(t) is odd.

Proof. It follows from identity (11) for t = −2π/b that
0
∫

−2π/b

(bα1(s) + α3(s)) ds ≡
2π/b
∫

0

(bα1(s) + α3(s)) ds.

And since the function bα1(t) + α3(t) is odd, it follows that −
0
∫

−2π/b

(bα1(s) + α3(s)) ds ≡

2π/b
∫

0

(bα1(s) + α3(s)) ds. Therefore, we have
2π/b
∫

0

(bα1(s) + α3(s)) ds = 0.

The second statement is proved similarly to the first. �

Theorem 6. Let αi(t) (i = 1, 4) be scalar continuous functions (not necessarily odd) and b = 0.

(i) Let the function α3(t) be ω-periodic, a(a+ e) < 0 and ∃k ∈ Z such that
ω
∫

0

α3(s)ds = 2πk, then solution

(9) of system (5) is ω-periodic (the period is not necessarily minimal).

(ii) Let the function α3(t) + a4α4(t) be ω-periodic and ∃k ∈ Z such that
ω
∫

0

(

α3(s) + a4α4(s)
)

ds = 2πk, then

solution (10) of system (6) is ω-periodic (the period is not necessarily minimal).
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Proof. For b = 0, solution (9) of system (5) takes the form x(t) =
√

−a (a+ e) sin

(

t
∫

0

α3(s)ds

)

, y(t) =

√

−a (a+ e) cos

(

t
∫

0

α3(s)ds

)

, z(t) = −a, and to prove the first assertion of the theorem, it suffices to

prove that ∃k ∈ Z such that
t+ω
∫

0

α3(s)ds ≡
t
∫

0

α3(s)ds + 2πk. Taking into account that
t+ω
∫

0

α3(s)ds ≡
t
∫

0

α3(s)ds +
t+ω
∫

t
α3(s)ds, it remains to prove that ∃k ∈ Z such that

t+ω
∫

t
α3(s)ds ≡ 2πk. Let us introduce

the notation B(t) =
t+ω
∫

t

α3(s)ds. Since α3(t) is a continuous function, by the properties of an integral with

a variable upper limit, B(t) is a differentiable function and Ḃ(t) ≡ α3(t + ω) − α3(t). Since the function
α3(t) is ω-periodic, it follows that Ḃ(t) ≡ 0, that is, B(t) ≡ const. In particular, B(t) ≡ B(0), i.e.

t+ω
∫

t

α3(s)ds ≡
ω
∫

0

α3(s)ds. (12)

It remains to note that, by the hypothesis of the theorem, ∃k ∈ Z such that
ω
∫

0

α3(s)ds = 2πk.

The second assertion of the theorem is proved similarly to the first. �

Proposition 2. In the formulation of Theorem 6:

(i) the condition “∃k ∈ Z such that
ω
∫

0

α3(s)ds = 2πk” can be replaced by the condition that the function

α3(t) is odd;

(ii) the condition “∃k ∈ Z such that
ω
∫

0

(

α3(s) + a4α4(s)
)

ds = 2πk” can be replaced by the condition that the

function α3(t) + a4α4(t) is odd.

Proof. From identity (12) for t = −ω it follows that
0
∫

−ω
α3(s)ds ≡

ω
∫

0

α3(s)ds. Since the function α3(t) is

odd, it follows that
0
∫

−ω
α3(s)ds ≡

ω
∫

0

α3(s)ds, then
ω
∫

0

α3(s)ds = 0, i.e. k = 0.

The second statement is proved similarly to the first. �

6. Chaotic attractor

By Theorem 13 [Yang & Yang, 2018], for c = −b, d = a, e = −2a and ab 6= 0, system (2) has two heteroclinic
orbits connecting the equilibrium points O(0, 0, 0) and G(0, 0,−2a), the eigenvalues of the Jacobi matrix
for which are λO1 = −2a, λO2,3 = a ± b

√
−1 and λG1 = 2a, λG2,3 = −a ± b

√
−1. Since λO1 λ

G
1 = −4a2 < 0

and ℜ
(

λO2
)

ℜ
(

λG2
)

= −a2 < 0, the conditions of Shilnikov’s Heteroclinic Theorem [Zhou & Chen, 2006]
are not satisfied. Despite this, one can expect the presence of chaos in system (2), which was proved (and
also showed a chaotic attractor) by Belozyorov [2015] for the particular case when a = d = −1/3, b = −1,
c = 1, e = 2/3.

A numerical simulation (usingWolfram Mathematica software) shows the presence (see Fig. 1–2) of sim-
ilar chaotic attractors in systems (2) and (6) for a = d = −3, b = −8, c = 8, e = 6, αi(t) = sin (it), i = 1, 4.
In this case, the largest Lyapunov exponent for system (2) is λmax = 0.0254794, which confirms the chaotic
nature of the attractor. To calculate the Lyapunov exponents, we used the command F [{x , y , z }] :=
{

xz − 3x− 8y, 8x+ yz − 3y,−x2 − y2 − z2 + 6z
}

; LCEsC[F, {1/100, 2/100, 3}, 0.05, 10000, 2, 0.01] from
the LCE package for Wolfram Mathematica [Sandri, 1996].
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Note that if the conditions of Theorems 4 or 5 or 6 are satisfied for system (6), then system (6) has
a periodic solution, that is, system (6) demonstrates the coexistence of a periodic solution and a chaotic
attractor.

Fig. 1. Phase portraits of chaotic attractors of systems (2) and (6) (left and right, respectively) for a = d = −3, b = −8,
c = 8, e = 6, αi(t) = sin (it), i = 1, 4.

7. Conclusion

A set of non-stationary systems of ordinary differential equations is obtained, the MRF of which coincides
with the MRF of the autonomous generalized Langford system (2). The same MRF of these systems
determines the coincidence of some qualitative properties of the behavior of their solutions. This made it
possible to use the results of studying the qualitative behavior of solutions of the well-studied generalized
Langford system [16] to study nonstationary perturbed systems that are more complicated in kind. For
such systems ((5), (6), and (7)), conditions were obtained under which the equilibrium point is unstable
(in the sense of Lyapunov). For systems (5) and (6), conditions were obtained under which these systems
have periodic solutions; in addition, for system (5), conditions for asymptotic stability (instability) of a
periodic solution were obtained. The presence of similar chaotic attractors of systems (2) and (6) is shown
using a numerical experiment. Moreover, the coexistence of a periodic solution and a chaotic attractor was
shown for system (6).
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