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Abstract

Saddle fixed points are the centerpieces of complicated dynamics in a system. The one-dimensional stable and
unstable manifolds of these saddle-points are crucial to understanding the dynamics of such systems. While the
problem of sketching the unstable manifold is simple, plotting the stable manifold is not as easy. Several algorithms
exist to compute the stable manifold of saddle-points, but they have their limitations, especially when the system is
not invertible. In this paper, we present a new algorithm to compute the stable manifold of 2-dimensional systems
which can also be used for non-invertible systems. After outlining the logic of the algorithm, we demonstrate the
output of the algorithm on several examples.
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1 Introduction

Saddle fixed points play a vital role in determining the
behaviour of dynamical systems. These are points that
act as attractors in some directions and repel trajecto-
ries in other directions. This information is conveyed in
the stable and the unstable manifolds of the saddle point.
For a 2-D map, an unstable manifold is a one-dimensional
subset with the property that (a) it is tangential to the
unstable eigenvector of the concerned fixed point, (b) it-
erates starting from any point on that manifold always re-
main on the manifold, and (c) iterates progressively move
away from the fixed point along this manifold. Similarly,
the stable manifold is defined as a subset with the prop-
erty that (a) it is tangential to the stable eigenvector of
the concerned fixed point, (b) iterates starting from any
point on that manifold always remain on the manifold,
and (c) iterates progressively move closer to the fixed
point along this manifold.

It is known that an unstable manifold has attractive
property and all attractors in a system occur on an un-
stable manifold of a fixed point. A stable manifold, on
the other hand, has repelling property and if a system has
multiple attractors, a stable manifold forms the bound-
ary between the basins of attraction of the attractors.
The interplay between the stable and unstable manifolds
is responsible for important dynamical phenomena like
interior crises, boundary crises, homoclinic intersections,
etc. Hence, computing the structure of the stable and
unstable manifolds of saddle points assumes special im-
portance in understanding the dynamics of systems.

It is generally not possible to obtain the one-
dimensional manifolds (higher dimensional manifolds are
not considered here) of saddle fixed points analytically,
and hence, must be computed numerically. It is simpler
to obtain the unstable manifold: The technique gener-
ally starts with approximating an initial segment s of
the manifold close to the saddle point with the aid of the
eigenvector corresponding to the unstable eigenvalue of

the local linearization of the system at the point. Differ-
ent algorithms can then be applied to extend the mani-
fold from this initial segment. Over the years, this “man-
ifold extension algorithm” has seen a lot of variation, as
techniques were developed to obtain sufficiently closely
spaced points so that the manifold can be sketched Nusse
& Yorke (2012).

It may be noticed that the definition of the stable
manifold becomes identical with that of the unstable
manifold under the application of the inverse map. That
is why the same method can be applied to compute the
stable manifold by iterating backward using the inverse
map. This is the method used in the software tool Dy-
namics Nusse & Yorke (2012) to sketch the stable man-
ifold. But that requires the map to be invertible, which
may not always be the case. To overcome the problem,
a few alternative techniques have been proposed.

One of the proposed algorithms Kostelich et al. (1996)
computes the stable manifold through the use of local in-
verse(s) for computing a sequence of pre-images of points
on the segments. Thus it avoids the use of a global defini-
tion of the inverse map. However, this algorithm cannot
be applied in cases where local inverses cannot be found.

In an alternative method, the initial segment is ex-
tended by using a “prediction and correction” technique
Li et al. (2012) that uses the inverse of the local lin-
earization of the given system to first predict a preimage
of the current point, and then ‘correct it’ so that it is
close to the actual preimage. However, as this technique
also uses the inverse system, it faces similar limitations as
Kostelich et al. (1996). Alternatively, the algorithm de-
scribed in Nien & Wicklin (1998) may be used to compute
the pre-images of points (even in case of non-invertible
maps) on the segment s to obtain a set of points that lie
on the stable manifold.

The Search Circle Algorithm England et al. (2004) ex-
tends the stable set, starting with s, by finding points at
a particular distance from the latest point in the set that
map back to a region already included in the stable set.
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The Search Circle algorithm was implemented on a soft-
ware tool called DSTool Back et al. (1995). It is a pow-
erful method that works well for most maps — invertible
or non-invertible. But its performance may be limited in
case there are sharp bends and folds in the structure of
the stable manifold. Moreover, it is no longer convenient
to use DSTool as it works only on 32-bit architecture.

Thus we see that, even though some algorithms have
been developed to compute the stable manifolds of non-
invertible maps, these have some limitations because of
the requirement of computing the pre-iterates in round-
about ways, necessitating complicated implementations
that need strong error corrections to maintain accuracy.
Even then, most of these algorithms fail when a stable
manifold has sharp bends and folds.

In this paper, we present a simple and effective algo-
rithm that uses only forward iterates to compute the sta-
ble manifold and thus is free from the problems of com-
putation of pre-iterates of non-invertible maps. We call it
the ‘Point-Iterative Algorithm’, which uses the properties
of the stable manifold to reduce the problem at hand to
a computationally simpler problem. We demonstrate the
performance of the algorithm on different systems and
show that the errors occurring through this algorithm
are minimal.

2 The Proposed Logic

For any study of a dynamical system, it is seldom nec-
essary to plot the structure of the stable and unstable
manifolds over the entire phase plane. Normally the ne-
cessity is to plot the manifolds in smaller regions of inter-
est. Once this is achieved, a more complete sense of the
dynamics of the system can be obtained by consolidat-
ing the behaviour observed in all these smaller regions.
Hence, for all practical purposes, we need to sketch the
stable manifold in a smaller region of the phase plane
such that,

a1 ≤ x ≤ a2 (1)

b1 ≤ y ≤ b2, (2)

where x and y are the state variables and the specifica-
tion of the system (whether in the form of differential
equations or maps) provides the rules for the evolution
of these state variables.

In our algorithm, we first compute the points where
the stable manifold intersects the boundary of this re-
gion. Then the system can be simply evolved forward
starting from these points of intersection, and the plot so
obtained would be the sketch of the stable manifold in
that region.

So, the problem is now reduced to that of finding the
points of intersection of the manifold with the boundary
of a given region. For this, we use the fact that the stable
manifold acts as a repeller of trajectories, i.e., trajectories
starting at very small distances on opposite sides of the
stable manifold end up with very different fates. Using
this property, the points of intersection are found, which
allows us to compute the stable manifold using only the
forward iterates.

2.1 The Parameters

1. BISECTION ERROR: This describes the maxi-
mum error that is allowed in the bisection. Usually,
1e-6 is a good value for the bisection error.

2. X LINEAR ADVANCEMENT: This describes the
step length along the horizontal axis. Usually, 3-7%
of the length of the horizontal boundary is a good
measure to start with.

3. Y LINEAR ADVANCEMENT: This describes the
step length along the vertical axis. Usually, 3-7%
of the length of the vertical boundary is a good
measure to start with.

4. N MAX: The utility of this parameter is described
later. Usually, N MAX = 5 or 6 is a good starting
point.

5. points[ ]: This is the set of the points of intersec-
tion of the stable manifold with the boundary of
the region.

2.2 The Functions

1. evolve system (initial, system): Given the system
definition and the initial conditions, it calculates
the N MAX-th iterate of the given map. It returns
the vector pointing towards the next point in the
system.

2. check for opposite sides (p1,p2, system): Given
two points, p1 and p2 and the system descrip-
tion, this function checks whether p1 and p2 are
on opposite sides of the stable manifold. It does
so by evolving p1 and p2 under evolve system, and
checking whether the vectors corresponding to the
two points are diverging at least along one of the
horizontal and vertical directions. FSometimes, it
may so happen that due to the particular choice of
N MAX, such points may be obtained, which are
not actually on opposite sides of the stable manifold
but the vectors happen to diverge for the current
parameter values. It might be a good idea to check
for two or more N MAX values before applying the
bisection procedure.

3. bisect (p1,p2,mode,system): Given two points, p1
and p2, it performs bisection between p1 and p2
and adds all points of intersections to the set points[
]. The mode decides whether the bisection is per-
formed along the horizontal or the vertical axis.

4. find points of intersection (p1,p2,mode,system):
Given the endpoints of the region boundary, this
uses bisect to find all the points of intersection
along with the boundary. The different values
of mode correspond to the two directions of the
boundary.

Mode Direction
0 Horizontal Axis
1 Vertical Axis

All other values Invalid Mode

The pseudocodes of all these functions are given in the
Appendix.
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2.3 Special Consideration for Maps

While the proposed logic of finding the points of intersec-
tion and evolving the system can be applied to differential
equations as well as maps, some special considerations are
necessary when it is applied to maps.

In case of a continuous time system, theoretically an
infinite number of points lying on the stable manifold can
be found through evolution of a point on the manifold.
In order to sketch the manifold computationally, a finite
set of discrete points is obtained using a numerical algo-
rithm, which is a subset of the infinite number of points.
The number of points in the set can be increased to any
desirable extent so as to obtain an accurate plot of stable
manifold, i.e., the dicretization is under the control of the
programmer.

In case of maps, that is not the case. Due to the
discrete nature of maps, iteration of the points of inter-
section of the stable manifold with the boundary of the
region of interest results in a finite number of points lying
on the stable manifold. The result is a discrete scatter of
points from which it might be difficult to infer a pattern.

For this reason, if a reasonably accurate and (al-
most) continuous plot is to be obtained, we need
to run the find points of intersection for all dis-
tinct regions of size X LINEAR ADVANCEMENT ×
Y LINEAR ADVANCEMENT, present within our re-
gion of interest. Hence, the sketch stable manifold func-
tion takes a slightly different form in case of maps.
sketch stable manifold function for maps is provided in
This algorithm is a simple, yet powerful technique that
can sketch complicated structures of the stable manifold,
some of which are demonstrated in Section 3.

3 Examples

We now demonstrate the performance of the Point-
Iterative algorithm with the plots obtained for 2-
dimensional maps. We verify the plots by sketching the
basins of attraction alongside (since the stable manifold
lies along the basin boundaries), and comparing their
shapes.

3.1 Henon Map

For the parameter values we have considered, the Henon
map is invertible but has relatively sharp bends and folds.
The map is described by(

xn+1

yn+1

)
=

(
a− x2n + byn

xn

)
, (3)

where a and b are parameters which control the behaviour
of the system. In Fig. 1, we have plotted the basins of
attraction and the stable manifolds obtained by our al-
gorithm for three different values of (a, b). The obtained
manifolds are found to lie on the basin boundaries, and
additionally show intricate structures that are not visible
in the basin plots because of the finite resolution of the
basin images. The structure of the stable manifold for
a = 1.4 and b = −0.3 is also compared with the mani-
fold obtained from DSTool Back et al. (1995) using the
Search-Circle Algorithm England et al. (2004) (Fig. 2).

As can be seen from Fig. 1(b), the sharp bends and folds
of the manifold are missing in Fig. 2.

3.2 Modified Ikeda Map

The Ikeda map is described by:(
xn+1

yn+1

)
=

(
a+ bxn cos(m) − eyn sin(m)
byn cos(m) + exn sin(m)

)
(4)

where

m = φ− q

1 + x2n + y2n
(5)

and a, b, e, q, φ are parameters that control the behaviour
of the map. For the typical Ikeda map, b=e, and as men-
tioned in England et al. (2004), it is possible to find an
explicit inverse. However, we consider slightly different
values for b and e for which no closed analytic form of
the inverse exists England et al. (2004); Kostelich et al.
(1996).

Considering the values a = 1, b = 0.9, φ = 0.4, q = 6
and e = 1, we have obtained a plot of the stable man-
ifold using the Point-Iterative Algorithm (Fig. 3). This
is very similar to the plot in Kostelich et al. (1996) and
in England et al. (2004) (generated by the Search Circle
Algorithm).

3.3 Modified Gumowski-Mira Map

The Gumowski-Mira map is expressed as:

(
xn+1

yn+1

)
=

(
yn

axn + bx2n + y2n

)
(6)

where a and b are parameters which control the behaviour
of the system. It is easy to notice that while finding the
inverse of the above map, we obtain a quadratic equation
of xn in terms of xn+1 and yn+1. Hence, the map is non-
invertible as there might exist two distinct pre-images of
a single point. Algorithms that make use of the inverse
for sketching the stable manifold fail to work here.

Using a = −0.8 and b = 0.1, we observe that there ex-
ists a saddle-fixed point at (x, y) = (1.636, 1.636). Fig. 4
shows the sketch of the stable manifold of this saddle
point generated by the Point-Iterative Algorithm. The
manifold has disjoint sets which is a result of the exis-
tence of two pre-images. Interestingly, the branches of
the stable manifold on both sides of the saddle-point join
to form a closed loop. The stable manifold plotted by
our algorithm has a good correspondence to the plot in
England et al. (2004) generated by the Search-Circle Al-
gorithm.

3.4 Non-Smooth non-invertible Map

Non-smooth maps have been subject of intense investi-
gation in recent times because of their applicability in
many physical and engineering systems. The piecewise
linear ‘normal form’ of the non-smooth map is given by(

xn+1

yn+1

)
=

{
h1(xn, yn) ifx < 0

h2(xn, yn) ifx ≥ 0
(7)

3



(a) (b)

(c) (d)

(e) (f)

Figure 1: (a) and (b): The basins of attraction and the stable manifold plotted by the Point-Iterative Algorithm for the Henon
Map for a = 1.4, b = −0.3. (c) and (d): The same for parameter values a = 0.5, b = 0.9. (e) and (f): The same for parameter
values a = 1.42, b = 0.3.
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Figure 2: Stable manifold of the Henon Map for a = 1.4 and b = −0.3 obtained using the Search-Circle Algorithm

Figure 3: Sketch of the stable manifold for the modified Ikeda map for a = 1, b = 0.9, φ = 0.4, q = 6 and e = 1, obtained using
the Point-Iterative algorithm.

Figure 4: Sketch of the stable manifold of the saddle-fixed point (marked in orange) of the modified Gumowski-Mira Map for
a=-0.8, b=0.1 obtained using the Point-Iterative Algorithm
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(a) (b)

Figure 5: Sketch of the stable manifold for the non-smooth map for parameters δL = −0.3, τL = −0.3, δR = 1.4, µ = 0.05 and
(a) τR = 0.28, (b) τR = 0.53

where

h1(xn, yn) =

(
τLxn + yn + µ

−δLxn

)
,

h2(xn, yn) =

(
τRxn + yn + µ

−δRxn

)
and δL, τL, δR, τR and µ are parameters that deter-
mine the behaviour of the map. The map becomes non-
invertible if δL and δR are of opposite sign or if one of
them is zero De et al. (2012). We take the parameter
values δL = −0.3, τL = −0.3, δR = 1.4, τR = 0.28 and
µ = 0.05, satisfying this condition. The phase portrait of
the system is characterised by saddle-node connections
of a pair of period-4 cycles (a stable cycle and a saddle
cycle). Fig. 5(a) shows the plot of the stable manifold
of the non-smooth map for the above parameter values
as generated by the Point-Iterative Algorithm. The plot
largely resembles the sketch of the stable manifold in De
et al. (2012) that were obtained using DSTool. Our al-
gorithm could detect some additional sections (compare
Fig. 5(a) with Fig. 7(a) of De et al. (2012)) which have
been verified to belong to the stable manifold.

For parameter values δL = −0.3, τL = −0.3, δR =
1.4, τR = 0.53 and µ = 0.05, the phase portrait con-
sists of a chaotic attractor and a stable period-4 cycle
with their basins of attraction separated by the stable
manifold of a saddle period-4 cycle. Fig. 5(b) shows the
stable and saddle period-4 cycles and the stable man-
ifold obtained through the Point-Iterative Algorithm.
More details about the ‘closed loop’ shape of the sta-
ble manifold can be found in De et al. (2012). The plot
has an exact correspondence to the basins of attraction
shown in De et al. (2012). It must be noted here that
the logic for the check for opposite sides function used
in the Appendix will produce several false-positives if
there is a chaotic attractor present in the phase portrait.
Hence, to obtain the plot in Fig. 5(b), the implementation
of check for opposite sides(p0, p1, system) was modified
to return True if trajectories starting from p0 were at-
tracted to the stable cycle and those starting from p1 were

not, and vice-versa. The function would return False oth-
erwise.

3.5 Map obtained from a 3 dimensional
continuous time system

In order to demonstrate the power of this algorithm, we
use it to plot the stable manifold of the map obtained
by placing a Poincare section on the phase space of the
continuous time system which is expressed as:ẋẏ

ż

 =


y

z

−y + 0.1x2 + 1.1xz + 1.05

(8)

This continuous time system has attracted some re-
search attention because it does not have any equilibrium
point and yet has a stable and an unstable limit cycle
and an attractor at infinity. Upon placing a Poincaré
section z = −2 on the phase plane, we obtain a planar
map with two fixed points. The map has a stable fixed
point at (0.2459,−2.4506) and a saddle fixed point at
(−0.2036,−2.93), the stable manifold of which separates
the basins of attraction of the stable fixed point and the
attractor at infinity. The basins of attraction and the
stable manifold of the saddle fixed point obtained using
the Point-Iterative Algorithm have been shown in Fig. 6
and the stable manifold is found to lie along the basin
boundaries. This demonstrates the usefulness of the al-
gorithm as it does not need a closed form expression of
the 2-dimensional map to obtain the stable manifold.

4 Adjusting the parameters used
by the Algorithm

Section 2.1 lists the parameters that are used by the algo-
rithm to sketch the stable manifold. For some systems,
the initial setting of parameters might produce the de-
sired results. However, for others, some tuning may be
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(a) (b)

Figure 6: (a) Basins of attraction and (b) Stable Manifold of the saddle fixed point of the planar map obtained from the 3D
continuous time system

necessary. We now list how changing the various param-
eters affects the plot obtained from the algorithm.

1. BISECTION ERROR: As this parameter controls
the accuracy to which a point of intersection is bi-
sected, very small values (< 1e-7) might increase
the computation time, and thereby, affect the per-
formance of the algorithm. Whereas a larger value
for this parameter might mean a larger error in the
position of the point of intersection. Usually, values
between 1e-4 and 1e-6 achieve an acceptable com-
promise between computation time and accuracy.

2. X and Y LINEAR ADVANCEMENTS: These es-
sentially control the size of the steps that are taken
along the boundary, before carrying out bisection.
While reducing their values might lead to a greater
computation time, for large values of X and Y LIN-
EAR ADVANCEMENTS (>15-20% of the bound-
ary length), the stable manifold for maps may be
reduced to a discrete sequence of points. These
large values may be used when it is required to
find out the general outline of the stable manifold.
However, if the actual shape manifold needs to be
plotted, their values need to be reduced.

3. N MAX: This is essentially used to identify whether
two points are on opposite sides of the stable man-
ifold. If trajectories starting at these two points
are found to diverge along at least one of the direc-
tions, after N MAX iterates, the points are said to
be on opposite sides of the stable manifold. Hence,
a small value (<3) might see the stable manifold
breaking off unexpectedly in the phase plane, i.e.,
a discontinuous manifold may be obtained. On
the other hand, a very large value would demand
a large computation time. We illustrate the issue
with reference to the modified Gumowski-Mira map
discussed in Sec. 3. Fig. 7 shows the plots of the
stable manifold of the above map for the parameter
values specified in Sec. 3.3 obtained using the Point-
Iterative Algorithm for different values ofN MAX.
As can be seen, for N MAX = 3 and N MAX
= 4, the plots obtained break off in the middle,
indicating that the value of N MAX must be in-
creased. However, at N MAX = 5, the manifold
does not break off in the middle and we obtain the
structure of the stable manifold. In Fig. 7(d), the

stable manifold is computed for a higher value of
N MAX (=14). As this shows no additional struc-
ture in the manifold, the chosen value of N MAX
is 5 as this is the smallest value of N MAX that
computes the structure of the stable manifold in
the minimum computation time. Hence, the value
of N MAX should be so chosen that it results in
a continuous manifold for a continuous map, and a
further increase in its value does not provide any
additional information about the stable manifold.
While N MAX = 5 or 6 may be a good starting
point, some maps may require an N MAX value
up to 15 or even in some cases, as high as 25-30.

It must be noted that the exact values of these pa-
rameters may vary from system to system. However, the
general behaviour upon increasing/decreasing the values
remains similar. Hence, these should be used as indica-
tors for tuning the parameter values until the required
plot is obtained.

4.1 Accuracy of the Plots Obtained

While it is necessary to estimate and through the use
of necessary techniques, confine the errors within certain
bounds with the use of certain approximations, it is also
necessary to ensure that heavy computational resources
are not lost in overcoming these errors.

The use of various approximate algorithms such as
approximating the local inverse Kostelich et al. (1996)
or the Search Circle England et al. (2004) to extend a
preliminary section of the stable manifold are followed
by strong error analysis to ensure that the plots ob-
tained are accurate. However, the Point-Iterative algo-
rithm does not need rigorous error analysis. We find the
points of intersection at multiple steps, and the only er-
ror encountered here is the uncertainty in the position of
the point, i.e., the BISECTION ERROR. Since the BI-
SECTION ERROR usually lies between 1e-4 and 1e-6,
the plots obtained are, for all practical purposes, quite
accurate.

5 Conclusion

In this paper we have introduced a new algorithm to
plot the stable manifolds of saddle points in 2-D maps.
It does not require specification of the inverse, nor does

7



(a) (b) (c)

(d)

Figure 7: Plot of the stable manifold obtained using the algorithm for (a) N MAX = 3 (b) N MAX = 4 (c) N MAX = 5 (d)
N MAX = 14.

it depend on computation of pre-iterates. The Point-
Iterative algorithm identifies the points of intersection
of the stable manifold with the boundary of the region
of interest by utilizing the repelling property of the sta-
ble manifold. Forward iteration from these points give
points on the stable manifold. We have described the
implementation of the algorithm, and have shown that
the algorithm can successfully plot the stable manifold
in non-invertible maps even when the manifold has sharp
folds and bends.
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Appendix

Here, we provide the pseudo-code implementations of the
functions necessary to sketch the stable manifold using
the Point-Iterative Algorithm.
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function evolve system (p0,map):
p1 = Final point after iterating p0 under map N MAX − 1 times
p2 = map(p1)
return (p2 − p1)

1

function check for opposite sides (p0, p1, system):
v1 = evolve system(p0, system)
v2 = evolve system(p1, system)
return (v1[0]× v2[0]) < 0 or (v1[1]× v2[1]) < 0

1

function bisect (p0, p1,mode, system):
mid = (p0 + p1)/2
if p1[mode]− p0[mode] < BISECTION ERROR then

points.append(mid)
return

else
if (check for opposite sides(p0,mid, system) then

bisect(p0,mid,mode, system)
end
if (check for opposite sides(mid, p1, system) then

bisect(mid, p1,mode, system)
end

end

1

function find points of intersection (p0, p1,mode, system) :
if mode! = 0 and mode! = 1 then

Invalid mode
return

else
while p0[mode] < p1[mode] do

initial = p0
if mode = 0 then

next = (p0[0] +X LINEAR ADV ANCEMENT, p0[1])
p0[0]+ = X LINEAR ADV ANCEMENT

else
next = (p0[0], p0[1] + Y LINEAR ADV ANCEMENT )
p0[1]+ = Y LINEAR ADV ANCEMENT

end
if (check for opposite sides(initial, next, system) then

bisect(initial, next,mode, system)
end

end

end

1

function sketch stable manifold
(x left, x right, y bottom, y top,map) :

if mode! = 0 and mode! = 1 then
Invalid mode
return

else
if mode=0 then

while y bottom < y top do
x start = (x left, y bottom)
x end = (x right, y bottom)
find points of intersection(x start, x end, 0,map)
y bottom+ = Y LINEAR ADV ANCEMENT

end

else
while x left < x right do

y start = (x left, y bottom)
y end = (x left, y top)
find points of intersection(y start, y end, 1,map)
x left+ = X LINEAR ADV ANCEMENT

end

end

end

1

9


	1 Introduction
	2 The Proposed Logic
	2.1 The Parameters
	2.2 The Functions
	2.3 Special Consideration for Maps

	3 Examples
	3.1 Henon Map
	3.2 Modified Ikeda Map
	3.3 Modified Gumowski-Mira Map
	3.4 Non-Smooth non-invertible Map
	3.5 Map obtained from a 3 dimensional continuous time system

	4 Adjusting the parameters used by the Algorithm
	4.1 Accuracy of the Plots Obtained

	5 Conclusion

