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In the present work, a second-order type 2 PLL with a piecewise-linear phase detector charac-
teristic is analysed. An exact solution to the Gardner problem on the lock-in range is obtained
for the considered model. The solution is based on a study of cycle slipping bifurcation and
improves well-known engineering estimates.
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1. Introduction

Phase-locked loops (PLLs) are nonlinear control systems which are designed to synchronize a voltage-
controlled oscillator (VCO) signal with a reference one. PLLs have many applications in energy and robotic
systems, satellite navigation, wireless and optical communications, cyber-physical systems [Du & Swamy,
2010; Karimi-Ghartemani, 2014; Rosenkranz & Schaefer, 2016; Best et al., 2016; Kaplan & Hegarty, 2017;
Kuznetsov et al., 2020c; Zelenskii et al., 2021; Zelensky et al., 2021; Kuznetsov et al., 2022]. Analog PLLs
can be described by systems of nonlinear differential equations with periodic right-hand sides, which are
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also known as pendulum-like systems. In 1933, F. Tricomi was the first, who conducted nonlinear analysis
[Tricomi, 1933] of the systems which are equivalent to the second-order PLLs with lag filters (see, e.g.,
[Gardner, 2005]). It was proven that the global stability of those systems is determined by separatrices of
a saddle, which correspond to a heteroclinic bifurcation in the system. Further, bifurcations of the second-
order PLLs with lead-lag filters and different nonlinear characteristics of phase detectors were studied in
[Andronov et al., 1937; Kapranov, 1956; Belyustina, 1959; Gubar’, 1961; Shakhtarin, 1969].

PLL systems with lag and lead-lag loop filters can be classified as type 1 PLLs, because transfer
functions of such filters do not have poles at the origin. In engineering practice, so-called type 2 PLLs,
that have loop filters with exactly one pole at the origin, are most often used nowadays [Gardner, 2005].
The second-order type 2 analog PLLs are always globally stable (see, e.g., [Kuznetsov et al., 2021a]), i.e.,
these PLLs acquire lock for any reference frequency. However, synchronization in the systems may take
long time. In order to reduce the long acquisition time, the lock-in concept has been introduced. According
to the concept, the locked PLL re-acquires a locked state without cycle slipping after an abrupt change of
the reference frequency. The problem of estimation of the reference frequencies where the concept is held
was posed by F. Gardner in his monograph [Gardner, 2005]. A rigorous approach to the Gardner problem
and analytical estimates of the lock-in range were suggested in [Kuznetsov et al., 2015, 2019b, 2021a,c,b].

The system where such abrupt reference frequency change occurs can be considered as a switching
system. The Gardner problem requires to study cycle slipping bifurcation of the system when a trajectory,
starting from an equilibrium of the system before the switch tends to an equilibrium of the system after
the switch. This task is similar to the problem of the heteroclinic bifurcation estimation in type 1 PLL
systems.

2. Mathematical Model and Stability Analysis

+-

+

VCO

LFPD

Fig. 1. Baseband model of analog PLLs.

Consider analog PLL baseband model in Fig. 1 [Gardner, 2005; Viterbi, 1966; Best, 2007; Leonov et al.,
2012, 2015b]. Here θref(t) = ωreft+ θref(0) is a phase of the reference signal, a phase of the VCO is θvco(t),
θe(t) = θref(t) − θvco(t) is a phase error. A phase detector (PD) generates a signal ve(θe(t)) where ve(·) is
a characteristic of the phase detector. In the present paper, a piecewise-linear PD characteristic, which is
continuous and corresponds to square waveforms of the reference and the VCO signals, is considered:

ve(θe) =

{
kθe − 2πkm, − 1

k + 2πm ≤ θe(t) < 1
k + 2πm,

− 1
π− 1

k

θe + 1
π− 1

k

(π + 2πm), 1
k + 2πm ≤ θe(t) < − 1

k + 2π(m+ 1),
(1)

here k > 1
π , m ∈ Z (see Fig. 2).
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Fig. 2. Triangular PD characteristic (piecewise-linear PD characteristic (1) with k = 2
π ).

The state of the loop filter is represented by x(t) ∈ R and the transfer function is

F (s) =
1 + sτ2
sτ1

, τ1 > 0, τ2 > 0.

The output of the loop filter vF(t) = 1
τ1

(x(t) + τ2ve(θe(t)) is used to control the VCO frequency ωvco(t),
which is proportional to the control voltage:

ωvco(t) = θ̇vco(t) = ωfree
vco +KvcovF(t)

where Kvco > 0 is a gain and ωfree
vco is a free-running frequency of the VCO.

The behavior of PLL baseband model in the state space is described by a second-order nonlinear ODE:

ẋ = ve(θe),

θ̇e = ωfree
e − Kvco

τ1

(
x+ τ2ve(θe)

) (2)

where ωfree
e = ωref − ωfree

vco is a frequency error and ve(θe) is defined in (1). It is usually supposed that
the reference frequency (hence, ωfree

e too) can be abruptly changed and that the synchronization occurs
between those changes. Thus, existence of locked states, acquisition and transient processes after the
reference frequency change are of interest.

2.1. Local stability analysis

The PLL baseband model in Fig. 1 is locked if the phase error θe(t) is constant. For the locked states of
practically used PLLs, the loop filter state is constant too and, thus, the locked states of model in Fig. 1
correspond to the equilibria of model (2) [Kuznetsov et al., 2015].

Definition 2.1. [Kuznetsov et al., 2015; Leonov et al., 2015a; Best et al., 2016] A hold-in range is the
largest symmetric interval of frequency errors |ωfree

e | such that an asymptotically stable equilibrium exists
and varies continuously while ωfree

e varies continuously within the interval.

Observe that system (2) is 2π-periodic in θe and has an infinite number of equilibria
(
τ1ωfree

e
Kvco

, πm
)

,

m ∈ Z. The characteristic polynomial of system (2) linearized at stationary states
(
τ1ωfree

e
Kvco

, πm
)

is

χ(s) = s2 +
Kvcoτ2
τ1

v′e(πm)s+
Kvco

τ1
v′e(πm).

The nonlinearity ve(θe) decreases
(
v′e(π + 2πm) = − 1

π− 1
k

< 0
)

for 1
k + 2πm < θe(t) < − 1

k + 2π(m + 1),

and equilibria
(
τ1ωfree

e
Kvco

, π + 2πm
)

are saddles. The nonlinearity ve(θe) increases (v′e(2πm) = k > 0) for
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− 1
k + 2πm < θe(t) <

1
k + 2πm, and the equilibria

(
τ1ωfree

e
Kvco

, 2πm
)

are asymptotically stable:

• if
Kvcoτ22 k

τ1
> 4 then the equilibria

(
τ1ωfree

e
Kvco

, 2πm
)

are asymptotically stable nodes,

• if
Kvcoτ22 k

τ1
= 4 then the equilibria

(
τ1ωfree

e
Kvco

, 2πm
)

are asymptotically stable degenerate nodes,

• if
Kvcoτ22 k

τ1
< 4 then the equilibria

(
τ1ωfree

e
Kvco

, 2πm
)

are asymptotically stable focuses.

Since an asymptotically stable equilibrium exists for any frequency error ωfree
e , the hold-in range of model

(2) is infinite for any loop parameters Kvco > 0, τ1 > 0, τ2 > 0.

2.2. Global stability analysis

Definition 2.2. [Kuznetsov et al., 2015; Leonov et al., 2015a; Best et al., 2016] A pull-in range is the
largest symmetric interval of frequency errors |ωfree

e | from the hold-in range such that an equilibrium is
acquired for an arbitrary initial state.

In 1959, Andrew J. Viterbi applied the phase-plane analysis and stated that the second-order type 2
PLL models with sinusoidal PD characteristic have infinite (theoretically) hold-in and pull-in ranges for
any loop parameters [Viterbi, 1959, p.12], [Viterbi, 1966]. However, his proof was incomplete (see, e.g.
discussion in [Alexandrov et al., 2015]). Later, Viterbi’s statement was rigorously proved using the direct
Lyapunov method ideas [Bakaev, 1963; Aleksandrov et al., 2016; Kuznetsov et al., 2021a].

To analyse the pull-in range of system (2) with piecewise-linear PD characteristic, we apply the direct
Lyapunov method and the corresponding theorem on global stability for the cylindrical phase space (see, e.g.
[Leonov & Kuznetsov, 2014; Kuznetsov et al., 2020b]). If there is a continuous function V (x, θe) : Rn → R
such that

(i) V (x, θe + 2π) = V (x, θe) ∀x ∈ Rn−1,∀θe ∈ R;
(ii) for any solution (x(t), θe(t)) of system (2) the function V (x(t), θe(t)) is nonincreasing;
(iii) if V (x(t), θe(t)) ≡ V (x(0), θe(0)), then (x(t), θe(t)) ≡ (x(0), θe(0));
(iv) V (x, θe) + θ2e → +∞ as ||x||+ |θe| → +∞

then any trajectory of system (2) tends to an equilibrium (for brevity, we shall call such systems globally
stable).

Consider the following Lyapunov function:

V (x, θe) =
Kvco

2τ1

(
x− τ1ω

free
e

Kvco

)2

+

θe∫
0

ve(σ)dσ. (3)

Its derivative along the trajectories of system (2) is

V̇ (x, θe) = −Kvcoτ2
τ1

v2e(θe) < 0 ∀θe 6= πm, m ∈ Z.

Since the derivative along any solution other than stationary states is not identically zero, system (2) is
globally stable for any ωfree

e and, hence, the pull-in range is infinite.
In 1981, William F. Egan conjectured [Egan, 1981, p.176] that a higher-order type 2 PLL with an

infinite hold-in range also has an infinite pull-in range, and supported it with some third-order PLL imple-
mentations (see also [Egan, 2007, p.161]). However, this conjecture is not valid in general and corresponding
counterexamples were recently provided in [Kuznetsov et al., 2021a].

Notice that a similar conjecture on the pull-in range for the second-order type 1 PLLs is known as the
Kapranov conjecture [Kapranov, 1956], where it is supposed that the global stability of the corresponding
model is determined by the birth of self-excited oscillations only, not hidden ones [Leonov & Kuznetsov,
2013; Chen et al., 2017]. Discussions of counterexamples to the Kapranov conjecture can be found in
[Kuznetsov et al., 2017; Kuznetsov, 2020].
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3. The lock-in range of second-order type 2 analog PLL with piecewise-linear
PD characteristic

Although a PLL model can be globally stable with infinite pull-in range, the acquisition process can take
long time. To decrease the synchronization time, a lock-in range concept is frequently exploited [Gardner,
2005; Kolumbán, 2005; Best, 2007].

Definition 3.1. [Kuznetsov et al., 2015; Leonov et al., 2015a; Best et al., 2016] A lock-in range is the
largest interval of frequency errors |ωfree

e | from the pull-in range such that the PLL model being in an
equilibrium, after any abrupt change of ωfree

e within the interval acquires an equilibrium without cycle
slipping (sup

t>0
|θe(0)− θe(t)| < 2π).

Remark 3.1. Sometimes the upper limit is considered in the cycle slipping definition instead of
the supremum: lim sup

t→+∞
|θe(0) − θe(t)| ≥ 2π. For any ωfree

e the following inequality is valid:

sup
t>0
|θe(0) − θe(t)| ≥ lim sup

t→+∞
|θe(0) − θe(t)|. However, bifurcation values determining the lock-in range

[0, ωl) are the same for both definitions of cycle slipping (see Fig. 3).

0 20 40 60 100

0

2

3

4

Fig. 3. Comparison of cycle slipping definitions (see Remark 3.1) for model (2) with parameters τ1 = 0.0633, τ2 = 0.0225,
Kvco = 250.

From a mathematical point of view, system (2) can initially be in an unstable equilibrium (at one of
the saddles) or can acquire it by a separatrix after a change of ωfree

e (see [Kuznetsov et al., 2019a, 2020a]).
Corresponding behavior is not observed in practice: system state is disturbed by noise and can’t remain in
unstable equilibrium. In this paper, two cycle-slipping-related characteristics of the system are considered:
the lock-in range |ωfree

e | ∈ [0, ωl) where the equilibria are considered to be stable and the conservative
lock-in range |ωfree

e | ∈ [0, ωcl ) ⊂ [0, ωl) which takes into account the unstable behavior described above.
For the considered model boundary values ωl and ωcl are determined by cycle slipping bifurcation.

It happens when the system being in an equilibrium state is exposed to an abrupt change of ωfree
e , and

the corresponding trajectory of the system after the switch tends to the nearest unstable equilibrium by
the corresponding saddle separatrix. In other words, sup

t>0
|θe(0) − θe(t)| = lim sup

t→+∞
|θe(0) − θe(t)| = π for

θe(0) = 2π (see Fig. 4, lower left picture) and sup
t>0
|θe(0)−θe(t)| = lim sup

t→+∞
|θe(0)−θe(t)| = 2π for θe(0) = 3π

(see Fig. 4, upper right picture). For a larger ωfree
e supremum sup

t>0
|θe(0) − θe(t)| > 2π and cycle slipping

occurs. Since the lock-in range is defined as a half-open interval, boundary values ωfree
e = ωl and ωfree

e = ωcl
are not included in it.
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Fig. 4. Phase portraits for model (2) with the following parameters: F (s) = 1+sτ2
sτ1

, τ1 = 0.0633, τ2 = 0.0225, Kvco = 250.

Black dots are equilibria of the model with positive ωfree
e = |ω|. Red color is for the model with negative ωfree

e = −|ω|.
Separatrices pass in and out of the saddles equilibria. Upper left subfigure: ω = 69 < ωcl , upper right subfigure: ω = ωcl ≈ 70.79
(evaluated by Theorem 2), lower left subfigure: ω = ωl ≈ 85.27 (evaluated by Theorem 1), lower right subfigure: ω = 86 > ωl.

In practice, the lock-in range can be estimated in the following way. Without loss of generality we can fix
ωfree
vco and vary ωref only. Let initially ωfree

e = ωref−ωfree
vco = 0 and the system is in a stable equilibrium. Then

we abruptly increase the reference frequency by sufficiently small frequency step ∆ω > 0 (i.e., the reference
frequency becomes ωref = ωfree

vco + ∆ω) and observe whether corresponding transient process converges to a
locked state without cycle slipping (see Fig. ??). After that we abruptly decrease the reference frequency
by 2∆ω (i.e., the reference frequency becomes ωref = ωfree

vco − ∆ω). If the transient process converges to
the locked state without cycle slipping, then [0,∆ω) ⊂ [0, ωl). Frequency step ∆ω > 0 should be increased
until cycle slipping occurs.

Using changes of variables we represent system (2) as the first-order differential equation [Belyustina,
1959; Huque & Stensby, 2011] and following [Aleksandrov et al., 2016; Kuznetsov et al., 2019a] we formulate
and prove theorems providing exact values for the lock-in range and for the conservative lock-in range.

Theorem 1. The lock-in frequency of model (2) with the piecewise-linear PD characteristic (1) is

ωl =


a
√
π

2τ2

(
c+b
c−b

) a
2b
, a2k > 4,

a
√
π

2τ2
exp( a

2
√
π

), a2k = 4,
a
√
π

2τ2
exp

(
a
b arctan b

c

)
, a2k < 4

(4)

where

a =

√
Kvco

τ1
τ2, b =

√
|a2 − 4

k
|, c =

√
a2 + 4(π − 1

k
). (5)

Theorem 2. The conservative lock-in frequency of model (2) with piecewise-linear PD characteristic (1)
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Fig. 5. The lock-in range calculation.

is

ωcl =
1

2

√
Kvco(d+ c−a

2 )
c−a
c (d− c+a

2 )
c+a
c

τ1
, (6)

where a, b and c are evaluated by (5), and d is the unique solution of one of the equations:
(d− a−b

2 )
b−a
b (d− a+b

2 )
b+a
b = π( c+bc−b)

a
b , d > a+b

2 , a2k > 4,

d = a
2

(
1 +

1

W ( a
2
√
π

exp(− a
2
√
π

))

)
, a2k = 4,(

d2 − ad+ 1
k

)
exp

(
2a
b arctan b

a−2d

)
= π exp

(
2a
b arctan b

c

)
, d > a

2 , a2k < 4.

(7)

Here W (x) is the Lambert W function.

Proof. [Proof of Theorem 1 and Theorem 2] The proof given in Appendix A is based on the fact that
system (2) is piecewise-linear and can be integrated analytically on the linear segments. �

Notice that ωl and ωcl are continuous functions of variable k (as a is fixed): the cases a2k > 4 and
a2k < 4 in formulae (4), (6) approach the case a2k = 4 as k → 4

a2
(as b→ 0).

4. Conclusions

In this work, the exact formulae for the lock-in range and the conservative lock-in range for the second-order
type 2 PLL with a piecewise-linear phase detector characteristic were derived. In engineering literature,
the following approximate estimate for the lock-in range can be found:

ωl ≈
Kvcoτ2
τ1

(8)

(see [Best, 2007, p.69] where ωl ≈ πζωn, ωn =
√
KdKvco/τ1, ζ = ωnτ2/2, Kd = 2

π , and [Gardner, 2005,
p.187] where Kd = 1,Ko = Kvco). However, estimate (8) intersects the exact lock-in frequency value (4)
for some values of parameters. Taking into account that for type 2 PLLs a pull-out frequency1 ωpo is twice

1In 1966, such concept as pull-out frequency was introduced by F. Gardner [Gardner, 1966, p.37]. In the literature, the following
explanations of the pull-out frequency ωpo can be found: “some frequency-step limit below which the loop does not slip cycles
but remains in lock” [Gardner, 1966, p.37], [Gardner, 2005, p.116], “the maximum value of the input reference frequency step
that can be applied to a phase-locked PLL, yet the loop is able to relock without slipping a cycle” [Stensby, 1997; Huque
& Stensby, 2011, 2013] (see also [Best, 2007, p.59]). Since using a linear change of variables the value ωfree

e can be excluded
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the value of the lock-in frequency, one more approximate estimate for the lock-in range is exploited:

ωl ≈ 0.7995

√
2Kvco

πτ1
+ 1.23

τ2Kvco

πτ1

(see [Best, 2007, p.84] where 2ωl = ωpo ≈ 2.46ωn(ζ + 0.65), ωn =
√
KdKvco/τ1, ζ = ωnτ2/2, Kd = 2

π ).
A.S. Huque and J. Stensby analysed system (2) with a triangular PD characteristic [the piecewise-

linear PD characteristic (1) with k = 2
π ] in [Huque & Stensby, 2011; Huque, 2011]. However, in those works

the global stability of system (2) was not analysed. In these works, the following formula for a pull-out
frequency was derived:

ωpo =
a2

τ2
exp

(1

2
ln |m2

− −m− + a′| − 1√
4a′ − 1

arctan

(
1− 2m−√

4a′ − 1

)
+

π

2
√

4a′ − 1

)
(9)

where a′ = π
2a2
, m− = 1

2(1 −
√

4a′ + 1). For a2 < 2π the lock-in frequency ωl = 1
2ωpo with ωpo from (9)

coincides with the corresponding case in (4), however for a2 ≥ 2π formula (9) is formally not applicable
and equations (4) should be used.

It’s important to note that obtained lock-in range formula (4) is also a lower analytical estimate for
the lock-in range of the second-order type 2 PLL with a sinusoidal PD characteristic. For these systems
several engineering estimates are known (see, e.g., [Gardner, 2005, p.117] and [Huque & Stensby, 2013]
for the pull-out range estimates, and [Gardner, 2005, p.187], [Kolumbán, 2005, p.3748], [Best, 2007, p.67],
[Best et al., 2016], [Best, 2018, p.18] for the lock-in range estimates).

The further development of such systems analysis is connected with consideration of higher-order loop
filters and discontinuous phase detector characteristics for revealing hidden oscillations and providing the
global stability [Zhu et al., 2020; Kuznetsov et al., 2021c].
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Appendix A Proof of Theorem 1 and Theorem 2

Proof. [Proof of Theorem 1 and Theorem 2] Let’s find the lock-in range of model (2) with piecewise-linear
PD characteristic (1). As it was noted in section 3, the lock-in frequency can be determined by such an
abrupt change of ωfree

e that the corresponding trajectory tends to the nearest unstable equilibrium (by the
corresponding separatrix). Suppose that initially the frequency error was equal to ωfree

e = −ω < 0, but then
changed to ωfree

e = ω > 0. Hence, initially the system is in equilibrium xeq = − τ1ω
Kvco

, θeqe = 0, but after

the switch the corresponding trajectory tends to xeq = τ1ω
Kvco

, θeqe = 0 without cycle slipping if ω < ωl.

Such ωl is determined by such frequency error ωfree
e that a trajectory being in stable equilibrium (before

the switch) xeq = − τ1ωl
Kvco

, θeqe = 0 tends to saddle equilibrium (after the switch) xeq = τ1ωl
Kvco

, θeqe = π by
the corresponding separatrix. Thus, the lock-in frequency ωl corresponds to the case

− τ1ωl
Kvco

= Q(0, ωl) (A.1)

from the type 2 PLL systems [Kuznetsov et al., 2021a], such concept is consistent for them and corresponds to the lock-in
frequency in the following way: ωpo = 2ωl. However, equilibria of type 1 PLLs depend on the frequency error ωfree

e and, hence,
the correct pull-out frequency definition should take into account the initial value of the frequency error corresponding to the
locked state.
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where τ1ωfree
e

Kvco
is x-coordinate of equilibrium of model (2) and x = Q(θe, ω

free
e ) is the lower separatrix of

saddle equilibrium ( τ1ω
free
e

Kvco
, π) (see Fig. 4).

After the change of variables τ =
√

Kvco
τ1

t, y =
√

τ1
Kvco

ωfree
e −

√
Kvco
τ1

(x + τ2ve(θe)), for θe(t) ∈ (− 1
k +

2πn, 1
k + 2πn) and θe(t) ∈ ( 1k + 2πn, − 1

k + 2π(n+ 1)) system (2) is represented as follows:

ẏ = −av′e(θe)y − ve(θe),
θ̇e = y,

(A.2)

where a = τ2

√
Kvco
τ1

.

Upper separatrix y = S(θe) of the phase plane of (A.2) corresponds to separatrix x = Q(θe, ω
free
e ) from

(2) (see Fig. A.1) and has the form

S(θe) =

√
τ1
Kvco

ωfree
e −

√
Kvco

τ1
(Q(θe, ω

free
e ) + τ2ve(θe)).

Thus, relation (A.1) takes the form

0

0 0

Fig. A.1. Phase plane portraits of (2) and (A.2).

− τ1ωl
Kvco

=
τ1ωl
Kvco

−
√

τ1
Kvco

S(0).

Hence, ωl = a
2τ2
S(0). Analogously to the phase plane analysis for ωl, we get the following formula for the

conservative lock-in frequency2: ωcl = a
2τ2
S(−π). Denote

yl = S(0), ycl = S(−π)

and get the formulae for ωl and ωcl :

ωl =
a

2τ2
yl, (A.3)

ωcl =
a

2τ2
ycl . (A.4)

The computation of yl and ycl from formulae (A.3), (A.4) consists of the following stages. Let’s divide
the phase plane to the following domains:

2To be more precise, for the conservative lock-in frequency it should be formally written ωcl = min(ωl,
a

2τ2
S(−π)), however,

S(0)− S(−π) = −
√
Kvco
τ1

(Q(0, ωfree
e )−Q(−π, ωfree

e )) > 0 because ẋ = ve(θe) < 0 as θe ∈ [−π, 0].
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• I: {(y, θe) | 1k ≤ θe ≤ π; θe, y ∈ R},
• II: {(y, θe) | − 1

k ≤ θe ≤
1
k ; θe, y ∈ R},

• III: {(y, θe) | −π ≤ θe ≤ − 1
k ; θe, y ∈ R}.

In the open domains, system (A.2) is a linear one and can be integrated analytically. Firstly, we compute
S( 1k ), which is possible due to the continuity of (2). Using the obtained value as the initial data of the

Cauchy problem and finding its solution in the domain II, we can compute yl = S(0) and S(− 1
k ). Here exist

three cases depending on the stable equilibrium type: an asymptotically stable focus, an asymptotically
stable node, and an asymptotically stable degenerated node. For every case described above we perform
separate computations. Using the obtained value as the initial data of the Cauchy problem and finding its
solution in the domain III, we can compute ycl = S(−π) (see Fig. A.2).

0

-2 - 0 2

Fig. A.2. The separatrix integration. Firstly, we compute S( 1k ) and use it as the initial data of the Cauchy problem. Secondly,
finding its solution in the domain II, we compute yl = S(0), which is used for the lock-in frequency ωl computation (see
(A.3)), and S(− 1

k ). Finally, we use S(− 1
k ) as the initial data of the Cauchy problem and find its solution in the domain

III, determining ycl = S(−π), which is used for the conservative lock-in frequency ωcl computation (see (A.4)). Parameters:
τ1 = 0.0633, τ2 = 0.0225, Kvco = 250, k = 2

π .

Domain I.
The saddle separatrix is locally described by the saddle’s eigenvectors

V s
+ =

(
1
c−a
2

)
, V s

− =

(
1

−c−a
2 .

)
Eigenvector V s

− points to a saddle and V s
+ has the opposite direction. Since in the considered domain the

system is a linear one, then the separatrix coincides with the line corresponding to V s
−:

S(θe) =
c− a

2
(
π − 1

k

)(π − θe),
1

k
< θe < π.

Let’s obtain the limit value in θe = 1
k :

S(
1

k
) =

c− a
2

> 0.
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Domain II. If − 1
k < θe(t) <

1
k then system (A.2) is

ẏ = −aky − kθe,
θ̇e = y.

(A.5)

In the domains {y > 0} and {y < 0}, variable θe(t) changes monotonically and the behaviour of system
(A.5) can be described by the first-order differential equation3:

dy

dθe
= −ak − kθe

y
. (A.6)

The obtained equation is Chini’s equation [Chini, 1924; Cheb-Terrab & Kolokolnikov, 2003], which is a
generalization of Abel and Riccati equations. The change of variables z = y

θe
maps equation (A.6) into a

separable one4:

zdz

z2 + akz + k
= −dθe

θe
. (A.7)

If z2 + akz + k 6= 0 then solutions of system (A.6) and system (A.7) coincide in domains 0 < θe <
1
k and

− 1
k < θe < 0. Depending on the type of an asymptotically stable equilibrium, the following cases appear

(see section 2.1):

• a2k > 4 (the equation z2 + akz + k = 0 describes the eigenvectors of the stable node),
• a2k = 4 (the equation z2 + akz + k = 0 describes the eigenvector of the stable degenerate node),
• a2k < 4 (here the case z2 + akz + k = 0 is not possible).

Case a2k > 4. Let’s take into account the location of separatrix y = S(θe), satisfying (A.6), during
its integration on intervals. The eigenvectors of the stable node

V n
+ =

(
1

−a−b
2

)
, V n

− =

(
1

−a+b
2

)
are described by lines y = −a+b

2 kθe and y = −a−b
2 kθe, respectively, and intersect the boundary θe = 1

k

of domains I and II in points −a−b
2 < 0 and −a+b

2 < 0. Hence, the separatrix, intersecting the boundary

θe = 1
k of domains I and II in point c−a

2 > 0, remains over the eigenvectors within the domain II and

satisfies the following inequality: (S(θe) + a+b
2 kθe)(S(θe) + a−b

2 kθe) > 0 as θe ∈ [− 1
k ,

1
k ].

Assuming (z + a+b
2 k)(z + a−b

2 k) > 0, the general solution of equation (A.7) is as follows 5:

N1(z) = − ln |θe|+ C

where

N1(z) =
1

2
ln
((
z +

a− b
2

k
) b−a

b
(
z +

a+ b

2
k
) b+a

b

)
, C = const.

3The similar transition to the first-order differential equation was used in [Belyustina, 1959; Huque & Stensby, 2011, 2013].
4The same change of variables was used in [Huque & Stensby, 2011, 2013].
5Taking derivative of N1(z), we have

N ′1(z) =
1

2

1(
z + a−b

2 k
) b−a

b
(
z + a+b

2 k
) b+a

b

( b− a
b

(
z +

a− b
2

k
)−a

b
(
z +

a+ b

2
k
) b+a

b +

+
b+ a

b

(
z +

a− b
2

k
) b−a

b
(
z +

a+ b

2
k
) a

b

)
=

1

2

( b− a
b

(
z +

a− b
2

k
)−1

+
b+ a

b

(
z +

a+ b

2
k
)−1)

=

=
1

2(z + a−b
2 k)(z + a+b

2 k)

( b− a
b

(
z +

a+ b

2
k
)

+
b+ a

b

(
z +

a− b
2

k
))

=
z

(z + a−b
2 k)(z + a+b

2 k)
=

=
z

z2 + akz + k
.
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Since for separatrix y = S(θe) inequality (y + a+b
2 kθe)(y + a−b

2 kθe) > 0 is valid, we get that the separatrix

on interval 0 < θe(t) ≤ 1
k satisfies N(y, θe) = C(0, 1

k
) where

N(y, θe) =
1

2
ln
((
y +

a− b
2

kθe
) b−a

b
(
y +

a+ b

2
kθe
) b+a

b

)
,

C(0, 1
k
) = lim

θe→ 1
k
−0
N(

c− a
2

, θe) =
1

2
ln
(

(
c− b

2
)
b−a
b (

c+ b

2
)
b+a
b

)
=

1

2
ln
(
π(
c+ b

c− b
)
a
b

)
.

Thus, if a2k > 4, then separatrix y = S(θe) in domain 0 < θe(t) ≤ 1
k is described by equation(

y +
a− b

2
kθe
) b−a

b
(
y +

a+ b

2
kθe
) b+a

b = π(
c+ b

c− b
)
a
b . (A.8)

Substituting θe → +0 into (A.8), we get

yl =
√
π(
c+ b

c− b
)
a
2b . (A.9)

Then, substituting (A.9) into (A.3), we get the first case of formula (4).
To determine the conservative lock-in frequency, we firstly need to get d = S(− 1

k ), then to obtain the
equation for the separatrix in domain III, and, finally, to determine ycl = S(−π). Since the separatrix on
interval − 1

k < θe(t) < 0 satisfies N(y, θe) = C(− 1
k
,0) and lim

θe→+0
N(y, θe) = lim

θe→−0
N(y, θe) = ln y as y > 0,

then C(− 1
k
,0) = C(0, 1

k
) = 1

2 ln
(
π( c+bc−b)

a
b

)
.

Thus, if a2k > 4, then separatrix y = S(θe) in domain II is described by equation (A.8). Substituting
θe = − 1

k into (A.8), we get

(d− a− b
2

)
b−a
b (d− a+ b

2
)
b+a
b = π(

c+ b

c− b
)
a
b . (A.10)

Since the separatrix is over the eigenvectors (y > −a±b
2 kθe), then

d >
a+ b

2
.

Notice that if d = a+b
2 , then the left-hand side of equation (A.10) equals to zero, but the right-hand side

is positive. Then the left-hand side increases monotonically as value d increases and tends to infinity as
d→ +∞. Thus, equation (A.10) has unique solution d greater than a+b

2 .
Case a2k = 4.
In domain II, separatrix y = S(θe) is over eigenvector

V dn =

(
1
−a

2

)
,

which is described by line y = − 2
aθe and intersects the boundary θe = 1

k of domains I and II in point

−a
2 < 0. Hence, the separatrix, intersecting the boundary θe = 1

k of domains I and II in point c−a
2 > 0,

remains over the eigenvector within the domain II and satisfies the following inequality: S(θe) > − 2
aθe.

The general solution of (A.7) is as follows6:

N1(z) = − ln |θe|+ C

where

N1(z) =
2

2 + az
+ ln |2 + az|, C = const.

6Taking derivative of N1(z), we have

N ′1(z) = − 2a

(2 + az)2
+

a

2 + az
=

a2z

(2 + az)2
=

z

( 2a + z)2
=

z

z2 + akz + k
.
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Since for separatrix y = S(θe) inequality S(θe) > − 2
aθe. is valid, we get that the separatrix on interval

0 < θe(t) ≤ 1
k satisfies N(y, θe) = C(0, 1

k
) where

N(y, θe) =
2θe

2θe + ay
+ ln(2θe + ay),

C(0, 1
k
) = lim

θe→ 1
k
−0
N(

c− a
2

, θe) =
2

k

1
2
k + a

√
π − a2

2

+ ln(
2

k
+ a
√
π − a2

2
) =

a

2
√
π

+ ln(a
√
π).

Thus, if a2k = 4, then separatrix y = S(θe) in domain 0 < θe(t) ≤ 1
k is described by equation

2θe
2θe + ay

+ ln(2θe + ay) =
a

2
√
π

+ ln(a
√
π). (A.11)

Substituting θe → +0 into (A.11), we get

yl =
√
π exp(

a

2
√
π

). (A.12)

Then, substituting (A.12) into (A.3), we get the second case of formula (4).
To determine the conservative lock-in frequency, we firstly need to determine d = S(− 1

k ). Since the

separatrix on interval − 1
k < θe(t) < 0 satisfies N(y, θe) = C(− 1

k
,0) and lim

θe→+0
N(y, θe) = lim

θe→−0
N(y, θe) =

ln(ay) as y > 0, then C(− 1
k
,0) = C(0, 1

k
) = a

2
√
π

+ ln(a
√
π).

Thus, if a2k = 4, then separatrix y = S(θe) in domain II is described by equation (A.11). Substituting
θe = − 1

k into (A.11), we get

(d− a

2
) exp

( a
2

a
2 − d

)
=
√
πe

a
2
√
π .

Notice that in the considered case it is possible to obtain an explicit formula for d:

d =
a

2

(
1 +

1

W ( a
2
√
π

exp(− a
2
√
π

)

)
(A.13)

where W (x) is the Lambert W function7.
Case a2k < 4.
The general solution of (A.6) is as follows8:

N1(z) = − ln |θe|+ C

where

N1(z) =
1

2
ln(z2 + akz + k)− a

b
arctan(

a+ 2
kz

b
), C = const.

Then separatrix y = S(θe) in domain 0 < θe ≤ 1
k satisfies N(y, θe) = C(0, 1

k
) where

N(y, θe) =
1

2
ln(y2 + akyθe + kθ2e)−

a

b
arctan

(aθe + 2
ky

bθe

)
,

C(0, 1
k
) = lim

θe→ 1
k
−0
N(

c− a
2

, θe) =
1

2
lnπ − a

b
arctan

c

b
.

7For x > 0 function W (x) is a single-valued one and can be evaluated in standard numeric computing platforms.
8Taking derivative of N1(z), we have

N ′1(z) =
2z + ak

2(z2 + akz + k)
− 2a

b2k

1

1 + (
a+ 2

k z
b )2

=
2z + ak

2(z2 + akz + k)
− 2ak

b2k2 + (ak + 2z)2
=

=
2z + ak

2(z2 + akz + k)
− 2ak

4z2 + 4akz + (a2 + b2)k2
=

2z + ak

2(z2 + akz + k)
− ak

2(z2 + akz + k)
=

z

z2 + akz + k
.
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Thus, if a2k < 4, then separatrix y = S(θe) in domain 0 < θe ≤ 1
k is described by equation

1

2
ln(y2 + akyθe + kθ2e)−

a

b
arctan

(aθe + 2
ky

bθe

)
=

1

2
lnπ − a

b
arctan

c

b
. (A.14)

Substituting θe → +0 into (A.14), we get

yl =
√
π exp

(a
b

arctan
b

c

)
. (A.15)

Then, substituting (A.15) into (A.3), we get the third case of formula (4). Thus, Theorem 1 is proved.
To determine the conservative lock-in frequency, we firstly need to determine d = S(− 1

k ). Since

the separatrix on interval − 1
k < θe(t) < 0 satisfies N(y, θe) = C(− 1

k
,0) and lim

θe→+0
N(y, θe) = ln y − πa

2b ,

lim
θe→−0

N(y, θe) = ln y + πa
2b , then C(− 1

k
,0) −

πa
2b = C(0, 1

k
) + πa

2b .

Thus, if a2k < 4, then separatrix y = S(θe) in domain II is described by

1

2
ln(y2 + akyθe + kθ2e)−

a

b
arctan

(aθe + 2
ky

bθe

)
=

1

2
lnπ − a

b
arctan

c

b
, if 0 < θe(t) ≤

1

k

y = yl, if θe(t) = 0

1

2
ln(y2 + akyθe + kθ2e)−

a

b
arctan

(aθe + 2
ky

bθe

)
=

1

2
lnπ +

a

b

(
π − arctan

c

b

)
, if − 1

k
≤ θe(t) < 0.

(A.16)

Substituting θe = − 1
k into (A.16), we get(
d2 − ad+

1

k

)
exp

(2a

b
arctan

2d− a
b
− πa

b

)
= π exp

(2a

b
arctan

b

c

)
. (A.17)

Notice that if d = 0, then the left-hand side of equation (A.10) is less than the right-hand side:

1

k
exp

(2a

b
arctan

−a
b
− πa

b

)
<

1

k
< π < π exp

(2a

b
arctan

b

c

)
.

Then the left-hand side increases monotonically as value d increases and tends to infinity as d → +∞.
Thus, equation (A.17) has unique positive solution d.

Notice also that if d = a
2 , then the left-hand side of equation (A.10) is less than the right-hand side

too:

b2 exp(−πa
b

) < a2 exp(−πa
b

) < 4π exp(−πa
b

) < 4π
b2

π2a2
<

4

π
< π < π exp

(2a

b
arctan

b

c

)
.

Thus, d > a
2 and equation (A.17) can be reduced to the following:(

d2 − ad+
1

k

)
exp

(2a

b
arctan

b

a− 2d

)
= π exp

(2a

b
arctan

b

c

)
. (A.18)

Domain III
If −π ≤ θe(t) < − 1

k then system (A.2) is

ẏ =
a

π − 1
k

y +
1

π − 1
k

(θe + π),

θ̇e = y.

(A.19)

Analogously to the analysis in domain II, let’s study for y > 0 the first-order differential equation

dy

dθe
=

1

π − 1
k

(a+
θe + π

y
) (A.20)

and make the change of variables z = y
θe+π

mapping equation (A.20) into a separable one:

(π − 1

k
)

zdz(
π − 1

k

)
z2 − az − 1

= − dθe
θe + π

. (A.21)
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If −π < θe(t) < − 1
k then the solutions of system (A.20) and system (A.21) coincide.

Separatrix y = S(θe) is over the separatrices of saddle (0, −π), which are described by the equations

y =
±c− a

2(π − 1
k )

(−π − θe), −π < θe < −
1

k
.

Thus, the following inequality is valid for the separatrix: (S(θe)+ c−a
2(π− 1

k
)
(π+θe))(S(θe)− c+a

2(π− 1
k
)
(π+θe)) > 0.

Assuming (z + c−a
2(π− 1

k
)
)(z − c+a

2(π− 1
k
)
) > 0, the general solution of equation (A.21) is as follows9:

M1(z) = − ln |θe + π|+ C

where

M1(z) =
1

2
ln
((
z +

c− a
2(π − 1

k )

) c−a
c
(
z − c+ a

2(π − 1
k )

) c+a
c

)
,

C = const.

Since for separatrix y = S(θe) inequality (y+ c−a
2(π− 1

k
)
(π+ θe))(y− c+a

2(π− 1
k
)
(π+ θe)) > 0 is valid, we get that

the separatrix in domain III satisfies M(y, θe) = C(−π,− 1
k ) where

M(y, θe) =
1

2
ln
((
y +

c− a
2(π − 1

k )
(π + θe)

) c−a
c
(
y − c+ a

2(π − 1
k )

(π + θe)
) c+a

c
)
,

C = C(−π,− 1
k ) = lim

θe→− 1
k
−0
M(d, θe) =

1

2
ln
(

(d+
c− a

2
)
c−a
c (d− c+ a

2
)
c+a
c

)
.

Thus, separatrix y = S(θe) in domain III is described by equation(
y +

c− a
2(π − 1

k )
(π + θe)

) c−a
c
(
y − c+ a

2(π − 1
k )

(π + θe)
) c+a

c
= (d+

c− a
2

)
c−a
c (d− c+ a

2
)
c+a
c . (A.22)

To determine the conservative lock-in frequency, we firstly need to determine ycl = S(−π). Substituting
θe = −π into (A.22), we get

ycl = (d+
c− a

2
)
c−a
2c (d− c+ a

2
)
c+a
2c . (A.23)

Substituting (A.23) into (A.4) and taking into account formulae (A.10), (A.13), (A.18), we get (6).
Theorem 1 and Theorem 2 are proved. �

Appendix B Octave code for Fig. A.2

Code below can be runned on https://octave-online.net/ in order to obtain phase portrait on Fig. A.2 and
verify formulae (4) and (6). The code simulates trajectories of system (A.2) numerically and additionally
plots two points: (0, yl) and (−π, ycl ) where yl and ycl are used in lock-in range formulae (A.3) and (A.4).
Since these points are lying on the separatrices, formulae (A.3) and (A.4) are validated numerically.

9Taking derivative of M1(z), we have

M ′1(z) =
1

2

1(
z + c−a

2(π− 1
k )

) c−a
c
(
z − c+a

2(π− 1
k )

) c+a
c

(c− a
c

(
z +

c− a
2(π − 1

k )

)−a
c
(
z − c+ a

2(π − 1
k )

) c+a
c +

+
c+ a

c

(
z +

c− a
2(π − 1

k )

) c−a
c
(
z − c+ a

2(π − 1
k )

) a
c

)
=

1

2

(c− a
c

(
z +

c− a
2(π − 1

k )

)−1
+
c+ a

c

(
z − c+ a

2(π − 1
k )

)−1)
=

=
1

2(z + c−a
2(π− 1

k )
)(z − c+a

2(π− 1
k )

)

(c− a
c

(
z − c+ a

2(π − 1
k )

)
+
c+ a

c

(
z +

c− a
2(π − 1

k )

))
=

z

(z + c−a
2(π− 1

k )
)(z − c+a

2(π− 1
k )

)
=

=
z

(z2 − a
π− 1

k

z − 1
π− 1

k

)
.
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clear a l l ;
close a l l ;
clc ;

% VCO input gain
K vco = 250 ;

% Loop f i l t e r t r a n s f e r f u n c t i o n F( s ) = (1+s tau 2 )/( s tau 1 ) , tau 1 > 0 ,
% tau 2 > 0
tau 2 = 0 . 0 2 2 5 ;
tau 1 = 0 . 0 6 3 3 ;

% The s l o p e c o e f f i c i e n t o f p iecewise −l i n e a r PD c h a r a c t e r i s t i c
% i t becomes t r i a n g u l a r wi th t h i s c o e f f i c i e n t
k=2/pi ;

function y = draw saddles symmetr ic ( ode , saddle , V, per iods , opt ions )
% draw sadd les symmetr ic draws phase p o r t r a i t o f the system ode ,
% s t a r t i n g from s a d d l e wi th e i g e n v e c t o r s V f o r g iven number o f p e r i o d s
% o p t i o n s are used to tune ODE s o l v e r

% I n t e g r a t i o n time
TIME POSITIVE = 0 : 0 . 0 0 5 : 2 0 ;
TIME NEGATIVE = 0: −0.005: −20;

v1 = 0.01 .∗ f l i p (V( : , 1 ) ’ ) ;
v2 = 0.01 .∗ f l i p (V( : , 2 ) ’ ) ;

% C a l c u l a t e s a d d l e s e p a r a t r i c e s and p l o t them
[ T 1 , X 1 ] = ode45 ( ode , TIME NEGATIVE, sadd le+v1 , opt ions ) ;
[ T 3 , X 3 ] = ode45 ( ode , TIME NEGATIVE, saddle−v1 , opt ions ) ;
for j =1: length ( pe r i od s )

plot ( X 1 ( : , 2 )+ pe r i od s ( j ) , X 1 ( : , 1 ) ) ;
plot ( X 3 ( : , 2 )+ pe r i od s ( j ) , X 3 ( : , 1 ) ) ;

end
[ T 2 , X 2 ] = ode45 ( ode , TIME POSITIVE , sadd le+v2 , opt ions ) ;
[ T 4 , X 4 ] = ode45 ( ode , TIME POSITIVE , saddle−v2 , opt ions ) ;
for j =1: length ( pe r i od s )

plot ( X 2 ( : , 2 )+ pe r i od s ( j ) , X 2 ( : , 1 ) ) ;
plot ( X 4 ( : , 2 )+ pe r i od s ( j ) , X 4 ( : , 1 ) ) ;

end
end

function y = s a w t o o t h d i f f ( t )
% s a w t o o t h d i f f − the d e r i v a t i v e o f a t r i a n g u l a r f u n c t i o n
% ( sawtooth (T, WIDTH) from s i g n a l package )

remain = abs (rem( t , 2∗pi ) ) ;
i f ( pi/2 <= remain && remain <= 3∗pi /2)

y = −2/pi ;
else

y = 2/pi ;
end
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end

% PD c h a r a c t e r i s t i c
v e = @( t h e t a e ) ( sawtooth ( t h e t a e+pi / 2 , 0 . 5 ) ) ;
% The d e r i v a t i v e o f PD c h a r a c t e r i s t i c
dv e = @( t h e t a e ) ( s a w t o o t h d i f f ( t h e t a e ) ) ;
per iod = 2∗pi ;

% Parameters a , b , c from Theorem 1 and 2
a = sqrt ( K vco/ tau 1 )∗ tau 2 ;
b = sqrt (abs ( aˆ2−4/k ) ) ;
c = sqrt ( aˆ2−4/k + 4∗pi ) ;
% Computing the lock −in range and the c o n c e r v a t i v e lock −in range by
% Theorem 1 and 2
syms x ;
i f aˆ2∗k>4

y l = sqrt ( pi )∗ ( ( c+b )/( c−b ) ) ˆ ( a /(2∗b ) ) ;
f cn = @( x ) ( x − ( a−b ) / 2 ) ˆ ( ( b−a )/b) ∗ ( x − ( a+b ) / 2 ) ˆ ( ( b+a )/b) − . . .

pi ∗ ( ( c+b )/( c−b ) ) ˆ ( a/b ) ;
in i t param = [ ( a+b )/2 , 10000000 ] ;
% v p a s o l v e nume r ica l l y s o l v e s i m p l i c i t e q u a t i o n s wi th i n i t i a l guess
% in i t param ( i t was proven t h a t the equat ion has a unique s o l u t i o n
% f o r x > ( a+b )/2)
d = vpaso lve ( f cn ( x ) , x , in i t param ) ;

else
i f aˆ2∗k == 4

y l = sqrt ( pi )∗exp( a/2/ sqrt ( pi ) ) ;
d = a /2∗(1 + 1/ lambertw ( a/2/ sqrt ( pi )∗exp(−a/2/ sqrt ( pi ) ) ) ) ;

else
y l = sqrt ( pi )∗exp( a∗atan (b/c )/b ) ;
f cn = @( x ) ( ( x )ˆ2 − a∗x + 1/k ) ∗ exp( 2∗a/b∗atan ( (2∗x−a )/b) − pi∗a/b) − . . .
pi∗exp(2∗ a/b∗atan (b/c ) ) ;
in i t param = [ a /2 , 10000000 ] ;
% v p a s o l v e nume r ica l l y s o l v e s i m p l i c i t e q u a t i o n s wi th i n i t i a l guess
% in i t param ( i t was proven t h a t the equat ion has a unique s o l u t i o n
% f o r x > a /2)
d = vpaso lve ( f cn ( x ) , x , in i t param ) ;

end
end
y l c = (d−0.5∗(a−c ) ) ˆ ( ( c−a )/ c /2) ∗ (d−0.5∗( a+c ) ) ˆ ( ( c+a )/ c / 2 ) ;

h = f igure ( 1 ) ;
hold on ;
grid on ;

% P l o t i n g two p o i n t s which correspond the lock −in range and the c o n s e r v a t i v e
% lock −in range
plot ( [ 0 ] , [ y l ] , ’ k . ’ , ’ MarkerSize ’ , 2 0 ) ;
plot ([−pi ] , [ eval ( y l c ) ] , ’ k . ’ , ’ MarkerSize ’ , 2 0 ) ;

% System e s t a b l i s h m e n t f o r numerocal i n t e g r a t i o n
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% y = x ( 1) , t h e t a e = x (2)
p l l s = @( t , x )([ − a∗ dv e ( x ( 2 ) )∗ x (1 ) − v e ( x ( 2 ) ) ;

x ( 1 ) ] ) ;

% One o f the a s y m p t o t i c a l l y s t a b l e e q u i l i b r i a
the ta eq = 0 ;
x eq = 0 ;

% Draw phase p o r t r a i t
s add l e s = [ x eq , −the ta eq+per iod /2−2∗ per iod ; . . .

x eq , −the ta eq+per iod/2−per iod ; . . .
x eq , −the ta eq+per iod / 2 ; . . .
x eq , −the ta eq+per iod/2+per iod ; . . .
x eq , −the ta eq+per iod /2+2∗ per iod ] ;

f o c u s e s = [ x eq , theta eq−per iod ; . . .
x eq , theta eq−per iod ; . . .
x eq , the ta eq ; . . .
x eq , the ta eq+per iod ; . . .
x eq , the ta eq +2∗per iod ] ;

plot(− f o c u s e s ( : , 2 ) , −f o c u s e s ( : , 1 ) , ’ r . ’ , ’ MarkerSize ’ , 2 0 ) ;
plot ( f o c u s e s ( : , 2 ) , f o c u s e s ( : , 1 ) , ’ k . ’ , ’ MarkerSize ’ , 2 0 ) ;
plot(− s add l e s ( : , 2 ) , −s add l e s ( : , 1 ) , ’ r . ’ , ’ MarkerSize ’ , 2 0 ) ;
plot ( s add l e s ( : , 2 ) , s add l e s ( : , 1 ) , ’ k . ’ , ’ MarkerSize ’ , 2 0 ) ;

% Jacobian matrix o f the system
A = [ 0 1 ;

2/pi 2∗a/pi ] ;

% C a l c u l a t i n g s a d d l e e i g e n v e c t o r s V
[V, D] = eig (A) ;

% Custom s i m u l a t i o n o p t i o n s
opt ions = odeset ( ’ MaxStep ’ , 0 . 001 , ’ RelTol ’ , 2e −7, ’ AbsTol ’ , 2e −7);
draw saddles symmetr ic ( p l l s , . . .

[ x eq , per iod/2− the ta eq ] , . . .
V, . . .
[−2∗ per iod ,−per iod , 0 , per iod ,2∗ per iod ] , . . .
opt i ons ) ;

% Plot adjus tments
axis ([ −2∗pi 2∗pi −5 5 ] )
x t i c k s ([ −4∗pi −3∗pi −2∗pi −pi 0 pi 2∗pi , 4∗pi ] )
x t i c k l a b e l s ({ ’−4\pi ’ , ’−3\pi ’ , ’−2\pi ’ , ’−\pi ’ , ’ 0 ’ , ’ \ pi ’ , ’ 2\ pi ’ , ’ 4\ pi ’ })

xlabel ( ’ \ t h e t a e ’ ) ;
ylabel ( ’ y ’ ) ;

References

Aleksandrov, K., Kuznetsov, N., Leonov, G., Neittaanmaki, N., Yuldashev, M. & Yuldashev, R. [2016]
“Computation of the lock-in ranges of phase-locked loops with PI filter,” IFAC-PapersOnLine 49,



December 6, 2021 2:5 2021-ijbc-upload

REFERENCES 19

36–41, doi:10.1016/j.ifacol.2016.07.971.
Alexandrov, K., Kuznetsov, N., Leonov, G., Neittaanmaki, P. & Seledzhi, S. [2015] “Pull-in range of

the PLL-based circuits with proportionally-integrating filter,” IFAC-PapersOnLine 48, 720–724, doi:
10.1016/j.ifacol.2015.09.274.

Andronov, A., Vitt, E. & Khaikin, S. [1937] Theory of Oscillators (in Russian) (ONTI NKTP SSSR),
[English transl.: 1966, Pergamon Press].

Bakaev, Y. [1963] “Stability and dynamical properties of astatic frequency synchronization system,” Ra-
diotekhnika i Elektronika (in Russian) 8, 513–516.

Belyustina, L. [1959] “The study of a nonlinear pll system,” Izv. vuzov. Radiofizika (in Russian) 2, 277–291.
Best, R. [2007] Phase locked loops: design, simulation, and applications (McGraw-Hill Professional).
Best, R. [2018] Costas Loops: Theory, Design, and Simulation (Springer International Publishing).
Best, R., Kuznetsov, N., Leonov, G., Yuldashev, M. & Yuldashev, R. [2016] “Tutorial on dynamic analysis

of the Costas loop,” IFAC Annual Reviews in Control 42, 27–49, doi:10.1016/j.arcontrol.2016.08.003.
Cheb-Terrab, E. & Kolokolnikov, T. [2003] “First-order ordinary differential equations, symmetries and

linear transformations,” European Journal of Applied Mathematics 14, 231–246.
Chen, G., Kuznetsov, N., Leonov, G. & Mokaev, T. [2017] “Hidden attractors on one path: Glukhovsky-

Dolzhansky, Lorenz, and Rabinovich systems,” International Journal of Bifurcation and Chaos in
Applied Sciences and Engineering 27, art. num. 1750115.

Chini, M. [1924] “Sull’integrazione di alcune equazioni differenziali del primo ordine,” Rendiconti Instituto
Lombardo (2) 57, 506–511.

Du, K. & Swamy, M. [2010] Wireless Communication Systems: from RF subsystems to 4G enabling tech-
nologies (Cambridge University Press).

Egan, W. [1981] Frequency synthesis by phase lock, 1st ed. (John Wiley & Sons, New York).
Egan, W. [2007] Phase-Lock Basics, 2nd ed. (John Wiley & Sons, New York).
Gardner, F. [1966] Phaselock Techniques (John Wiley & Sons, New York).
Gardner, F. [2005] Phaselock Techniques, 3rd ed. (John Wiley & Sons, New York).
Gubar’, N. [1961] “Investigation of a piecewise linear dynamical system with three parameters,” Journal

of Applied Mathematics and Mechanics 25, 1011–1023.
Huque, A. [2011] A new derivation of the pull-out frequency for second-order phase lock loops employing

triangular and sinusoidal phase detectors (The University of Alabama in Huntsville), Ph. D. thesis.
Huque, A. & Stensby, J. [2011] “An exact formula for the pull-out frequency of a 2nd-order type II phase

lock loop,” IEEE Communications Letters 15, 1384–1387.
Huque, A. & Stensby, J. [2013] “An analytical approximation for the pull-out frequency of a PLL employing

a sinusoidal phase detector,” ETRI Journal 35, 218–225.
Kaplan, E. & Hegarty, C. [2017] Understanding GPS/GNSS: Principles and Applications, 3rd ed. (Artech

House).
Kapranov, M. [1956] “The lock-in band of a phase locked loop,” Radiotekhnika (in Russian) 11, 37–52.
Karimi-Ghartemani, M. [2014] Enhanced phase-locked loop structures for power and energy applications

(John Wiley & Sons).
Kolumbán, G. [2005] The Encyclopedia of RF and Microwave Engineering, Phase-locked loops, Vol. 4 (John

Wiley & Sons, New-York).
Kuznetsov, N. [2020] “Theory of hidden oscillations and stability of control systems,” Journal of Computer

and Systems Sciences International , 647–668doi:10.1134/S1064230720050093.
Kuznetsov, N., Blagov, M., Alexandrov, K., Yuldashev, M. & Yuldashev, R. [2019a] “Lock-in range of

classical PLL with piecewise-linear phase detector characteristic,” Differencialnie Uravnenia i Protsesy
Upravlenia (Differential Equations and Control Processes) , 74–89.

Kuznetsov, N., Kolumbán, G., Belyaev, Y., Tulaev, A., Yuldashev, M. & Yuldashev, R. [2022] “Estimation
of PLL impact on MEMS-gyroscopes parameters,” Gyroscopy and Navigation (in print).

Kuznetsov, N., Leonov, G., Yuldashev, M. & Yuldashev, R. [2015] “Rigorous mathematical definitions
of the hold-in and pull-in ranges for phase-locked loops,” IFAC-PapersOnLine 48, 710–713, doi:
10.1016/j.ifacol.2015.09.272.

Kuznetsov, N., Leonov, G., Yuldashev, M. & Yuldashev, R. [2017] “Hidden attractors in dynamical models



December 6, 2021 2:5 2021-ijbc-upload

20 REFERENCES

of phase-locked loop circuits: limitations of simulation in MATLAB and SPICE,” Communications in
Nonlinear Science and Numerical Simulation 51, 39–49, doi:10.1016/j.cnsns.2017.03.010.

Kuznetsov, N., Lobachev, M., Yuldashev, M. & Yuldashev, R. [2019b] “On the Gardner problem for phase-
locked loops,” Doklady Mathematics 100, 568–570, doi:10.1134/S1064562419060218.

Kuznetsov, N., Lobachev, M., Yuldashev, M. & Yuldashev, R. [2021a] “The Egan problem on the pull-
in range of type 2 PLLs,” Transactions on Circuits and Systems II: Express Briefs 68, 1467–1471,
doi:10.1109/TCSII.2020.3038075.

Kuznetsov, N., Lobachev, M., Yuldashev, M., Yuldashev, R. & Kolumbán, G. [2020a] “Harmonic bal-
ance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs,” IFAC-
PapersOnLine 53, 6378–6383.

Kuznetsov, N., Lobachev, M., Yuldashev, M., Yuldashev, R., Kudryashova, E., Kuznetsova, O., Rosen-
wasser, E. & Abramovich, S. [2020b] “The birth of the global stability theory and the theory of hidden
oscillations,” 2020 European Control Conference Proceedings, pp. 769–774, doi:10.23919/ECC51009.
2020.9143726.

Kuznetsov, N., Lobachev, M., Yuldashev, M., Yuldashev, R., Volskiy, S. & Sorokin, D. [2021b] “On the
generalized Gardner problem for phase-locked loops in electrical grids,” Doklady Mathematics 103,
157–161.

Kuznetsov, N., Matveev, A., Yuldashev, M. & Yuldashev, R. [2021c] “Nonlinear analysis of charge-pump
phase-locked loop: The hold-in and pull-in ranges,” IEEE Transactions on Circuits and Systems I:
Regular Papers 68, 4049–4061, doi:10.1109/TCSI.2021.3101529.

Kuznetsov, N., Volskiy, S., Sorokin, D., Yuldashev, M. & Yuldashev, R. [2020c] “Power supply system
for aircraft with electric traction,” 2020 21st International Scientific Conference on Electric Power
Engineering (EPE), pp. 1–5, doi:10.1109/EPE51172.2020.9269181.

Leonov, G. & Kuznetsov, N. [2013] “Hidden attractors in dynamical systems. From hidden oscillations in
Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractors in Chua circuits,”
International Journal of Bifurcation and Chaos in Applied Sciences and Engineering 23, doi:10.1142/
S0218127413300024, art. no. 1330002.

Leonov, G. & Kuznetsov, N. [2014] Nonlinear mathematical models of phase-locked loops. Stability and
oscillations (Cambridge Scientific Publishers).

Leonov, G., Kuznetsov, N., Yuldashev, M. & Yuldashev, R. [2012] “Analytical method for computation of
phase-detector characteristic,” IEEE Transactions on Circuits and Systems - II: Express Briefs 59,
633–647, doi:10.1109/TCSII.2012.2213362.

Leonov, G., Kuznetsov, N., Yuldashev, M. & Yuldashev, R. [2015a] “Hold-in, pull-in, and lock-in ranges of
PLL circuits: rigorous mathematical definitions and limitations of classical theory,” IEEE Transactions
on Circuits and Systems–I: Regular Papers 62, 2454–2464, doi:10.1109/TCSI.2015.2476295.

Leonov, G., Kuznetsov, N., Yuldashev, M. & Yuldashev, R. [2015b] “Nonlinear dynamical model of Costas
loop and an approach to the analysis of its stability in the large,” Signal Processing 108, 124–135,
doi:10.1016/j.sigpro.2014.08.033.

Rosenkranz, W. & Schaefer, S. [2016] “Receiver design for optical inter-satellite links based on digital signal
processing,” 18th International Conference on Transparent Optical Networks (ICTON) (IEEE), pp.
1–4.

Shakhtarin, B. [1969] “Study of a piecewise-linear system of phase-locked frequency control,” Radiotechnica
and electronika (in Russian) , 1415–1424.

Stensby, J. [1997] Phase-Locked Loops: Theory and Applications (Taylor & Francis).
Tricomi, F. [1933] “Integrazione di unequazione differenziale presentatasi in elettrotechnica,” Annali della

R. Shcuola Normale Superiore di Pisa 2, 1–20.
Viterbi, A. [1959] “Acquisition and tracking behavior of phase-locked loops,” Jet Propulsion Laboratory,

California Institute of Technology, Pasadena, External Publ 673.
Viterbi, A. [1966] Principles of coherent communications (McGraw-Hill, New York).
Zelenskii, A., Gapon, N., Voronin, V., Semenishchev, E., Khamidullin, I. & Cen, Y. [2021] “Robot naviga-

tion using modified slam procedure based on depth image reconstruction,” Artificial Intelligence and
Machine Learning in Defense Applications III (SPIE), pp. 73–82.



December 6, 2021 2:5 2021-ijbc-upload

REFERENCES 21

Zelensky, A., Semenishchev, E., Alepko, A., Abdullin, T., Ilyukhin, Y. & Voronin, V. [2021] “Using neuro-
accelerators on fpgas in collaborative robotics tasks,” Optical Instrument Science, Technology, and
Applications II (SPIE), pp. 98–102.
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