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Abstract. The problem of determining the existence, the maximum number and the
position of the limit cycles of the planar discontinuous piecewise linear di�erential systems
is an important problem in the qualitative theory of the di�erential systems. This is
due mainly to the fact that these piecewise di�erential systems have many applications
in mechanical systems, electrical circuits, control theory, ... In this paper we study two
families of piecewise linear Hamiltonian systems without equilibria in R2 separated by a
non-regular curve. We provide the maximum number of crossing limit cycles that each
family can have and show that this maximum is reached. In this way we are solving for
each family the extended 16th Hilbert problem.

1. Introduction and statement of the main results

A discontinuous piecewise di�erential system on R2 is a pair of Cr (with r ≥ 1) di�er-
ential systems in R2 separated by a smooth curve Σ. The line of discontinuity Σ of the
discontinuous piecewise di�erential system is given by Σ = h−1(0), where h : R2 −→ R is
a C1 function having 0 as a regular value. Observe that Σ is the boundary between the
regions Σ+ = {(x, y) ∈ R2 |h(x, y) > 0} and Σ− = {(x, y) ∈ R2 |h(x, y) < 0}. Hence

(1) Z(x, y) =

{
X(x, y), if h(x, y) ≥ 0,

Y (x, y), if h(x, y) ≤ 0,

is the vector �eld corresponding to a piecewise di�erential system with line of discontinuity
Σ.

When the vector �elds X and Y coincide on the line Σ we have a continuous piecewise
di�erential system on R2, that in general it will not be smooth on Σ.

The vector �eld (1) usually is denoted by Z = (X,Y,Σ) or simply by Z = (X,Y ), if the
separation line Σ is known. In order to establish a de�nition for the trajectories of Z, we
must have a criterion for the transition of the trajectories between Σ+ and Σ− across the
curve of discontinuity Σ. The contact between the curve of discontinuity Σ and the vector
�eld X (or Y ) is described by the directional derivative of h with respect to the vector �eld
X, i.e.

Xh(p) = ⟨∇h(p), X(p)⟩ .
Here ⟨., .⟩ denotes the usual inner product of the plane R2. Filippov in [8] stated the main
results of the discontinuous piecewise di�erential systems. The curve of discontinuity Σ is
divided into the three following sets:

(a) Σc : {p ∈ Σ : Xh(x) · Y h(x) > 0}, the Crossing set.
(b) Σe : {p ∈ Σ : Xh(x) > 0 and Y h(x) < 0}, the Escaping set.
(c) Σs : {p ∈ Σ : Xh(x) < 0 and Y h(x) > 0}, the Sliding set.
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The points of Σ where both vector �elds X and Y simultaneously point outwards or
inwards de�ne the escaping Σe or sliding Σs regions, while the interior in Σ of their com-
plement de�nes the crossing region Σc (see Figure 1). The points of Σ with are not in
Σc ∪ Σe ∪ Σs are the tangency points between X or Y with Σ.

Σ

Figure 1. Crossing, sliding and escaping regions, respectively.

A limit cycle of a di�erential system is an isolated periodic orbit in the set of all periodic
orbits of the system. The limit cycles play a main role in the qualitative theory of the planar
di�erential equations.

It is well known that if the vector �elds X and Y are linear they cannot have limit cycles,
but the piecewise vector �eld Z = (X,Y,Σ) can have limit cycles. If the limit cycle only
contains isolated points of Σ we say that it is a crossing limit cycle. In this paper we only
will study crossing limit cycles, that frequently we only mention them as limit cycles.

The study of the piecewise linear di�erential systems is a problem that started with
Andronov, Vitt and Khainkin [1] in the 1920's, and nowadays is an important problem in
the qualitative theory of the di�erential systems mainly due to its applications to many
physical phenomena, see for instance the books of [7, 16, 17, 23] and the survey [22], and
the hundred of papers cited inside these references.

Many of the study developed on the piecewise linear di�erential systems were done con-
sidering piecewise linear di�erential systems with only two zones and separated by a straight
line. Few studies have been done with more zones or considering discontinuity curves dif-
ferent to a straight line.

In 1990 Lum and Chua[20, 21] conjectured that the planar continuous piecewise di�eren-
tial systems separated by a straight line have at most one limit cycle. In 1998 Freire, Ponce,
Rodrigo and Torres [10] gave a proof for this conjecture, a shorter proof was given later on
by Llibre, Ordóñez and Ponce in [18]. While that for discontinuous piecewise di�erential
systems separated by a straight line Han and Zhang [11] in 2010 conjectured that these sys-
tems can exhibit at most two limit cycles. A numerical counterexample to this conjecture
was given by Huan and Yang [13] in 2012 providing a discontinuous piecewise di�erential
systems separated by a straight line with three limit cycles. In 2012 Llibre and Ponce [19]
proved analytically the existence of these three limit cycles, and later on several authors
also �nd discontinuous piecewise di�erential systems separated by a straight line with three
limit cycles. But we still do not know if three is the maximum number of limit cycles for
this class of piecewise di�erential systems.

The famous and unsolved 16th Hilbert problem asked for an upper bound on the max-
imum number of limit cycles that polynomial di�erential systems of a given degree can
exhibit, see [12]. These last years several authors have extended this problem to di�erent
classes of di�erential systems in particular to the discontinuous piecewise di�erential systems
formed by distinct linear di�erential systems. Thus recently in [3, 4, 14, 15] the authors
studied the extension of the 16th Hilbert problem for discontinuous piecewise di�erential
systems formed by linear centers which have either two or more zones and they are sepa-
rated by either conics, or reducible cubics, or irreducible cubics. In [2, 5, 6, 9] the authors
considered discontinuous piecewise linear Hamiltonian systems without equilibrium points
where such systems are separated by either two parallel straight lines, or conics, or reducible
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cubics, or irreducible cubics, in each of these classes of piecewise di�erential systems the
authors determined the maximum number of crossing limit cycles that these piecewise linear
systems can exhibit.

The results that were obtained in the mentioned papers shown that the shape of the
discontinuity curve plays an important role in the number of limit cycles that the piecewise
di�erential systems can have.

The objective of this paper is to study the maximum number of crossing limit cycles
for two families of discontinuous piecewise linear Hamiltonian systems without equilibrium
points in R2 separated by a non-regular curve.

First in subsection 1.1 we present our results on the limit cycles of discontinuous piecewise
linear Hamiltonian systems without equilibrium points in R2 where the discontinuity curve
is the non-regular line

ΣA =
{
(x, y) ∈ R2 : xy = 0 and y ≥ 0, x ≥ 0

}
.

After in subsection 1.2 we present our results on the limit cycles of discontinuous piecewise
linear Hamiltonian systems without equilibrium points in R2 where the discontinuity curve
is the non-regular line

ΣB =
{
(x, y) ∈ R2 : xy = 0 and y ≥ 0

}
.

1.1. Crossing limit cycles intersecting the discontinuity curve ΣA. We observed
that ΣA = Σ+

x ∪ Σ+
y , where

Σ+
x =

{
(x, y) ∈ R2 : y = 0, x ≥ 0

}
and Σ+

y =
{
(x, y) ∈ R2 : x = 0, y ≥ 0.

}

The discontinuity curve ΣA separates the plane R2 into the following two pieces

R1
A ={(x, y) ∈ R2 : x > 0, y > 0}, R2

A = R2 \ (R1
A ∪ ΣA).

We denote by FA the class of discontinuous piecewise linear di�erential systems formed by
two linear Hamiltonian systems without equilibrium points and separated by ΣA. We shall
study the following class of limit cycles.

A crossing limit cycle of type A1 is a limit cycle that intersects Σ+
x and Σ+

y in exactly one
point.

A crossing limit cycle of type A2 is a limit cycle that intersects Σ+
x and Σ+

y in exactly two
point.

We observed that it is not possible to have limit cycles of systems in FA that intersect
only either Σ+

x , or Σ
+
y , see for instance [9].

Theorem 1. The following statements hold for the discontinuous piecewise linear Hamil-
tonian systems without equilibria when the discontinuity curve is ΣA.

(i) The maximum number of crossing limit cycles of type A1 is two. See Figure 2a.
(ii) The maximum number of limit cycles of type A2 is one. See Figure 2b.
(iii) There are examples of discontinuous piecewise linear Hamiltonian systems having

simultaneously one limit cycle of type A1 and one limit cycle of type A2. See Figure
2c.

Note that although the maximum number of possible simultaneous crossing limit cycles of
types A1 and A2 are two and one respectively we could not found an example realizing this
upper bound. To obtain a limit cycle of a given type it is not enough to obtain the points
where the candidate to be a limit cycle intersects the line of discontinuity in the prescribed
number, the orbits through these points must close must be well oriented and forming a
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(c) One limit cycle of type A1

and one limit cycle of type A2.

Figure 2. Crossing limit cycles in the family FA.

periodic orbit, and this periodic orbit must be isolated in order to de�ne a limit cycle. This
implies that the search of examples can be very di�cult and that the upper bound obtained
by our method which does not take into account all these matters of orientation of the
orbits, isolateness and pieces of orbits in the prescribed regions could not be optimal.

Theorem 1 is proved in section 3.

1.2. Crossing limit cycles intersecting the discontinuity curve ΣB. We observed
that ΣB = Σx ∪ Σ+

y , where Σx = Σ+
x ∪ Σ−

x , being

Σ−
x =

{
(x, y) ∈ R2 : y = 0, x ≤ 0

}
.

The discontinuity curve ΣB separates the plane R2 into the following three pieces

R1
B = {(x, y) ∈ R2 : x > 0, y > 0}, R2

B = {(x, y) ∈ R2 : x < 0, y > 0},
R3

B = {(x, y) ∈ R2 : y < 0}.
We denote by FB the class of discontinuous piecewise linear di�erential systems formed by
three linear Hamiltonian systems without equilibrium points and separated by ΣB. We shall
study the following types of limit cycles.

A crossing limit cycle of type B1 is a limit cycle that intersects Σ+
x , Σ

−
x and Σ+

y in exactly
one point.

A crossing limit cycle of type B2 is a limit cycle that intersects either Σ+
x and Σ+

y , or Σ
−
x

and Σ+
y in exactly two points.

Theorem 2. The following statements hold for the discontinuous piecewise linear Hamil-
tonian systems without equilibria when the discontinuity curve is ΣB.

(i) The maximum number of crossing limit cycles of type B1 is three. See Figure 3a.
(ii) The maximum number of crossing limit cycles of type B2 is one. See Figure 3b.
(iii) There are examples of discontinuous piecewise linear Hamiltonian systems having

simultaneously two limit cycles of type B1 and one limit cycle of type B2. See Figure
3c.

Note that although the maximum number of possible simultaneous crossing limit cycles
of types B1 and B2 are three and one respectively we could not found an example realizing
this upper bound.

Theorem 2 is proved in section 4.
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(c) Two limit cycles of type B1

and one limit cycle of type B2.

Figure 3. Crossing limit cycles in the family FB.

2. Preliminary result

In this paper we consider the normal form for an arbitrary linear di�erential Hamiltonian
system in R2 without equilibrium points provided in [9].

Lemma 1. The normal form for a linear di�erential Hamiltonian system in R2 without
equilibria is

(2) ẋ = −λbx+ by + γ, ẏ = −λ2bx+ λby + δ, with δ ̸= λγ, and b ̸= 0.

This linear di�erential system has the �rst integral

(3) H(x, y) = −1

2
λ2bx2 + λbxy − b

2
y2 + δx− γy.

Note that in the di�erential system (2) we can assume that b = 1 doing a rescaling of the
time.

3. Proof of Theorem 1

Proof of statement (i) of Theorem 1. A piecewise linear di�erential system in the family FA

is formed by one linear di�erential Hamiltonian without equilibrium points in each region
R1

A and R2
A. Hence by Lemma 1 the general equations for this class of piecewise di�erential

systems are
ẋ = −λ1x+ y + γ1, ẏ = −λ2

1x+ λ1y + δ1, in R1
A,

ẋ = −λ2x+ y + γ2, ẏ = −λ2
2x+ λ2y + δ2, in R2

A.

Moreover by Lemma 1 we have that

Hi(x, y) = −1

2
λ2
ix

2 + λixy −
y2

2
+ δix− γiy, i = 1, 2,

is a �rst integral of this system in the region Ri
A for i = 1, 2.

Now if there is a crossing limit of type A1, this intersects the discontinuity curve ΣA in
two points (X, 0) and (0, Y ) with X > 0 and Y > 0. Of course these two points must satisfy
the following closing equations

(4)
e1 = H1(X, 0)−H1(0, Y ) = Y 2 + 2Y γ1 + 2Xδ1 −X2λ2

1 = 0,
e2 = H2(X, 0)−H2(0, Y ) = Y 2 + 2Y γ2 + 2Xδ2 −X2λ2

2 = 0.

It follows from Bézout theorem that system (4) has at most four real solutions, but since one
solution is (0, 0), which cannot produce a limit cycle of type A1, we conclude that system
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(4) has at most three real solutions that without loss of generality we can assume that they
are (Xi, 0), (0, Yi) with i = 1, 2, 3 satisfying

0 < X1 < X2 < X3 and 0 < Y1 < Y2 < Y3,

(otherwise the solutions would intersect which is not possible by the uniqueness of solutions
of a di�erential system).

We consider two di�erent cases.

If λ1 = λ2 = 0 then e1 = 0 is a parabola symmetric with respect to some horizontal
straight line and passing through the origin. Moreover, E2 = e1 − e2 = 0 become

E2 = 2(δ1 − δ2)X + 2(γ1 − γ2)Y = 0,

which is a straight line. Since a parabola and a straight line intersect at most in two points
we have that the system e1 = E2 = 0 intersect at most in two points where one of these two
is the origin, then we have at most one point satisfying 0 < X1 and 0 < Y1, therefore there
is at most one limit cycle.

If λ1λ2 ̸= 0 it follows from e1 = e2 = 0 that E1 = λ2
2e1 − λ2

1e2 = 0 and E2 = e1 − e2 = 0
become

E1 := 2(λ2
2δ1 − λ2

1δ2)X + 2(λ2
2γ1 − λ2

1γ2)Y + (λ2
2 − λ2

1)Y
2 = 0,

E2 := 2(δ1 − δ2)X + 2(γ1 − γ2)Y + (λ2
2 − λ2

1)X
2 = 0.

If λ2
2 = λ2

1 (i.e., λ2 = ±λ1) then equations E1 = E2 = 0 have at most one solution and so
there is at most one limit cycle.

Assume now that λ2 ̸= ±λ1.

If λ2
2δ1 − λ2

1δ2 = 0 then E1 = 0 reduces to either one horizontal straight line, or two
horizontal parallel straight lines passing one of these two straight lines through the origin.
The equation E2 = 0 is either a parabola symmetric with respect to some vertical straight
line, or one vertical straight line, or two vertical parallel straight lines passing one of these
two straight lines through the origin. Since E1 = E2 = 0 pass through the origin, there are
at most two intersection points satisfying 0 < X1 < X2, but 0 < Y1 = Y2 and so there is at
most one limit cycle.

If γ1 − γ2 = 0 then E2 = 0 reduces to either one vertical straight line, or two vertical
parallel straight lines passing one of these two straight lines through the origin. The equation
E1 = 0 is either a parabola symmetric with respect to some horizontal straight line, or one
horizontal straight line, or two horizontal parallel straight lines passing one of these two
straight lines through the origin. Since E1 = E2 = 0 pass through the origin, there are at
most two intersection points satisfying 0 < Y1 < Y2, but 0 < X1 = X2 and so there is at
most one limit cycle.

Finally, assume that λ2
2δ1 − λ2

1δ2 ̸= 0 and γ1 − γ2 ̸= 0. In this case, E1 = 0 is a parabola
symmetric with respect to some horizontal straight line and E2 = 0 is a parabola symmetric
with respect to some vertical line. Since both parabolas intersect at the origin, the maximum
number of intersections points is three. When we have three intersection points they satisfy
0 < X1 < X2 < X3 and 0 < Y3 < Y2 < Y1, and then there cannot be three limit cycles.
Hence there are at most two intersection points satisfying 0 < X1 < X2 and 0 < Y1 < Y2,
and so at most two limit cycles.

Now we verify that this found upper bound is reached. We provide a discontinuous
piecewise linear di�erential system in FA having exactly two limit cycles of type A1. In the
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region R1
A we consider the linear Hamiltonian system

ẋ =
271

100
x+ y − 1837341

95000
, ẏ = −73441

10000
x− 271

100
y +

118235781

3800000
,

which has the �rst integral

H1(x, y) = −73441

20000
x2 − 271

100
xy +

118235781

3800000
x− 1

2
y2 +

1837341

95000
y;

in region R2
A we consider the Hamiltonian system

ẋ =
1207

50
x− 34y +

1001997

47500
, ẏ =

85697

5000
x− 1207

50
y +

14426523

1900000

with the �rst integral

H2(x, y) = −85697

10000
x2 +

1207

50
xy − 14426523

1900000
x− 17y2 +

1001997

47500
y.

With these two systems we obtain that system (4) has exactly two reals solutions (Xj , Yj),
with Xj > 0 and Yj > 0, for j = 1, 2, namely

(X1, Y1) =

(
3

2
,
21

10

)
and (X2, Y2) =

(
39

10
,
15

4

)
,

which generated the two crossing limit cycles of type A1 in Figure 2a. □

Proof of statement (ii) of Theorem 1. If there exists a periodic solution candidate to be a
limit cycle of type A2, then this periodic solution has four intersection points on the dis-
continuity line ΣA of the form (x1, 0), (x2, 0), (0, y1) and (0, y2), satisfying 0 < x1 < x2,
0 < y1 < y2. Hence the following equations must be satis�ed

f1 = H1(x1, 0)−H1(0, y1) = 2δ1x1 + 2γ1y1 − λ2
1x

2
1 + y21 = 0,

f2 = H1(x2, 0)−H1(0, y2) = 2δ1x2 + 2γ1y2 − λ2
1x

2
2 + y22 = 0,

f3 = H2(x1, 0)−H2(x2, 0) = (x1 − x2)(−2δ2 + λ2
2x1 + λ2

2x2) = 0,

f4 = H2(0, y1)−H2(0, y2) = (y2 − y1)(2γ2 + y1 + y2) = 0.

(5)

We consider two di�erent cases.

Case 1: λ2 = 0. In this case from f3 = 0 we get δ2 = 0. This is not possible, since by
Lemma 1 we have that δ2 ̸= λ2γ2.

Case 2: λ2 ̸= 0. From f3 = 0 and f4 = 0, we get

(6) x2 =
2δ2
λ2
2

− x1, y2 = −2γ2 − y1.

Substituting these last expressions in f1 and f2 and then setting F3 = f1−f2 = 0, we obtain
that system (5) reduces to

(7)
f2 = −γ21 +

δ21
λ2
1
−
(
λ1x1 − 2δ2λ2

1−δ1λ2
2

λ1λ2
2

)2
+ ((2γ2 − γ1) + y1)

2 = 0,

F3 = γ1γ2 − γ22 +
δ2(δ2λ2

1−δ1λ2
2)

λ4
2

+

(
δ1 −

δ2λ
2
1

λ2
2

)
x1 + (γ1 − γ2)y1 = 0.

We observed that equation F3 = 0 is a straight line and equation f2 = 0 is a hyperbola.

By Bézout theorem system (7) has at most two real solutions. If they are two real
solutions (x±1 , y

±
1 ) from (6) we obtain the correspondent (x±2 , y

±
2 ). Let (x

+
1 , x

+
2 , y

+
1 , y

+
2 ) be

the four intersection points of a �rst limit cycle of type A2 with 0 < x+1 < x+2 , 0 < y+1 < y+2 ,
and (x−1 , x

−
2 , y

−
1 , y

−
2 ) be the four intersection points of a second limit cycle of type A2 with

0 < x−1 < x−2 and 0 < y−1 < y−2 . If there are two limit cycles of type A2, we can suppose
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without loss of generality that the �rst limit cycle is located in the interior region enclosed
by the second limit cycle. Then the intersection points must satisfy

(8) 0 < x−1 < x+1 < x+2 < x−2 and 0 < y−1 < y+1 < y+2 < y−2 .

We claim that it is not possible to have two solutions (x±1 , y
±
1 ) of system (7) which satisfy

the conditions in (8).

If γ1−γ2 = 0 it follows from F3 = 0 that x1 = δ2/λ
2
2, but then from (6) we get x2 = δ2/λ

2
2

which is not possible. Hence, γ1 − γ2 ̸= 0 and solving F3 = 0 in the variable y1 we obtain

y1 =
−δ22λ

2
1 + λ4

2

(
−γ1γ2 + γ22 − δ1x1

)
+ δ2λ

2
2

(
δ1 + λ2

1x1
)

λ4
2(γ1 − γ2)

.

Now we introduce y1 into f2 = 0 and we get

P (x1) = C0 + C1x1 + C2x
2
1 = 0,

being

C0 =

(
γ2λ

4
2(γ1 − γ2)− δ1δ2λ

2
2 + δ22λ

2
1

) (
λ4
2

(
−
(
2γ21 − 3γ1γ2 + γ22

))
− δ1δ2λ

2
2 + δ22λ

2
1

)

λ8
2(γ1 − γ2)2

,

C1 =
2δ2
(
λ4
2

(
λ2
1(γ1 − γ2)

2 − δ21
)
+ 2δ1δ2λ

2
1λ

2
2 − δ22λ

4
1

)

λ6
2(γ1 − γ2)2

,

C2 =
λ4
2

(
δ21 − λ2

1(γ1 − γ2)
2
)
− 2δ1δ2λ

2
1λ

2
2 + δ22λ

4
1

λ4
2(γ1 − γ2)2

.

The polynomial P (x1) is quadratic in the variable x1, whose roots x1,±, are

x1,± =
δ2
λ2
2

± λ2
2

√
∆/4

C2
,

where

∆ =
4

λ8
2(γ1 − γ2)2

((
δ2λ

2
1 − λ2

2λ1(γ1 − γ2) + δ1)
) (

δ2λ
2
1 − λ2

2(λ1(γ2 − γ1) + δ1)
)

(
γ2λ

4
2(2γ1 − γ2)− 2δ1δ2λ

2
2 + δ22λ

2
1

))
.

Note that from (6) we get

x2,± =
2δ2
λ2
2

− x1,± =
δ2
λ2
2

∓ λ2
2

√
∆/4

C2
= x1,∓.

The argument of the claim follows. Therefore the maximum number of limit cycles of type
A2 that our discontinuous piecewise linear di�erential system can have is one. Now we
verify that the upper bound found is reached. We provide a discontinuous piecewise linear
di�erential system in FA having exactly one limit cycle of type A2.

In the region R1
A we consider the Hamiltonian system

ẋ = −3

2
x− y +

12647

8960
, ẏ =

9

4
x+

3

2
y − 327

128

this system has the �rst integral

H1(x, y) = −9

8
x2 − 3

2
xy +

327

128
x− 1

2
y2 +

12647

8960
y;

and in the region R2
A we consider the Hamiltonian system

ẋ =
5

8
x− y +

14

5
, ẏ =

25

64
x− 5

8
y − 45

64
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which has the �rst integral

H2(x, y) = − 25

128
x2 +

5

8
xy +

45

64
x− 1

2
y2 +

14

5
y;

With these systems in each region Ri
A we have that the system of closing equations (5) has

exactly one real solutions (x1, x2, y1, y2) which satisfy 0 < x1 < x2 and 0 < y1 < y2, namely

(x1, x2, y1, y2) =

(
1

2
,
31

10
,
7

5
,
22

5

)
.

This real solution generated the crossing limit cycle of type A2 in the family FA in Figure
2b. □

Proof statement (iii) of Theorem 1. Here we provide a piecewise linear Hamiltonian system
in FA which has exactly one limit cycle of type A1 and one limit cycle of type A2.

In region R1
A we consider the Hamiltonian system

ẋ = − 6

13

√
1351

79
x− y +

13682

5135
, ẏ =

48636

13351
x+

6

13

√
1351

79
y − 85596

13351
,

which has the �rst integral

H1(x, y) = −24318

13351
x2 − 6

13

√
1351

79
xy +

85596

13351
x− 1

2
y2 +

13682

5135
y;

in region R2
A we consider the Hamiltonian system

ẋ =2

√
31

39
x− y +

14

5
, ẏ =

124

39
x− 2

√
31

39
y − 372

65
,

this Hamiltonian system has the �rst integral

H2(x, y) =
62

39
x2 + 2

√
31

39
xy +

372

65
x− 1

2
y2 +

14

5
y.

With these Hamiltonian systems we have that system (4) has exactly the one real solution

(X,Y ) =

(
39

10
,
33

5

)
,

and system (5) has exactly the one real solution

(x1, x2, y1, y2) =

(
1

2
,
31

10
,
7

5
,
22

5

)
.

These reals solutions generated one crossing limit cycle of type A1 and one crossing limit
cycle of type A2 in FA in Figure 2c.

This completes the proof of Theorem 1. □

4. Proof of Theorem 2

Proof of statement (i) of Theorem 2. We have that a piecewise linear di�erential system in
the family FB is formed by one linear di�erential Hamiltonian without equilibrium points
in each region Ri

B for i = 1, 2, 3. Hence by Lemma 1 the general equations for this class of
piecewise di�erential systems are

(9)

ẋ = −λ1x+ y + γ1, ẏ = −λ2
1x+ λ1y + δ1, in R1

B,

ẋ = −λ2x+ y + γ2, ẏ = −λ2
2x+ λ2y + δ2, in R2

B,

ẋ = −λ3x+ y + γ3, ẏ = −λ2
3x+ λ3y + δ3, in R3

B,



10 J. JIMENEZ, J. LLIBRE AND C. VALLS

and

Hi(x, y) = −1

2
λ2
ix

2 + λixy −
y2

2
+ δix− γiy, i = 1, 2, 3

is a �rst integral of the system in the region Ri
B for i = 1, 2, 3.

In order to have a crossing limit of type B1, it must intersects the discontinuity curve ΣB

in three points (X, 0), (0, Y ) and (x, 0) with x < 0 < X and Y > 0. Of course these three
points must satisfy the following closing equations

(10)
ẽ1 = H1(X, 0)−H1(0, Y ) = Y 2 + 2Y γ1 + 2Xδ1 −X2λ2

1 = 0,
ẽ2 = H2(x, 0)−H2(0, Y ) = Y 2 + 2Y γ2 + 2xδ2 − x2λ2

2 = 0,
ẽ3 = H3(X, 0)−H3(x, 0) = (X − x)((x+X)λ2

3 − 2δ3) = 0.

Since X − x ̸= 0 equation ẽ3 reduces to ẽ3 = (x +X)λ2
3 − 2δ3 = 0. If λ3 = 0, then δ3 = 0

which is not possible because by Lemma 1 δ3 ̸= λ3γ3. Therefore we have that λ3 ̸= 0.
Isolating x and substituting in equation ẽ2 system (10) reduces to system

(11)
ẽ1 = Y 2 + 2γ1Y + 2δ1X − λ2

1X
2 = 0,

ẽ2 = Y 2 + 2γ2Y +
2

λ2
3

(
2δ3λ

2
2 − δ2λ

2
3

)
X − λ2

2X
2 + 4

δ3
λ4
3

(
δ2λ

2
3 − δ3λ

2
2

)
= 0.

It follows from Bézout theorem that system (11) has at most four real solutions, (Xi, 0), (0, Yi)
with i = 1, 2, 3, 4 where

(12) 0 < X1 < X2 < X3 < X4 and 0 < Y1 < Y2 < Y3 < Y4.

We consider di�erent cases.

If either δ3 = 0, or δ2λ
2
3 − δ3λ

2
2 = 0, then equation ẽ1 = ẽ2 = 0 are hyperbolas passing

through the origin. Since both hyperbolas intersect at most in four points being one of these
the origin, we have that there is at most three points satisfying condition (12). Therefore
there are at most three limit cycles.

We assume that δ3 ̸= 0 and δ2λ
2
3 − δ3λ

2
2 ̸= 0.

If λ1 = λ2 = 0, system (9) has at most two limit cycles because the resultant of the
polynomial ẽ1 and ẽ2 with respect to the variable X is

2Y 2(δ1 + δ2) + 4Y (γ2δ1 + γ1δ2) +
8δ1δ2δ3

λ2
3

,

which has at most two positive solutions in the variable Y and equation ẽ2 = 0 reduces to

Y 2 + 2γ2Y − 2δ2X +
4δ2δ3
λ3 2

= 0.

Since δ2 ̸= 0, for each solution Y there is at most one solution X of ẽ2 = 0 and so there are
at most two limit cycles.

Consider now that λ1 = 0, λ2 ̸= 0 (λ1 ̸= 0, λ2 = 0), we have that ẽ1 = 0 reduces to either a
parabola symmetric with respect to some horizontal straight line, or one horizontal straight
line, or two horizontal parallel straight lines passing one of these two straight lines through
the origin (hyperbola passing through the origin). Moreover, ẽ2 = 0 is a hyperbola (is
either a parabola symmetric with respect to some horizontal straight line, or one horizontal
straight line, or two horizontal parallel straight lines). In both cases we have that there are
at most three intersection points satisfying condition (12) and so at most three limit cycles.
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Assume now that λ1λ2 ̸= 0. From ẽ1 = 0 = ẽ2 it follows that Ẽ1 = λ2
2ẽ1 − λ2

1ẽ2 = 0 and

Ẽ2 = ẽ1 − ẽ2 = 0 become

Ẽ1 :=4
δ3λ

2
1(δ3λ

2
2 − δ2λ

2
3)

λ4
3

+ 2

(
λ2
1δ2 + λ2

2

(
δ1 −

2δ3λ
2
1

λ2
3

))
X + 2(λ2

2γ1 − λ2
1γ2)Y

+ (λ2
2 − λ2

1)Y
2 = 0,

Ẽ2 :=4
δ3(δ3λ

2
2 − δ2λ

2
3)

λ4
3

+ 2

(
δ1 + δ2 −

2δ3λ
2
2

λ2
3

)
X + 2(γ1 − γ2)Y + (λ2

2 − λ2
1)X

2 = 0.

If λ2
2 = λ2

1 (i.e., λ2 = ±λ1) then equations Ẽ1 = Ẽ2 = 0 are straight lines, and so they
have at most one solution implying that there is at most one limit cycle.

Assume now that λ2 ̸= ±λ1.

If γ1 − γ2 = 0 then Ẽ2 = 0 reduces to either one vertical straight line, or two vertical
parallel straight lines. The equation Ẽ1 = 0 is either a parabola symmetric with respect
to some horizontal straight line, or one horizontal straight line, or two horizontal parallel
straight lines. Then Ẽ1 = Ẽ2 = 0, have at most four intersection points but only two
intersection points satisfying 0 < X1 < X2 and 0 < Y1 < Y2, and so at most two limit
cycles.

If λ2
1δ2+λ2

2

(
δ1 −

2δ3λ
2
1

λ2
3

)
= 0 then Ẽ1 = 0 reduces to either one horizontal straight line,

or two horizontal parallel straight lines passing. The equation Ẽ2 = 0 is either a parabola
symmetric with respect to some vertical straight line, or one vertical straight line, or two
vertical parallel straight lines. Therefore Ẽ1 = Ẽ2 = 0, have at most four intersection points
but only two intersection points satisfying 0 < X1 < X2 and 0 < Y1 < Y2, and so at most
two limit cycles.

Finally, assume that λ2
1δ2 + λ2

2

(
δ1 −

2δ3λ
2
1

λ2
3

)
̸= 0 and γ1 − γ2 ̸= 0. In this case Ẽ1 = 0 is

a parabola symmetric with respect to some horizontal straight line and Ẽ2 = 0 is a parabola
symmetric with respect to some vertical line. Then the maximum number of intersections
points is four but we only have three intersection points satisfying 0 < X1 < X2 < X3 and
0 < Y1 < Y2 < Y3, and so there are at most three limit cycles.

Now we provide a discontinuous piecewise linear di�erential system in FB which has
exactly three crossing limit cycles of type B1. And this proves that the upper bound found
is reached.

In the region R1
B we consider the Hamiltonian system

ẋ =

√
483

109
x+ y − 20003

2180
, ẏ = −483

109
x−

√
483

109
y +

37989

2180
,

this system has the �rst integral

H1(x, y) = −483

218
x2 −

√
483

109
xy +

37989

2180
x− y2 +

20003

2180
y;

in the region R2
B we consider the Hamiltonian system

ẋ = 3

√
15

157
x− y +

10589

3140
, ẏ =

135

157
x− 3

√
15

157
y +

1983

628
,

which has the �rst integral

H2(x, y) = −135

314
x2 + 3

√
15

157
xy − 1983

628
x− 1

2
y2 +

10589

3140
y;
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and �nally in region R3
B we have the Hamiltonian system

ẋ = −2x− y + 5, ẏ = 4x+ 2y +
22

5
,

this system has the �rst integral

H3(x, y) = −2x2 − 2xy − 22

5
x− 1

2
y2 + 5y.

With these system in each region Ri
B we have that the system of closing equations (10) has

exactly three real solutions (Xj , Yj , x
j) such that they satisfy condition (12) and xj < 0, for

j = 1, 2, 3, namely

(X1, Y1, x
1) =

(
2,

7

2
,−21

5

)
, (X2, Y2, x

2) =

(
5

2
,
21

5
,−47

10

)
, (X3, Y3, x

3) =

(
33

10
, 5,−11

2

)
.

These three real solutions generated the three crossing limit cycles of type B1 in the family
FB in Figure 3a. □

Proof of statement (ii) of Theorem 2. If there exists a periodic solution candidate to be
a limit cycle of type B2, then this periodic solution has four intersection points on the
discontinuity curve ΣB of the form (x1, 0), (x2, 0), (0, y1) and (0, y2), satisfying 0 < x1 < x2,
0 < y1 < y2. Hence, the following equations must be satis�ed

f̃1 = H1(x2, 0)−H1(0, y2) = 2δ1x2 + 2γ1y2 − λ2
1x

2
2 + y22 = 0,

f̃2 = H1(x1, 0)−H1(0, y1) = 2δ1x1 + 2γ1y1 − λ2
1x

2
1 + y21 = 0,

f̃3 = H2(0, y2)−H2(0, y1) = (y1 − y2)(2γ2 + y1 + y2) = 0,

f̃4 = H3(x2, 0)−H3(x1, 0) = (x1 − x2)(−2δ3 + λ2
3x1 + λ2

3x2) = 0

(13)

We observe that λ3 ̸= 0, since if λ3 = 0 from f̃4 = 0 we get that δ3 = 0 and this is not
possible because by Lemma 1 we have that δ3 ̸= λ3γ3.

From f̃3 = 0 and f̃4 = 0 we get that

(14) x2 =
2δ3 − λ2

3x1
λ2
3

, y2 = −y1 − 2γ2.

Using these last expressions we can write the �rst and second equations of (13) in terms of
x1 and y1, and we get

f̃1(x1, y1) =4

(
γ22 − γ1γ2 +

δ3
(
δ1λ

2
3 − δ3λ

2
1

)

λ4
3

)
+

(
4δ3λ

2
1

λ2
3

− 2δ1

)
x1 + 2(2γ2 − γ1)y1

− λ2
1x

2
1 + y21 = 0,

f̃2(x1, y1) =2δ1x1 + 2γ1y1 − λ2
1x

2
1 + y21 = 0.

Setting F̃3(x1, y1) = f̃2(x1, y1)− f̃1(x1, y1) = 0 we obtain

F̃3(x1, y1) = 4

((
λ2
3γ1γ2 − λ2

3γ
2
2 − δ1δ3 +

λ2
1δ

2
3

λ2
3

)
− (λ2

1δ3 − λ2
3δ1)x1 + λ2

3(γ1 − γ2)y1

)
= 0.

If γ1 − γ2 = 0 it follows from F̃3(x1, y1) = 0 that x1 = δ3/λ
2
3, but then from (14) we get

x2 = δ3/λ
2
3 = x1 which is not possible. Hence γ1 − γ2 ̸= 0 and solving F̃3(x1, y1) = 0 in the

variable y1 we obtain

y1 =
γ2λ

4
3(γ2 − γ1) + δ1δ3λ

2
3 − δ23λ

2
1 + λ2

3(δ3λ
2
1 − δ1λ

2
3)x1

(γ1 − γ2)λ4
3

.

Now we substituting y1 into f̃2(x1, y1) = 0 we have

P (x1) = C̃0 + C̃1x1 + C̃2x
2
1 = 0,
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where

C̃0 =

(
γ2λ

4
3(γ1 − γ2)− δ1δ3λ

2
3 + δ23λ

2
1

) (
−λ4

3

(
2γ21 − 3γ1γ2 + γ22

)
− δ1δ3λ

2
3 + δ23λ

2
1

)

λ8
3(γ1 − γ2)2

,

C̃1 =
2δ3
(
λ4
3

(
λ2
1(γ1 − γ2)

2 − δ21
)
+ 2δ1δ3λ

2
1λ

2
3 − δ23λ

4
1

)

λ6
3(γ1 − γ2)2

,

C̃2 =
λ4
3

(
δ21 − λ2

1(γ1 − γ2)
2
)
− 2δ1δ3λ

2
1λ

2
3 + δ23λ

4
1

λ4
3(γ1 − γ2)2

.

The polynomial P (x1) is quadratic in the variable x1, whose roots x
±
1 , are

x±1 =

2δ3

(
−C̃2δ3 ±

√
∆
4 λ

2
3

)

C̃1λ4
3

,

where

∆ =
4

λ8
3(γ1 − γ2)2

(
δ3λ

2
1 − λ2

3(λ1(γ1 − γ2) + δ1)
) (

δ3λ
2
1 − λ2

3(λ1(γ2 − γ1) + δ1)
)

(
γ2λ

4
3(2γ1 − γ2)− 2δ1δ3λ

2
3 + δ23λ

2
1

)
.

Note that from (14) we get

x±2 =
2δ3 − λ2

3x
±
1

λ2
3

=

2δ3

(
δ3C̃2 + λ2

3C̃1 ∓ λ2
3

√
∆
4

)

C̃1λ4
3

= x∓1 .

Since x2 > x1, there is at most one solution of the two possible solutions x±1 . Therefore,
the maximum number of limit cycles of type B2 that our discontinuous piecewise linear
di�erential system can have is one.

Now we verify that this upper bound found is reached. We provide a discontinuous
piecewise linear di�erential system in FB having exactly one crossing limit cycle of type B2.
And this proves that the upper bound found for this case is reached.

We consider the linear Hamiltonian system

ẋ = −3

2
x− y +

561299

147900
, ẏ =

9

4
x+

3

2
y − 7276597

1183200

in region R1
B, and this system has the �rst integral

H1(x, y) = −9

8
x2 − 3

2
xy +

7276597

1183200
x− 1

2
y2 +

561299

147900
y;

in the region R2
B we consider the Hamiltonian system

ẋ =
5

8
x− y +

43

10
, ẏ =

25

64
x− 5

8
y +

3

4

which has the �rst integral

H2(x, y) = − 25

128
x2 +

5

8
xy − 3

4
x− 1

2
y2 +

43

10
y;

and in the region R3
B we consider the Hamiltonian system

ẋ =
22

9
x− y + 5, ẏ =

484

81
x− 22

9
y − 71027

4050

this system has the �rst integral

H3(x, y) = −242

81
x2 +

22

9
xy +

71027

4050
x− 1

2
y2 + 5y.
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With these three systems we have that system (13) has exactly one real solution, namely

(x1, y1, y2, x2) =

(
8

5
,
31

10
,
427

100
,
11

2

)
,

which generated the crossing limit cycle of type B2 in Figure 3b. □

Proof statement (iii) of Theorem 2. We provide a piecewise linear Hamiltonian system in
FB which has exactly two limit cycles of type B1 and one limit cycle of type B2.

In region R1
B we consider the Hamiltonian system

ẋ = −
√

314270

223671
x− y +

720859

213020
, ẏ =

314270

223671
x+

√
314270

223671
y − 17072429

4473420
,

which has the �rst integral

H1(x, y) = −157135

223671
x2 −

√
314270

223671
xy +

17072429

4473420
x− 1

2
y2 +

720859

213020
y;

in region R2
B we consider the Hamiltonian system

ẋ =

√
5(782031760005−556339

√
1459934861005)

4123

10651
x− y +

18

5
,

ẏ =
5
(
782031760005− 556339

√
1459934861005

)

467728791523
x−

√
5(782031760005−556339

√
1459934861005)

4123

10651
y

−
(
556339

√
1459934861005− 782031760005

140670313240
+

704

133

)
,

this Hamiltonian system has the �rst integral

H2(x, y) =
5
(
782031760005− 556339

√
1459934861005

)

935457583046
x2 +

1

2
y2 − 18

5
y

−

√
5
(
782031760005− 556339

√
1459934861005

)

4123

10651
xy

+

(
556339

√
1459934861005− 782031760005

140670313240
+

704

133

)
x;

and in the region R3
B we consider the Hamiltonian system

ẋ =
22

9
x− y − 1, ẏ =

484

81
x− 22

9
y − 71027

4050
,

which has the �rst integral

H3(x, y) = −242

81
x2 +

22

9
xy +

71027

4050
x− 1

2
y2 − y.

With these Hamiltonian systems we have that system (10) has exactly the two real solutions

(X1, Y1, x
1) =

(
36

5
,
44

5
,−133

100

)
,

(X2, Y2, x
2) =

(
371

50
,

√
1459934861005 + 720859

213020
,−31

20

)
,
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and system (13) has exactly the one real solution

(x1, y1, x2, y2) =

(
427

100
,
11

2
,
8

5
,
17

10

)
.

These reals solutions generated the two crossing limit cycles of type B1 and one crossing
limit cycle of type B2 in FB in Figure 3c.

This completes the proof of Theorem 2. □
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