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Any singular irreducible cubic curve (or simply, cubic) after an affine transformation can be
written as either y2 = x3, or y2 = x2(x+1), or y2 = x2(x−1). We classify the phase portraits of
all quadratic polynomial differential systems having the invariant cubic y2 = x2(x+1). We prove
that there are 63 different topological phase portraits for such quadratic polynomial differential
systems. We control all the bifurcations among these distinct topological phase portraits. These
systems have no limit cycles. Only 3 phase portraits have a center, 19 of these phase portraits
have one polycycle, 3 of these phase portraits have 2 polycycles. The maximum number of
separartices that have these phase portraits is 26 and the minimum number is 9, the maximum
number of canonical regions of these phase portraits is 7 and the minimum is 3.
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1. Introduction and statement of the main result

Quadratic polynomial differential systems (or simply quadratic systems) are systems that can be written
into the form

ẋ = P (x, y) = P0 + P1 + P2, ẏ = Q(x, y) = Q0 +Q1 +Q2, (1)

where Pi and Qi are real polynomials of degree i in the variables (x, y) and P 2
2 +Q2

2 6= 0.
An extensive literature is dedicated to the study of the quadratic systems these last years. For a good

survey see the book of Reyn [Reyn, 1994] or the book of Artés et.al [Artés et al., 2021], and references
therein. For example, the following families of quadratic systems have been studied: homogeneous [Coll et
al., 1987], semi-homogeneous [Cairó & Llibre, 1997], bounded [Dickson et al., 1970], reversible [Gavrilov &
Iliev, 2000; Coll et al., 2009], Hamiltonian [Artés & Llibre, 1994a; Chow et al., 2002], Lienard [Dumortier
& Li, 1997], integrable using Carleman and Painlevé tools [Hua et al., 1996], rational integrable [Artés et
al., 2007, 2010, 2009], the ones having a star nodal point [Berlinski, 1966], a center [Vulpe, 1983; Lunkevich
& Sibirskii, 1982; Coll et al., 2009; Vulpe, 1983], one focus and one antisaddle [Artés & Llibre, 1994b], with
a semi–elementary triple node [Artés et al., 2013], chordal [Gasull et al., 1986; Gasull & Llibre, 1988], with
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four infinite singular points and one invariant straight line [Roset, 1991], with invariant lines [Schlomiuk
& Vulpe, 2008a], and so on.

It is interesting to mention some results on the quadratic polynomial differential systems having invari-
ant curves of degree less than three. First we introduce some notation. By QSL≥i we denote the family of
non-degenerate quadratic differential systems possessing invariant lines of total multiplicity at least i. By
QSLi we denote the family of non-degenerate quadratic differential systems possessing invariant lines of
total multiplicity exactly i. By QSH we mean the family of non-degenerate quadratic differential systems
possessing an invariant hyperbola. By QSE we mean the family of non-degenerate quadratic differential
systems possessing an invariant ellipse. The results are: On QSL≥5 the geometrical classification is done
in [Scholomiuk & Vulpe, 2004], its topological classification (phase portraits) and the integrability is done
in [Schlomiuk & Vulpe, 2008b]. On QSL4 the geometrical classification is done in [Schlomiuk & Vulpe,
2008c], its topological classification (phase portraits) and the integrability is done in [Schlomiuk & Vulpe,
2008d]. Both geometrical and topological classification of the family of quadratic systems with the line at
infinity filled up with singularities was done in the following paper (each system in this family has total
multiplicity of finite invariant lines equal to 3 and the line at infinity is also invariant, see [Schlomiuk &
Vulpe, 2008e]. On QSL3 and hence on QSL≥3 the geometrical classification is done in [Schlomiuk & Vulpe,
2010], and the topological classification (phase portraits) was done in [Schlomiuk & Vulpe, 2012; Schlomiuk
& Zhang, 2018]. On QSH the geometrical classification was done in [Oliveira et al., 2017], the topological
classification and the integrability of families in this class is done in [Oliveira et al., 2021a,b]. Additional
references on quadratic polynomial differential where important global tools were introduced and used in
studied of two families of quadratic differential systems are [Llibre & Schlomiuk, 2004; Artés et al., 2006].

There is also an extensively literature about Hilbert’s sixteen problem and quadratic systems, see for
example [Chen et al., 2006; Gavrilov, 2001; Li & Llibre, 2004; Li & Zhang, 2002; Lunkevich & Sibirskii,
1982; Zhang, 2002], and the notion of ciclicity [Żo la̧dek, 1995; Han & Yang, 2005; Chow et al., 2002], and
so on. For the study of some geometric properties of quadratic systems see [Roussarie & Schlomiuk, 2002;
Schlomiuk & Vulpe, 2005], and others. In particular we pay attention on reference [Llibre et al., 2000] where
the authors present a classification of all quadratic systems having one real reducible invariant algebraic
curve of degree 3.

In [Bix, 2006] it is proved that a cubic algebraic curve (or simply a cubic) is singular and irreducible
if and only if it can be written after affine transformations into one of the forms (See Figure 1).

y2 = x3, y2 = x2(x+ 1), y2 = x2(x− 1).

-1 1

f1 = y2 − x3 f2 = y2 − x2(x+ 1) f3 = y2 − x2(x− 1)

Fig. 1: Singular and irreducible algebraic curves of degree 3.

The goal of this paper is to continue the classification of the phase portraits in the Poincaré disc of the
quadratic systems having some invariant cubic. Thus our main result is to provide all distinct topological
phase portraits of the quadratic systems having the invariant cubic y2 = x2(x+ 1).

Let f = f(x, y) = 0 be a real polynomial. We say that f = 0 is an invariant algebraic curve of system
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(1) if it satisfies

P
∂f

∂x
+Q

∂f

∂y
= Kf,

for some polynomial K called the cofactor of the curve f = 0. Note that an invariant algebraic curve is
formed by orbits of system (1).

By simple calculation we obtain the following:

Proposition 1. The quadratic systems (1) having f = y2 − x2(x+ 1) = 0 as invariant algebraic curve are

ẋ = ax+ by + ax2 + (3b− 2c)xy,

ẏ = bx+ ay + cx2 +
3

2
axy +

(
9

2
b− 3c

)
y2.

(2)

See the Appendix for a summary of about the Poincaré compactification of a polynomial differential
system and the definition of the Poincaré disc D, which roughly speaking is to identify the interior of
the unit closed disc D centered at the origin with the plane R2 and its boundary S1 with the infinity
of R2, in the plane we can go to infinity in as many as directions as points has the circle S1. Then the
Poincaré compactification consists in extend the quadratic differential system from the interior of D to its
boundary S1, i.e. to the infinity of R2. In this way we can control the orbits of a polynomial differential in
a neighborhood of the infinity, and in particular of a quadratic system.

As it is usual a polycycle is formed by a finite number of orbits γ1, . . . , γn and a finite number of singular
points p1, . . . , pn such that α(γi) = pi, ω(γi) = pi+1 for i = 1, . . . , n−1, α(γn) = pn and ω(γn) = p1. Possibly,
some of the singular points pi are identified.

Our main result is the following.

Theorem 1. The following statements hold for the quadratic polynomial differential systems (2).

(a) There are 63 topological distinct phase portraits in the Poincaré disc. These 63 phase portraits are num-
bering as ppk for k = 1, · · · , 63 in what follows.

(b) These phase portraits have no limit cycles.
(c) The phase portraits ppk for k = 2, 4, 5 have a center.
(d) The phase portraits ppk for k = 2, 4, 5, 6, 19, 20, 23, 24, 35, 36, 37, 45, 53, 54, 55, 56, 59, 62, 63 have one poly-

cycle.
(e) The phase portraits ppk for k = 3, 52, 60 have two polycycles.
(f) The maximum number of separatrices of these phase portraits is 26 and it is reached in the phase portraits

ppk for k = 13, 14, 16, 22, and the minimum number of separatrices is 9 and it is reached in the phase
portraits ppk for k = 5, 19.

(g) The maximum number of canonical regions of these phase portraits is 7 and it is reached in the phase
portraits ppk for k = 13, 14, 16, 22, 23, 32, 36, 39, 40, 42, 44, 45, 48, 51, 57, 59, 61, and the minimum number of
canonical regions is 3 and it is reached in the phase portraits ppk for k = 5, 19, 58.

The rest of the paper is dedicated to prove Theorem 1.
All quadratic systems admitting y2 − x2(x + 1) = 0 as invariant curve can be written as systems (2)

with the parameters (a, b, c) ∈ R3 \ {(0, 0, 0)}. We divide the study of the phase portraits of the differential
system (2) in the parameter space R3 \ {(0, 0, 0)} as follows:

Case 1: a = 0.
Subcase 1.1: a = 0 and c = 0. Then doing a convenient rescaling we can take b = 1.
Subcase 1.2: a = 0 and c 6= 0. Then doing a convenient rescaling we can take c = 1
Case 2: a 6= 0.
Subcase 2.1: a 6= 0, c = 0 and b = 0. Then doing a convenient rescaling we can take a = 1.
Subcase 2.2: a 6= 0, c = 0 and b 6= 0. Then doing a convenient rescaling we can take b = 1.
Subcase 2.3: a 6= 0 and c 6= 0. Then doing a convenient rescaling we can take c = 1.
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In Section 2 we study the phase portraits in the Poincaré disc of the subcases 1.1, 1.2, 2.1 and 2.2.
In Section 3 we study the phase portraits of subcase 2.3. In Section 4 we prove Theorem 1. Finally, in
Section 5 there are two appendixes one dedicated in the Poincaré compactification and the other one to
the separatrix configuration.

2. Phase portraits of the subcases 1.1, 1.2, 2.1 and 2.2

Now we start the analysis of these cases and subcases.
Case 1: a = 0.
Subcase 1.1: a = 0 and c = 0. Then b 6= 0 otherwise the system is not quadratic, and without loss of
generality we can consider b = 1. Then system (2) becomes

ẋ = y(1 + 3x), ẏ =
1

2

(
2x+ 9y2

)
, (3)

and has the rational first integral

H(x, y) =
27 y2 + 9x+ 1

(3x+ 1)3
.

System (3) has the three invariant algebraic curves: f2 = 0, g1 = 3x + 1 = 0 and g3 = 27 y2 + 9x + 1.
Additionally, has the three finite singular points P0(0, 0), P−

(
−1/3, −

√
6/9
)

and P+

(
−1/3,

√
6/9
)
. P0

is a saddle, P− is an unstable node and P+ is a stable node.
In what follows we use the notation introduced in the Appendix for studying the infinite singular

points using the Poincaré compactification. The origin of the chart (U1, F1) is a nilpotent singular point
and using Theorem 3.5 of [Dumortier et al., 2006] is a saddle, and doing blows ups we get its local phase
portrait as it shows in Figure 2. Moreover, the origin of the local chart U2 is a hyperbolic stable node. The
local and the global phase portraits of system (3) are given in Figure 2.
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Fig. 2: The local and the global phase portraits of system (3). Here a = c = 0, b = 1 in system (2).

Subcase 1.2: a = 0 and c 6= 0. Without loss of generality we can consider c = 1, and system (2) can be
written as

ẋ = by + (3b− 2)xy,

ẏ = bx+ x2 +

(
9

2
b− 3

)
y2,

(4)

where this b is the old b/c. For b = 2/3 system (4) is a Hamiltonian system with the first integral H =
x3 + x2 − y2. System (4) for b 6= 2/3 has the rational first integral

H(x, y) =
b3 + 3 b2 (3 b− 2)x+ 2

(
9 b2 − 12 b+ 4

)
x2 +

(
27 b3 − 54 b2 + 36 b− 8

)
y2

(3 bx+ b− 2x)3
.
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The curve g2 = b3 + 3 b2 (3 b− 2)x+ 2
(
9 b2 − 12 b+ 4

)
x2 +

(
27 b3 − 54 b2 + 36 b− 8

)
y2 = 0 is a conic for

b 6= 2/3 and it is classified as follows: For b ∈ (−∞, 0) ∪ (0, 2/3) is a hyperbola, for b ∈ (2/3, 8/9) an
imaginary ellipse, and for b > 8/9 is a real ellipse. For b = 0 we obtain two real invariant straight lines that
intersect into a point. For b = 8/9 the conic is formed by two parallel imaginary straight lines.

System (4) has the finite singular points (whenever they exist, see also Table 1)

P0(0, 0), P1(−b, 0), P−

(
b

2− 3 b
,− b

√
2 b− 2

(3 b− 2)3/2

)
, P+

(
b

2− 3 b
,
b
√

2 b− 2

(3 b− 2)3/2

)
.

Note that the points P− and P+ are the intersection points of the three curves f2 = 0, g2 = 0 and
g1 = (3 b− 2)x+ b = 0.

For b ∈ (0, 2/3) ∪ (1, ∞) the point P1 is on the left hand side of the straight line passing through the
points P− and P+. For b ∈ (−∞, 0) ∪ (0, 2/3) ∪ (1,+∞) the points P± exist. For b = 0 the four points
collide into P0. For b = 1 the three points P+, P− and P1 collide between them. For 2/3 ≤ b < 1 only exist
the finite singular points P0 and P1.

The point P0 has the Jacobian matrix (
0 b

b 0

)
,

and its eigenvalues are ±b. For b = 0 the point P0 is linearly zero and doing blow–ups we obtain that its
local phase portrait is the union of two elliptic and two parabolic sectors, see Figure 4.

The point P1 has the Jacobian matrix (
0 −3 b2 + 3 b

−b 0

)
,

and its eigenvalues are ±b
√

3b− 3. For b = 0 the point P1 coincides with P0. For b = 1 the point P1 is a
nilpotent point and by Theorem 3.5 of [Dumortier et al., 2006] we have that P1 is the union of one elliptic
and one hyperbolic sectors separated by two parabolic sectors, see Figure 7.

The eigenvalues of the point P+ are

λ1 =

(
6
√

2 b− 2b+
√

2
√

(b− 1) (3 b− 2)2 − 4
√

2 b− 2

)
b

(3 b− 2)3/2
,

λ2 = −
b

(
(−6 b+ 4)

√
2 b− 2 +

√
2
√

(b− 1) (3 b− 2)2
)

(3 b− 2)3/2
.

The eigenvalues of the point P− are

λ1 =

(
−6
√

2 b− 2b+
√

2
√

(b− 1) (3 b− 2)2 + 4
√

2 b− 2

)
b

(3 b− 2)3/2
,

λ2 = −

(
6
√

2 b− 2b+
√

2
√

(b− 1) (3 b− 2)2 − 4
√

2 b− 2

)
b

(3 b− 2)3/2
.

For both points P± the product of its eigenvalues is 6 b2 (b− 1)/(3 b− 2).
In the chart (U1, F1) for b < 2/3 we obtain the infinite singular points

Q+

(√
2

2− 3b
, 0

)
, Q−

(
−
√

2

2− 3b
, 0

)
.

The eigenvalues of the points Q± are ±
√

4− 6b.
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b −∞ 0 2/3 8/9 1 ∞
P0 S pepep S S S S S S S
P1 C − C C C C C peph S
P+ N s − N s − − − − − Nu

P− Nu − Nu − − − − − N s

Q− S S S − − − − − −
Q+ S S S − − − − − −
O2 Nu Nu Nu N s N s N s N s N s N s

Table 1: The finite singular points of system (4).

The singular point at the origin of the chart (U2, F2) has the Jacobian matrix(
1− 3b/2 b

0 3− 9b/2

)
,

and its eigenvalues are

λ1 = 1− 3/2 b, λ2 = 3− 9/2 b.

Thus, for b 6= 2/3 it is a node, whereas for b = 2/3 it is a nilpotent singular point, and by Theorem 3.5 of
[Dumortier et al., 2006] it is a stable node.
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Fig. 3: The local and the global phase portraits of system (4). Here a = 0, b < 0 and c = 1. The curve
g2 = 0 is a hyperbola.
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Fig. 4: The local and the global phase portraits of system (4). Here a = b = 0 and c = 1. The curve g2 = 0
are two intersecting real lines.
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Fig. 5: The local and the global phase portraits of system (4). Here a = 0, b ∈ (0, 2/3) and c = 1. The
curve g2 = 0 is a hyperbola.
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Fig. 6: The local and the global phase portraits of system (4). Here a = 0, b ∈ [2/3, 1) and c = 1. For
b = 2/3 the system is Hamiltonian with H(x, y) = −x3−x2+y2 and admits the exponential factor F = ex.
For b ∈ (2/3, 8/9) the curve g2 = 0 is an imaginary ellipse whereas for b = 8/9 are two parallel imaginary
straight lines. For b ∈ (8/9, 1) the curve g2 = 0 is a real ellipse.
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Fig. 7: The local and the global phase portraits of system (4). Here a = 0, b = c = 1. The curve g2 = 0 is
a real ellipse.

We note that the family (2) is invariant under the symmetry

(x, y, a, t)→ (x,−y,−a,−t). (5)

Due to this symmetry when a = 0 the phase portraits of the differential system (2) is symmetric with
respect to the x-axis, all the phase portraits of the quadratic polynomial differential systems having a
symmetry with respect to a straight line have been classsified in [Llibre & Medrado, 2005], but in this
paper are not described whose of these phase portraits have the invariant algebraic curve f2 = 0.

In the paper [Llibre et al., 2021] are classified the phase portraits of all the quadratic polynomial
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Fig. 8: The local and the global phase portraits of system (4). Here a = 0, b > 1 and c = 1. The curve
g2 = 0 is a real ellipse.

differential systems having an invariant algebraic curve of degree 3 and a Darboux invariant. Under these
assumptions the invariant algebraic curve of degree 3 when it is irreducible is homeomorphic to the cubic
f1 = 0. So any of the phase portraits studied in this paper can appear in the paper [Llibre et al., 2021].

Case 2: a 6= 0. Due to the symmetry (5) without loss of generality we can restrict our study to a > 0. We
distinguish the following cases.
Subcase 2.1: a 6= 0 and c = b = 0. Then system (2) becomes

ẋ = ax(x+ 1), ẏ =
1

2
ay(2 + 3x), (6)

and it has the rational first integral H = x2(x + 1)/y2. Without loss of generality we can consider that
a = 1. The unique finite singular points are P0 = (0, 0) and P = (−1, 0). The point P0 is an unstable
node. The point P ∈ {f2 = 0} is a stable node. The origin O2 of the chart (U2, F2) has a Jacobian matrix
identically zero. Doing blow ups O2 is the union of one parabolic and one hyperbolic sector. The local and
the global phase portrait of system (6) is given in Figure 9.
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Fig. 9: The local and the global phase portraits of system (6). Here a = 1 and b = c = 0.

Subcase 2.2: a 6= 0 and c = 0, b 6= 0. Since b 6= 0 without loss of generality we can assume that b = 1.
System (2) can be written as

ẋ = ax+ y + ax2 + 3xy, ẏ = x+ ay +
3

2
axy +

9

2
y2, (7)

where now a is the previous a/b.
System (7) has three finite singular points:

P0 = (0, 0), P± =

(
−1

3
+

1

18
a2 ± 1

18
A,

1

54

−9 a2 ± 3A− a4 ∓ a2A
a

)
,
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with A = a
√

24 + a2. Note that P0, P± are points of the curve f2 = 0. For a = 1 the point P+ collides with
P0. The point P− is always on the left hand side of the point P+. For a >

√
3 the point P− is upper the

point P+, here left hand side or upper are with respect to the x and y axes.
The linear part at the origin P0 has eigenvalues a + 1 and a − 1. So, for a ∈ (0, 1) the origin P0 is a

saddle. For a > 1 it is an unstable node. For a = 1 we have that P0 is semi–hyperbolic and using Theorem
2.19 of [Dumortier et al., 2006] we obtain that is a saddle–node.

Now we set

B− = a2
(
a6 − a4A+ 30 a4 − 18 a2A+ 378 a2 + 1728− 72A

)
,

and note that for a > 0 we have that B− > 0. At the point P− the eigenvalues are

λ1,2 =
1

72

−24A− 42 a2 − a4 + a2A±
√

2B−
a

< 0,

and consequently that P− is a stable node.
We additionally set

B+ = a2
(
a6 + 30 a4 + a4A+ 378 a2 + 18 a2A+ 1728 + 72A

)
,

and for a > 0 we have that B+ > 0. The eigenvalues associated to the point P+ are

λ1,2 = − 1

72

42 a2 + a4 + a2A− 24A±
√

2B+

a
.

We have that λ1 > 0 and λ2 > 0 if a ∈ (0, 1), and λ1λ2 < 0 if a > 1. So for a ∈ (0, 1) the point P+ is an
unstable node and for a > 1 is a saddle.

In the chart (U1, F1) we obtain the two infinite singular points O1(0, 0) and Q(−1/3, 0). The origin O1

is a saddle, and the point Q+ has eigenvalues 0 and −a/2, so it is semi-hyperbolic. By Theorem 2.19 of
[Dumortier et al., 2006] we obtain that the point Q is a saddle–node. The origin of the chart (U2, F2) is a
stable node.

The local and the global phase portraits of system (6) are given in Figures 10, 11, 12 and 13.
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Fig. 10: The local and the global phase portraits of system (6). Here c = 0, b = 1 and a ∈ (0, 1) ∪ (1,
√

3).

For a = 1 system (7) has only two singular points. The origin has eigenvalues 0, 2 and using Theorem
2.19 of [Dumortier et al., 2006] it is a saddle–node. The singular point (−5/9, −10/27) is a stable node
and is on the curve f2 = 0, see Figure 11.

3. Phase Portraits of the subcase 2.3

Subcase 2.3: a 6= 0 and c 6= 0. Without loss of generality we can consider c = 1. System (2) becomes

ẋ = ax+ by + ax2 + (3b− 2)xy,

ẏ = bx+ ay + x2 +
3

2
axy +

(
9

2
b− 3

)
y2.

(8)
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Fig. 11: The local and the global phase portraits of system (6). Here c = 0, a = b = 1.
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Fig. 12: The local and the global phase portraits of system (6). Here c = 0, b = 1 and a =
√
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Fig. 13: The local and the global phase portraits of system (6). Here c = 0, b = 1 and a >
√

3.

System (8) has the following finite singular points (whenever are defined):

P0 = (0, 0), P1 =
(
−b, a

3

)
, P± = (x0, y0) ,

with

x0 =
a2 − 6 b2 + 4 b± a

√
24 b2 − 40 b+ a2 + 16

2 (3 b− 2)2
,

y0 =
−9 ab2 + 18 ab− a3 − 8 a± (3 b2 − a2 − 2 b)

√
24 b2 − 40 b+ a2 + 16

2 (3 b− 2)3
.
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In the chart (U1, F1) system (8) has the infinite singular points (whenever they exist)

Q∓ =

(
−a±

√
a2 − 24 b+ 16

2(3 b− 2)
, 0

)
.

The origin of the chart (U2, F2) is an infinite singular point of system (8).
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17( i i )

3
( i i

)

3
( i v

)

3( v i )

3( v i i )

Fig. 14: The bifurcation curves define 21 regions for system (8) with a 6= 0 and c 6= 0, i.e. c = 1 withought
loss of generality.

We define the following bifurcations curves

g1 = a2 + 16− 24b, g5 = a+ b = 0,
g2 = 3b− 2 = 0, g6 = 9a2b2 − 24a2b+ 64a2 − 432b2 + 432b3 = 0,
g3 = 24 b2 − 40 b+ a2 + 16 = 0, g7 = a2 + 9b3 − 9b2.
g4 = a− b = 0,

We also consider the curves

h = a2 +
√

g1a− 6 b2 + 4 b, j1 = b− 1

3
a. (9)
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3.1. Finite Singular Points
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22

=0

=0

=0

=0

3

4/5
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Fig. 15: The number of finite singular points of system (8) in the different regions, lines and points.

Lemma 1. The number of finite singular points of system (8) is given in Figure 15.

Proof. Note that the points P± are not defined whenever g2 = 0 and also when g3 < 0. Addicionally, on
g3 = 0 the two points P± collide between them. Moreover, on the curve g7 = 0 for b ∈ (−∞, 0) the point
P1 collide with the point P+ and for b ∈ (0, 1) the point P1 collide with P−. For a = b = 8/9 the point
P+ collide with P0 whereas the point P− collide with P1. On the straight line g5 = 0 the point P+ colapse
with P0. On g4 = 0 for a = b > 4/5 the point P+ colapse with P0, whereas for 0 < a = b < 4/5 the point
P− colapse with P0. Finally for a = b = 4/5 the points P± collide with the point P0. �

Lemma 2. The local phase portrait at the point P0 is given in Figure 16.

Proof. The point P0 has eigenvalues a ± b. Hence for b > a or b < −a we have that P0 is a hyperbolic
saddle. For b > a or b > −a the point P0 is a hyperbolic unstable node. Over the straight lines g4 = 0 and
g5 = 0 the point P0 is a semi–hyperbolic singular point, and from Theorem 2.19 of [Dumortier et al., 2006]
we have that for a 6= 4/5 it is a saddle–node whereas for a = 4/5 it is a saddle. �
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Fig. 16: The local phase portrait at the origin P0 = (0, 0).

Remark 3.1. The finite singular points P± are always points of the invariant curve f2 = 0. So cannot be
foci or centers.

Lemma 3. The local phase portrait at the point P1 is given in Figure 17.

Proof. The point P1 has eigenvalues e± = ab/4−a/3±√g6/12. For g6 < 0 the eigenvalues become comblex
with non–zero real part. On g6 = 0 we have that e+ = e− and P1 is a node and for g6 > 0 we have two
different real eigenvalues. Note that e−e+ = −g7/3. Hence, for g7 > 0 we have that P1 is a hyperbolic
saddle, whereas for g7 < 0 and g6 > 0 the point P1 is a hyperbolic stable node. On g7 = 0one of the
eigenvalues of P1 becomes zero and P1 is semi–hyperbolic, and from Theorem 2.19 of [Dumortier et al.,
2006] we have that P1 is a saddle–node. �

Lemma 4. The local phase portrait at the singular point P+ is given in Figure 18.

Proof. We recall that the point P+ is defined for g2 6= 0 and g3 ≥ 0. On the curve g3 = 0 the point
P+ coincides with P−. For a = b = 4/5 ∈ {g3 = 0} ∩ {g4 = 0} the points P+ and P− collide with P0.
Additionally, the point P+ has the eigenvalues

a(−a2 − 42 b2 + 76 b− 32 ) +
(
−a2 + 24 b2 − 16 b

)√
g3 ±

√
2A+

8 (3 b− 2)2
,
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Fig. 17: The local phase portrait at the singular point P1 = (−b, a/3).

where

A± =
(
±a5 ± 18a3b2 ± 72ab4 ∓ 12a3b∓ 96ab3 ± 32a b2

)√
g3

+a6 + 30 a4b2 + 378 a2b4 + 1728 b6 − 32 a4b− 792 a2b3 − 5184 b5 + 8 a4

+552 a2b2 + 5760 b4 − 128 a2b− 2816 b3 + 512 b2.

We observe that both eigenvalues cannot be zero simultaneously. Note that A+ ≥ 0 due to Remark 3.1.
The product of the eigenvalues det+ is

det+ = −
a
(
45 b3 + 2 a2 − 78 b2 + 32 b

)√
g3

4 (3 b− 2)3
−
g3
(
−9 b3 + 2 a2 + 6 b2

)
4 (3 b− 2)3

.

If det+ < 0 then P+ is a saddle, see Figure 18. Note that det+ = 0 on g3 = 0, g5 = 0 and for a = b > 4/5
on g4 = 0. For b < 0 on the points of the curve g7 = 0 we have that det+ = 0. In these cases we have that
P+ is a semi–hyperbolic singular point and so we apply Theorem 2.19 of [Dumortier et al., 2006], see also
Figure 18. If det+ > 0 the point P+ is a node, see Figure 18. �

Lemma 5. The local phase portrait at the point P− is given in Figure 19.

Proof. The point P− is defined for g3 ≥ 0 and g2 6= 0, and has eigenvalues

a(−a2 − 42 b2 + 76 b− 32) +
(
a2 − 24 b2 + 16 b

)√
g3 ±

√
2A−

8 (3 b− 2)2
,
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Fig. 18: The local phase portrait at the singular point P+.

where A− is defined in Lemma 4.
Note that for all the values of the parameters we have that A− ≥ 0, see also Remark 3.1. The product

of the eigenvalues det− is

det− =
a
(
45 b3 + 2 a2 − 78 b2 + 32 b

)√
g3

4 (3 b− 2)3
−
g3
(
−9 b3 + 2 a2 + 6 b2

)
4 (3 b− 2)3

.

If det− < 0 the point P− is a saddle, see Figure 19. For g3 = 0 we have that det− = 0. Additionally, for
b > 0 on the points of g7 = 0 we have that det− = 0. For b > 4/5 and additionally g4 = 0 we also have
det− = 0. In these cases the point P− is semi–hyperbolic and so we apply Theorem 2.19 of [Dumortier et
al., 2006], see Figure 19. If det− > 0 the point P− is a node, see Figure 19. �

3.2. Infinite singular points

Lemma 6. The number of infinite singular points of system (8) is given in Figure 20.

Proof. In the local chart (U1, F1) system (8) becomes

ż1 = 1 + bz2 +
1

2
az1 +

(
3

2
b− 1

)
z1

2 − bz12z2,

ż2 = −z2 (az2 + bz1 z2 + a+ 3 bz1 − 2 z1 c) ,
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Fig. 19: The local phase portrait at the singular point P−.

and for g1 ≥ 0 and g2 6= 0 it has the infinite singular points

Q± =

(
−a±√g1

2g2
, 0

)
.

Note that neither Q− nor Q+ coincide with the origin of the chart (U1, F1). The two points Q± collided
between them over the curve g1 = 0.

In the local chart (U2, F2) system (8) becomes

ż1 = bz2 +

(
−3

2
b+ 1

)
z1 −

1

2
az1

2 − bz12z2 − z13,

ż2 = −1

2
z2
(
2 bz1 z2 + 2 az2 + 2 z1

2 + 3 az1 + 9 b− 6
)
,

and the origin of the local chart (U2, F2) is an infinite singular point. �

Lemma 7. The stability of the infinite singular points of system (8) in the local chart (U1, F1) is given in
Figure 21.

Proof.
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Fig. 20: The number of the infinite singular points of system (8).

We recall that the points Q± are not defined on g2 = 0. For g1 < 0 are not real points, so we will
consider them only when g1 ≥ 0. The point Q+ has eigenvalues

− a±
√

5 a2 + 4 a
√
g1 − 96 b+ 64

4
.

Note that on g1 = 0 the point Q+ collide with Q− and is a semi–hyperbolic saddle–node. Also note that
both eigenvalues at the point Q+ cannot be zero. The product of the eigenvalues is

Det+ = −1/4 a2 − 1/4 a
√
g1 + 6 b− 4,

and for g1 > 0 we have that Det+ < 0, and so the point Q+ is a saddle. The point Q− has eigenvalues

−a±
√

5 a2 − 4 a
√
g1 − 96 b+ 64

4
,

and on g1 = 0 is a semi–hyperbolic saddle–node. The product of the eigenvalues at the point Q− is

Det− = −1/4 a2 + 1/4 a
√
g1 + 6 b− 4.

The point Q− changes from a saddle to a node when the values of the parameters of the system cross the
line g2 = 0, see Figure 21. �

Lemma 8. For b < 2/3 the origin of the local chart (U2, F2) is an unstable node. If b > 2/3 is a stable
node. If b = 2/3 the origin is the union of an elliptic and a hyperbolic sector separated by two parabolic
sectors.
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Proof. The origin O2 = (0, 0) of the chart (U2, F2) has the Jacobian matrix(
−3/2 b+ 1 b

0 3− 9/2 b

)
,

with eigenvalues −3b/2 + 1 and 3− 9b/2. For b > 2/3 the point O2 is a stable hyperbolic node whereas for
b < 2/3 becomes an unstable hyperbolic node. For b = 2/3 both eigenvalues become zero, (the Jacobian
is not identically zero) so O2 is a nilpotent singular point. Using Theorem 3.5 of [Dumortier et al., 2006]
and the blow up technique we obtain that the point O2 is the union of an elliptic and a hyperbolic sector
separated by two parabolic sectors. Note that the straight line of the infinity locally is contained in the
two parabolic sectors. �

Proposition 2. For g1 > 0 we obtain two distinct infinite singular points Q− and Q+. On the curve g1 = 0
the two points collided: Q− = Q+ and one eigenvalue of them becomes zero. For g1 < 0 the two infinite
singular points Q− and Q+ do not exist.

On the curve g2 = 0 the singular points P± and Q± do not exist. The point P+ changes from a saddle to
a node when the parameters of the system cross the line g2 = 0. Q− changes from a node to a saddle when
the parameters of the system cross this line and at this line the origin of (U2, F2) is a nilpotent singular
point, see Figure 21.

On the bifurcation curve g3 = 0 the two finite singular points P± collided between them. On g3 = 0 for
a = b = 4/5 the points P± collide to P0. For g3 < 0 the points P± do not exist. For g3 > 0 see Figures 18
and 19.
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On the line g4 = 0 the point P0 for a 6= 4/5 is a semi–hyperbolic saddle–node, whereas for a = 4/5 is
a saddle. For a = b > 4/5 the point P+ colapse with P0 whereas for 0 < a = b < 4/5 the point P− colapse
with P0. For a = b = 4/5 both points P± collide to P0 and is a saddle. For a = b ∈ (4/5, 8/9) the point P−
is a saddle whereas for a = b > 8/9 is a stable node. For a = b > 4/5 the point P+ changes from a saddle
to a node. For b < 4/5 the point P− changes from a saddle to a node when the parameters of the system
cross the line g4 = 0, see Figures 15, 16, 18 and 19.

On the line g5 = 0 the P0 is a semi–hyperbolic saddle–node. The point P+ colapse to P0. The point P+

changes from a saddle to a node when the parameters of the system cross this line, see Figures 16 and 18.
On the curve g6 = 0 the point P1 is a hyperbolic stable node. For g6 < 0 we have that P1 has complex

eigenvalues and consequently is a strong stable focus. For g6 > 0 we have that P1 has real eigenvalues, see
Figure 17.

On the curve g7 = 0 the point P− collided with P1 when b > 0 whereas for b < 0 the point P+ collide
with P1. Note that the product of the eigenvalues of P1 is g7/(−3). On g7 = 0 the point P1 is a semi–
hyperbolic saddle–node. P1 changes from a saddle to a node when the parameters of the system cross this
line. The point P1 changes from a saddle to a node when the parameters of the system cross the line g7 = 0,
see Figure 17.

Proof. The proof of Proposition 2 follows directly from Lemmas 1, 2, 3, 4, 5, 6, 7 and 8. �

In this section we study the global phase portraits of system (8): We draw the local phase portrait of
the finite and infinite singular points in the Poincaré disc, see for details on the Poincaré compactification
the Appendix 5. Additionally we plot in the Poincaré disc the invariant algebraic curve f2 = 0. Finally, we
should present all the global phase portraits.

Let L be a straight line and let q be a point of L. We say that q is a contact point of the straight line
L with a vector field X, if the vector X(q) is parallel to L.

For quadratic systems the following two results are well known.

Lemma 9. On any straight line which is not invariant the total number of singular points and contact
points is two. If there are two such points, P1 and P2, then the orbits intersecting the line ∞P1 cross in
the same sense as the orbits intersecting the line P2∞, and in the opposite sense the orbits P1P2.

For a proof of Lemma 9 see the lemma in page 296 of Coppel [Coppel, 1966].

Lemma 10. On any non invariant straight line through a finite singular point P reaching the infinity in a
pair of infinite singular points the orbits crossing the segment∞P have opposite sense to the orbits crossing
the segment P∞.

Lemma 10 is equivalent to Lemma 9 when one of the contacts points mentioned in Lemma 9 goes to
infinity. For a proof of Lemma 10 see [Artés et al., 1998].

Remark 3.2. In what follows when we apply Lemmas 9 or 10 we must check that the straight lines mentioned
in these lemmas are not invariant. In case that there are invariant we shall state this fact explicitly.

The following theorem also appears in Coppel’s paper [Coppel, 1966].

Theorem 2. A singular point in the interior of a closed path of a quadratic system must be either a focus
or a center.

Here a closed path is an invariant curve of the quadratic system contained in R2 homeomorphic to a
circle such that in its neighborhood contained in the bounded region limited by it the Poincaré return map
is defined.

Remark 3.3. In fact the proof which appears in Coppel’s paper [Coppel, 1966] also works when the closed
path of the quadratic system has some piece at infinity. So Theorem 2 also holds for closed paths having
some orbit at infinity.
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Theorem 3. Let X be a vector field of class C1 on an open set ∆ ⊆ R2. Consider γ a closed path of X
such that the bounded region R limited by γ is contained in ∆. Then there exist a singular point of X in
R, inside the region limited by γ.

The proof of Theorem 3 is the same as the proof of Theorem 1.31 of [Dumortier et al., 2006].
The next result is due to Berlinskĭi [Berlinski, 1960].

Theorem 4. Suppose that a quadratic system has four singular points. If the quadrilateral with vertices
at these points is convex then two opposite singular points are saddles and the other two are antisaddles
(nodes, foci, or centers). But if the quadrilateral is not convex then, either the three exterior vertices are
saddles and the interior vertex is an antisaddle, or the exterior vertices are antissaddles and the interior
vertex is a saddle.

Next we prove that system (8) has no limit cycles.

Lemma 11. System (8) has no limit cycles.

Proof. Consider system (8) and X = (P,Q) the corresponding vector field. According to Theorem 2
a possible limit cycle can appears only surrounding a focus. Note that for system (8) we only have a
focus in the interior of the loop of the curve f2 = 0 for the values of the parameters in the regions
r6, r7, r8, r9, r12, r13, r14, r15, and on the lines L4, L5, L6, L7, L13, L14, L26, L27, L28, L29. Also we have a focus
on the right side of this curve for the values of the parameters in the regions r19 and r20 and on the line

L8. The divergence of the system (Pf
−4/3
2 , Qf

−4/3
2 ) is

D =
∂(P f

−4/3
2 )

∂x
+
∂(Qf

−4/3
2 )

∂y
= − a (3x+ 4)

6 (−x3 − x2 + y2)4/3
= −a (3x+ 4)

6f
4/3
2

.

Note that the vertical straight line 3x+ 4 = 0 does not intersect the invariant curve f2 = 0. Hence D does
not change sign in the regions containing the focus. Hence, by the Bendixon–Dulac criterium (see Theorem
7.12 of [Dumortier et al., 2006]) there are no periodic orbits in the mentioned regions and lines in the (a, b)
parameter plane, and so there are no limit cycles. �

In what follows a heteroclinic loop is formed by two saddles P1 and P2 and two different separatrices
connecting these saddles and forming a loop in such a way that at least in one of the two sides of the loop
a Poincaré return map is defined. Let µi < 0 < λi be the eigenvalues of the saddles Pi for i = 1, 2. Set

k =
µ1
λ1

µ2
λ2
.

If k < 1 then the loop in the region limited by it is unstable, and if k > 1 then the loop is stable, see
Poincaré [Poincaré, 1928] (see Theorem XVII).

For regions r19, r20 and the line L8 we have the following result.

Lemma 12. For the values of the parameters in the regions r19, r20, and on the line L8 system (8) has no
connection between the separatrices of the saddles Q±.

Proof. We assume that there is a connection between the separatrices of the saddles Q± of system (8)
for the values of the parameters in the regions r19 and r20. Then there is a heteroclinic loop containing a
focus. Note that for the points Q± (see also Lemma 7)

k =

(
− a−

√
5 a2 + 4 a

√
g1 − 96 b+ 64

− a+
√

5 a2 + 4 a
√
g1 − 96 b+ 64

)(
− a−

√
5 a2 − 4 a

√
g1 − 96 b+ 64

− a+
√

5 a2 − 4 a
√
g1 − 96 b+ 64

)
> 1.

Thus the heteroclinic loop is stable. Since the focus in the interior of the heteroclinic loop is also stable it
must exist a cicle limit by the Poincaré–Bendixson Theorem (see for instance Corollary 1.30 of [Dumortier
et al., 2006]). But this is in contradiction with Lemma 11.
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Now we consider the values of the parameters on the line L8. If there is a connection between the
separatrices of the points Q1 and Q2, then they form a heteroclinic loop that must contain the focus.
Working in a similar way as in Lemma 12 for the saddles Q1 and Q2 we obtain

k =

(
−a+

√
5 a2 − 4 a

√
d+ 96 a+ 64

)(
−a+

√
5 a2 + 4 a

√
d+ 96 a+ 64

)
(
−a−

√
5 a2 − 4 a

√
d+ 96 a+ 64

)(
−a−

√
5 a2 + 4 a

√
d+ 96 a+ 64

) > 1,

with d = a2+24 a+16. Thus this heteroclinic loop is stable. Since the focus in the interior of the heteroclinic
loop is also stable by the Poincaré–Bendixon Theorem it must exist a limit cycle. But this is in contradiction
with Lemma 11. �

3.3. Phase portraits in the regions

The bifurcation curves define 21 regions, see Figure 14. Here we are going to present all the phase portraits
of system (8) in the Poincaré disc for the values of the parameters in each one of the 21 regions.
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Fig. 22: The local and the global phase portraits of system (8) corresponding to the region r1.

For the region r1 we realize the following steps, see also Figure 22.

(i) According to Theorem 6 of the Appendix first we draw the separatrices in the Poincaré disc and then we
should draw an orbit in each canonical region. This determines completely the global phase portraits in
the Poincaré disc.

(ii) We first draw the local phase portrait of the finite and infinite singular points in the Poincaré disc, see
Figure 22.

(iii) Next we study the α− and the ω−limits of the separatrices.
(iv) Since in the region r1 does not exist any focus we have that no limit cycle exist for the quadratic system

(8), see Theorem 2.
(v) We should only study the separatrices of the point P1 (saddle). The two unstable separatrices can only

reach the infinite stable node O2 or the finite stable node P−. Additionally the ω−limit of thess two unstable
separatrices cannot be the same stable node, otherwise they should define a closed region and it should
contain a stable separatrix without its α−limit.

(vi) Finally, we obtain the unique global phase portrait in Figure 22.

Next we describe the phase portrait of system (8) corresponding to the values of the parameters in the
region r2, see Figure 23.

(i) In the finite region the stable separatrix of Q+ can only have as α−limit the unstable node O′2.
(ii) By similar arguments as in the region r1 we have that the two unstable separatrices of the point P1 can

only have as ω−limit the points O2 and P−.
(iii) The unstable separatrix γ of the infinite point Q′+ in the finite region could have as ω−limit the points

P−, P1 or O2. Consider the straight line passing on the points Q′+, P− and Q+. In the region r2 the point
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Fig. 23: The local and the global phase portraits of systems (8) corresponding to the region r2.

P1 is always upper this straight line. According to Lemma 10 the vector field have opposite direction in
the two half–lines Q′+P− and P−Q+. Additionally note that P1 is always at the same side of the straight
line in the region r2. Therefore the ω−limit of γ must be the point P−, see Figure 23(b).

(iv) The two stable separatrices of P1 have the α−limits at the points P+ and Q′−.
(v) Finally we obtain the unique global phase portrait in Figure 23(c).

In what follows we describe the phase portrait of system (8) corresponding to the region r3, see Figure
24.

(i) Consider the straight line passing through the points Q+, P+ and Q′+. We distinguish the following cases.

(i.1) The point P− is below this straight line, see Figure 24(a). Then the direction of the loop on the curve
f2 = 0 determines the direction of the vector field on this line, see also Lemma 10. The separatrices of the
points P+, Q+ and Q′+ are as in Figure 24(a).

(i.2) For a and b satisfying the equation h = 0 (see (9)) the point P− belong to this straight line and now the
line is invariant for the vector field (8), see Figure 24(b).

(i.3) The point P− is above this straight line. Then the direction of the vector field in the segment Q′+P+ is
determined by the unstable node O′2 see Figures 24(c),(d),(e1), (e2). Also note that the unstable separatrix
of the saddle Q+ must be upper this straight line, see also Lemma 10 (and also check the stable separatrix
of the saddle Q′+). For the same reason the unstable separatrices of the point P+ must be as they are
shown in Figures 24(c),(d),(e1),(e2).
Now consider the straight line L passing through the points Q−, P0 and Q′−.

(j1) The point P1 can be upper this straight line L. Then, the unstable separatrices of P1 can only have ω–limit
the points O2 and P−. This determines the direction of the vector field over the straight line L, see Figures
24(a),(b),(c).

(j2) For the values of the parameters a and b in the line 3(iv) (so a, b satisfying the equation j1 = 0, see (9))
the point P1 belong to the straight line L and so the line becomes invariant for the vector field (8), see
Figure 24(d).

(j3) The point P1 can be below the straight line L. The unstable separatrices determine the direction of the
vector field on this line, see Figure 24(e1).

(ii) In all the cases the unstable separatrices of the point P1 can have as ω− limit only the points O2 and P−.
(iii) In all the cases the stable separatrices of the point P1 can only have as α− limit the points P0 and Q′−.
(iv) Now consider the straight line L′ passing through the points Q+, P0 and Q′+. In general, the point P1 is

above this straight line L′. So in general, in the finite region the unstable separatrix of the point Q′+ must
be bellow this straight line and therefore its ω-limit must be the point P−. However, for the values of the
parameters a and b in the line 3(vii) (so a, b satisfying the equation j1 = 0, see (9)) the point P1 belongs
to this straight line L′ and so becomes invariant, see Figure 24(e2).

(v) The local phase portrait (a) yields to the global phase portrait (f). The local phase portrait (b) yields
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Fig. 24: The local and the global phase portraits corresponding to the region r3.

to the global phase portrait (g). The local phase portraits (c),(d),(e1) and (e2) yields to the same global
phase portrait (h). We summarize: For the values of the parameters in the regions 3(iii), 3(iv), 3(v), 3(vi)
and (3vii) we obtain the global phase portrait (h), see Figure 24.

Next we describe the phase portrait of system (8) corresponding to the the region r4, see Figure 25.

(i) The unstable separatrices of the point P1 can only have as ω− limit the points O2 and P−.
(ii) Consider the straight line passing through the points O2, P− and O′2. Then the direction of the loop on the

curve f2 = 0 determines the direction of the vector field on this line, see also Lemma 10. Then the stable
separatrices of P1 can only have as α− limit the points P0 and O′2.

(iii) The unstable separatrices of P+ have as ω− limit the points O2 and P−.
(iv) Finally we obtain the unique global phase portrait in the region r4, see Figure 25.

Since by Lemma 11 system (8) have no limit cycles the phase portraits corresponding to the regions
ri for i = 5, 6, 7, 8, 9, 10 follow immediately from their local phase portraits, see Figures 26, 27, 28, ??, 30
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Fig. 25: The local and the global phase portraits corresponding to the region r4.
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Fig. 26: The local and the global phase portraits corresponding to the region r5.
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Fig. 27: The local and the global phase portraits corresponding to the region r6.

In what follows we study the phase portrait of system (8) corresponding to the region r11, see Figure
32.

(i) We consider the straight line passing through the points P− and P0. Note that the points Q+, Q− are under
this straight line, and that the points Q′+, Q

′
− are upper.

(ii) The unstable separatrices of the points Q′+ and P− can only have as ω− limit the point O2.
(iii) Then the unstable separatrix A of the point P+ can only have as ω− limit the point O2, see also Figure

32(b).
(iv) Consider the straight line passing through the points Q+ and P+. Then the unstable separatrix B of the
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Fig. 28: The local and the global phase portraits corresponding to the region r7.
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Fig. 29: The local and the global phase portrait corresponding to the region r8.
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Fig. 30: The local and the global phase portraits corresponding to the region r9.

point P+ can only have as ω− limit the stable node Q−, see also Figure 32(c).
(v) The stable separatrix of the point Q+ can only have as α− limit the point P0.
(vi) Finally we obtain the global phase portrait in the region r11, see Figure 32(d).

The phase portraits corresponding to regions r12 and r13 follow using the same arguments as the ones
corresponding to the region r11 and are given in Figures ?? and 34 respectively.

Next we describe the phase portrait of system (8) corresponding to the region r14, see Figure ??.

(i) Consider the straight line passing through the points P0 and P1. Note that Q+ and Q− are situated in the
opposite sides of this straight line.

(ii) The unstable separatrices of the points Q+ and Q′− can only have as ω− limit the point P+.
(iii) The stable separatrices of the points Q− and Q′+ can only have as α− limit the point P−.
(iv) Finally we obtain the global phase portrait in the region r14, see Figure ??.
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Fig. 31: The local and the global phase portraits corresponding to the region r10.
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Fig. 32: The local and the global phase portraits corresponding to the region r11.

The global phase portraits of system (8) in the regions r15 and r16 follow by similar arguments as in
the region r14 and are given in Figures 36 and ??.

Next we describe the phase portrait of system (8) corresponding to the region r17, see Figure 38.

(i) Consider the straight line passing through the points Q+, P0 and Q′+. In the finite region the unstable
separatrix γ of the point Q+ must be over the straight line, otherwise it must have as ω−limit one of
the points O′2 or Q−. If the point Q− is the ω−limit of γ then there is a closed path without a singular
point in its interior, a contradiction. If the ω−limit of γ is the point O′2 then the stable separatrix of the
point Q− cannot have an α−limit, a contradiction. So the direction of the vector field on the straight
line is determined, see Figure 38(a)). Additionally the ω−limit of γ is the point P+. Moreover the stable
separatrix of the point Q′+ must be on the upper side of the straight line.

(ii) Consider the straight line passing through the points Q′−, P0 and Q−. We distinguish the following cases
for the position of the point P1 with respect to this line:
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Fig. 33: The local and the global phase portraits in the region r12.
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Fig. 34: The local and the global phase portraits corresponding to the region r13.
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Fig. 35: The local and the global phase portraits corresponding to the region r14.

(ii.1) The point P1 is below this straight line. The direction of the vector field on this straight line is as in
Figure 38(b), otherwise one of the unstable separatrices of the point P1 should have as ω− limit the point
O′2. This is a contradiction because then the stable separatrix of the point Q′+ should not have an α limit.
Hence in this case the global phase portrait is given in Figure 38(c).
(ii.2) The point P1 belongs to this straight line and so the straight line is invariant by the vector field (8).
This happen when the parameters a and b satisfy equation j1 = 0, see relation (9). Then the unstable
separatrix of the point Q′− can only have as ω−limit the point P1, see Figure 38(d). Then the global phase
portrait is given in Figure 38(e).
(ii.3) The point P1 is upper this straight line. Then in the finite region the unstable separatrix γ̃ of the
point Q′− must be below this straight line (see Figure 38(f)), otherwise γ̃ should have as ω−limit one of
the points P+ or P1, see Figure 38(g). If P+ is the ω−limit of γ̃ then the unstable separatrices of P1 must
go to P+ but then the stable separatrix of P1 has no α−limit. So the correct direction of the vector field on
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Fig. 36: The local and the global phase portraits corresponding to the region r15.
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Fig. 37: The local and the global phase portraits corresponding to the region r16.

the mentioned straight line is the one of Figure 38(f). Now γ̃ cannot have as ω−limit the point Q′+. So the
only possible ω−limit of γ̃ is the point P−. Finally we obtain the global phase portrait, see Figure 38(h).

Next we describe the phase portrait of system (8) corresponding to the region r18, see Figure 39.

(i) Consider the straight line passing through the points Q−, P0 and Q′−. Note that the points P1, P− and P+

in the region r18 are always upper this straight line, see Figure 39(a). The direction of the closed loop of
the curve f2 = 0 determines the direction of the vector field over this straight line, see Lemma 10. The
unstable separatrix of the point Q′− is upper this straight line and only can have as ω− limit the point P−.
Additionally the stable separatrix of the point Q− is upper this straight line.

(ii) Now we prove that there is no connection between the separatrices of the saddles Q+ and Q−. If there is
a conexion then in its interior should contain a singular point which must be a focus or a center, and this
is a contradiction because P1 is a node, see Theorems 2, 3 and Remark 3.3.

(iii) Consider the straight line passing through the points Q+, P0 and Q′+. Note that the points P− and P+

are always upper this straight line. We consider the following cases for the point P1: (iii.1) The point P1

is upper this straight line, see Figure 39(a). Then, the unstable separatrix γ of Q+ must be upper this
straight line, otherwise either should have O′2 as ω−limit, but then the stable separatrix of the point Q−
could not have an α−limit, a contradiction; or γ connects with the stable separatrix of Q−, but as in (ii)
this is a contradiction. This determines the direction of the vector field over this last straight line. Then γ
can only have as ω−limit the point P1. (iii.2) The point P1 belongs to this straight line, see Figure 39(b).
Since this straight line is now invariant, the unstable separatix of Q+ belongs to this line and can only
have as ω−limit the point P1. (iii.3) The point P1 is below this straight line, see Figure 39(c). Then the
unstable separatrix γ of the point Q+ can only be below this straight line. This determines the direction
of the vector field over this straight line. Then again the ω−limit of γ is the point P1.

(iv) We consider the straight line passing through the points Q−, P+ and Q′−. We note that on the points of
the curve h = 0 (see relation (9)) the point P− belongs to the straight line and system (8) has this straight
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Fig. 38: The local and the global phase portraits corresponding to the region r17.

line invariant. Now we distinguish three cases:
(iv.1) The point P− is below this straight line. Then the unstable separatrices of the point P+ have as ω−
limit the points P1 and P−, see Figure 39(d).
(iv.2) The point P− belongs to this straight line. Then the unstable separatrices of the point P+ have as
ω− limit the points Q− and P−, see Figure 39(e).
(iv.3) The point P− is upper this straight line. Then the unstable separatrices of the point P+ have as ω−
limit the points O′2 and P−, see Figure 39(f).

(v) P0 is the α− limit of the unstable separatrice of the point Q′+, see Figure 39(a).
(vi) Finally, we obtain the three global phase portraits in the region r18 see Figures 39(g),(h) and (i).

Now we study the phase portrait of system (8) corresponding to the region r19, see Figure 40.

(i) Consider the straight line passing through the points Q+, P0 and Q′+ see Figure 40. Note that in the region
r19 the points P− and P+ are always upper this straight line and the point P1 is always below the straight
line. In the finite region, the unstable separatrix γ of the point Q+ is below the straight line, otherwise
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Fig. 39: The local and the global phase portraits corresponding to the region r18.

could not have an ω−limit. This determines the direction of the vector field over the straight line. So the
ω−limit of γ can only be the point P1. The point O′2 cannot be the ω limit of γ because in this case a
stable separatrix of Q− would be without an α−limit. Additionally there is no connection between the
separatrices of Q+ and Q−, see Lemma 12.

(ii) Consider the straight line passing through the points Q−, P0 and Q′−, see Figure 40(c). Note that the point
P− is upper the straight line. Then the direction of the closed loop of the invariant curve f2 = 0 determines
the direction of the vector field over this straight line. The unstable separatrix of Q′− must be over the
straight line and can only have as ω−limit the point P−.

(iii) Consider the straight line passing through the points Q+, P+ and Q′+. For the values of a and b that satisfy
equation h = 0 (see relation (9)) system (8) has this straight line invariant. Hence we distinguish three
cases:
(iii.1) The point P− is below the straight line. Then the unstable separatrices of the point P+ have as ω−
limit the points P1 and P−.
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Fig. 40: The local and the global phase portraits corresponding to the region r19.

(iii.2) The point P− is on the straight line. Then the unstable separatrices of the point P+ have as ω−
limit the points Q− and P−. (iii.3) The point P− is upper the straight line. Then the unstable separatrices
of the point P+ can only have as ω− limit the points O′2 and P−.

(iv) Finally we obtain the three global phase portraits in the region r19 see Figures 40(a),(b) and (c).

Next we describe the phase portrait of system (8) corresponding to the region r20, see Figure 41.

(i) Consider the straight line passing through the points Q−, P0 and Q′−. Note that in the region r20 the
point P− is always upper the straight line. The direction of the closed loop of the invariant curve f2 = 0
determines the direction of the vector field on this straight line. The unstable separatrix of Q′− is upper
the straight line and can only have as ω− limit the point P−. The stable separatrix of the point Q− is
upper this straight line.

(ii) Consider the straight line passing through the points Q+, P0 and Q′+. Note that in the region r20 the points
P+ and P1 are always below this straight line. The direction of the closed loop of the invariant curve f2 = 0
determines the direction of the vector field on this straight line. The stable separatrix of the point Q′+ is
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Fig. 41: The local and the global phase portraits corresponding to the region r20.

below the straight line and can only have as α−limit the point P+.
(iii) By Lemma 12 we have that there is no connection between the separatrices of Q+ and Q−. Consider the

unstable separatrix γ of Q+. Then γ cannot have O′2 as ω− limit because then the stable separatrix of Q−
will not have an α−limit. Hence the ω−limit of γ can only be the point P1.

(iv) Finally we obtain the global phase portrait in the region r20, see Figure 41.
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Fig. 42: The local and the global phase portraits corresponding to the region r21.

In what follows we present the phase portrait of system (8) corresponding to the the region r21, see
Figure 42.

(i) Consider the straight line passing through the points Q+, P0 and Q′+. Then in the region r21 the points
P1 and P+ are always below this straight line. The stable separatrix of Q′+ can only have as α− limit the
point P+.

(ii) Consider also the straight line passing through the points Q−, P0 and Q′−. Then in the region r21 the points
P− and P1 are always upper this straight line. The unstable separatrix γ of Q′− can have as ω− limit the
point P−.

(iii) The unstable separatrix γ̃ of Q+ cannot have as ω− limit the point Q− because of Theorem 2. If γ̃ has as
ω− limit the point O′2 then in the finite region a stable separatrix of Q− would be without an α− limit.
Therefore the only possibility that remains is that γ̃ has as ω− limit the point P1.

(iv) In the finite region the stable separatrix of Q− must have as α− limit the point O2.
(v) Finally we obtain the global phase portrait in the region r21, see Figure 42.

3.4. Phase portraits on the lines

The bifurcation curves define 31 lines, see Figure 43. In this section we are going to present the phase
portraits of system (8) in each line.
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Fig. 43: c = 1, a > 0. The bifurcation curves define 31 lines. It is a qualitative picture.
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Fig. 44: The local and the global phase portraits corresponding to the line L1.

We should provide the details for obtaining the phase portraits on the lines L8, L9, L11, L12, L24 and
L25. Since the arguments used in the study of the phase portraits corresponding to these lines are the same
for studying the remaining lines we only provide their phase portraits in the corresponding figures.

First we explain the phase portrait on the line L8, see Figure 51. By Lemma 12 there is no connection
between the separatrices of the points Q1 and Q2. Note that the unstable separatrix of the point Q1 cannot
have as ω− limit the pointO′2. In the opposite case using the continuity we should have a connection between
the separatrices of the saddles. Hence, the unstable separatrix of the point Q1 must have as ω− limit the
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Fig. 45: The local and the global phase portraits corresponding to the line L2.
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Fig. 46: The local and the global phase portraits corresponding to the line L3.
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Fig. 47: The local and the global phase portraits corresponding to the line L4.

point P1. So on the line L8 we obtain a unique global phase portrait, see Figure 51.
For the line L9 note that there is no connection between the separatrices of the saddles Q1 and Q2. If

there is a conexion then in its interior should contain a singular point which must be a focus or a center,
and this is a contradiction because P1 is a node, see Theorems 2 and 3. Now we apply similar arguments
as the ones for studying the phase portrait on the line L8 and we obtain the unique global phase portrait
on the line L9 given in Figure 52.

Now we will describe the phase portrait on the line L11, see Figure 54.

(i) For a > 4
√

5 the point P− is below the straight line passing through the points Q,P+ and Q′, see Figure
54, L11(i).

(ii) The straight line passing through the points Q,P+ and Q′ becomes invariant for a = 4
√

5. In this case the
point P− belong to this line, see Figure 54, L11(ii).

(iii) For 4 < a < 4
√

5 the point P− is upper the straight line passing through the points Q,P+ and Q′, see
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Fig. 48: The local and the global phase portraits corresponding to the line L5.
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Fig. 49: The local and the global phase portraits corresponding to the line L6.
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Fig. 50: The local and the global phase portraits corresponding to the line L7.

Figure 54, L11(iii).
(iv) Consider the straight line passing through the points P0, Q and Q′. For a > 4 the point P1 is upper this

straight line, see Figure 54, L11(i), L11(ii), L11(iii). For a = 4 this straight line becomes invariant. In this
case the point P1 belong to this line, see Figure 54, L11(iv). For a < 4 the point P1 is below this straight
line, see Figure 54, L11(v).

For the line L12 we consider the straight line passing through the points Q,P+ and Q′. Note that the
unstable separatrix of the point Q′ determines the direction of the vector field on this line. The unique
global phase portrait is given in Figure 55.

Now we are going to explain the phase portrait on the line L24 see Figure 67. Note that there is no
connection between the separatrices of the saddles Q1 and Q2 because the point P1 is a node, see Theorems
2, 3 and Remark 3.3.
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Fig. 51: The local and the global phase portraits corresponding to the line L8.
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Fig. 52: The local and the global phase portraits corresponding to the line L9.
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Fig. 53: The local and the global phase portraits corresponding to the line L10.

Now consider the straight line passing through the points Q2, P+ and Q′2. There are three possibilities:

(i) The point P− is bellow the straight line. Then the unstable separatrix of Q′2 must be bellow the straight
line, otherwise cannot have an ω–limit. This determines the direction of the vector field on the line and we
obtain the global phase portrait L24i.

(ii) The point P− belongs to the straight line and the line is invariant. Then we obtain the global phase portrait
L24ii.

(iii) The point P− is upper the straight line. Then the direction of the loop of the curve f2 = 0 determines the
direction of this straight line. Then we obtain the global phase portrait L24iii.

Now we are going to explain the phase portrait on the line L25, see Figure 68. If there is a connection
between the separatrices of the points Q1 and Q2 then they form a heteroclinic loop that must contain the
node, a contradiction, see Theorems 2, 3 and also Remark 3.3. Hence the unstable separatrix of the point
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Q1 must have as ω− limit the point P1.
Note that the unstable separatrix of the point Q1 cannot have as ω− limit the point O′2. In the opposite

case using the continuity we should have a connection between the separatrices of the saddles. So on the
line L25 we obtain a unique global phase portrait, see Figure 68.

3.5. Phase portraits on the intersection points

The bifurcation curves intersect into 11 points, see Figure 75. The intersection points are described in what
follows, see also Figure 75.
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We present the phase portraits in each of these intersection points in Figures 76, 77 and 78.

4. Topological classification of the global phase portraits

Proof. [Proof of Theorem 1] In what follows we denote by S the number of separatrices and by R the
number of the canonical regions. In order to present the topological classification of all global phase portraits
of system (2) we apply Theorem 6 of the Appendix due to Markus, Neumann and Peixoto, see [Markus,
1954; Neumann, 1975; Peixoto, 1973] and the notion of separatrix configuration that appears there. We
recall that two global phase portrait are not topological equivalent when does not exist a homeomorphism to
bring the separatrix configuration of one to the separatrix configuration of the other, see again Theorem 6.

For a = c = 0 system (2) becomes system (3) and there is the global phase portrait pp1 with S = 17
and R = 4.

Now for a = 0 and c 6= 0 system (2) becomes system (4) and we obtain the phase portraits given in
Table 2.

Note that the phase portrait pp2 is not topological equivalent to the phase portrait pp4 because their
separatrix configurations are not homeomorphic.
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S R Phase portraits
19 6 pp3
23 5 pp2, pp4
9 3 pp5
12 5 pp6
16 5 pp7

Table 2: The phase portraits for a = 0.

S R Phase portraits
16 5 pp8
22 5 pp9
20 5 pp10
21 4 pp11
22 5 pp12

Table 3: The phase portraits for a 6= 0 and c = 0.

Now we consider the case where a 6= 0. Because of the symmetry (5) of system (2) we can restrict our
study to a > 0. First we consider the case where c = 0. So we work with system (7) and we obtain Table 3.

Note that the phase portrait pp9 is not topological equivalent to the phase portrait pp12 because their
separatrix configurations are not homeomorphic. For the same reason the phase portrait of pp8 is not
topologically equivalent to the phase portrait pp7, or simply pp8 6= pp7.

Now we consider the case where a 6= 0, and either c = 0 and b 6= 0, or c 6= 0, see Table 4.
Case S = 9 and R = 3. Then p4 = r7 = pp19 and p4 6= pp5 because in pp5 in the interior of the loop of the
curve f2 = 0 we have a center whereas in p4 we have a focus.
Case S = 13 and R = 4. We have p3 = L3 = L4 = L26 = pp34, L15 6= L26.
Case S = 13 and R = 5. We have L27 = L5 = pp35.
Case S = 14 and R = 5. L2 6= L16.
Case S = 16 and R = 5. We obtain r9 = r10 = L21 = pp21, pp7 = r1, r9 6= r1 r9 6= r4, r9 6= pp8 r4 6= r1,
pp8 6= r1, pp8 6= r4.
Case S = 18 and R = 5. There are two phase potraits L31i 6= L31ii.
Case S = 19 and R = 6. We have L30 = L29 = pp53, L29 6= L31iii, L29 6= pp3, L29 6= pp3, L29 6= L7,
L29 6= p10, L31iii 6= pp3, L31iii 6= L7, L31iii 6= p10, pp3 6= L7, pp3 6= p10, L7 6= p10.
Case S = 20 and R = 7. The two phase portraits are p1 6= p8.
Case S = 21 and R = 6. We have two different phase portraits L11iv 6= L11ii.
Case S = 22 and R = 5. We have pp38 = L8 = L9 = p11, L8 6= L19, L8 6= L18, L8 6= pp9, L8 6= pp12,
L19 6= L18, L19 6= pp9, L19 6= pp12, pp9 6= L18, pp12 6= L18, pp12 6= pp9.
Case R = 22 and S = 7. We have pp44 = L12 = L13 = p7, L11iii = L11v, L11i 6= L11iii, L11i 6= L12,
L11i 6= L10, L11iii 6= L10, L11iii 6= L12, L12 6= L10.
Case S = 23 and R = 4. We have pp29 = r18ii = r19ii = L24ii, r18ii 6= r17ii.
Case S = 23 and R = 5. We have pp2 6= pp4, pp2 6= r14, pp4 6= r14.
Case R = 24 and S = 5. We have L23 = r15 = r16 = pp25, pp28 = r17iii = r18i = r19i = L24i, r18iii = r19iii,
pp31 = r20 = L24iii = L25 = r21, r15 6= r18i, r15 6= r18iii, r15 6= r20, r15 6= r17i r18i 6= r18iii, r18i 6= r20, r18i 6=
r17i, r18iii 6= r20, r18iii 6= r17i, r17i 6= r20.
Case R = 24 and S = 7. We have L1 6= L17.
Case S = 25 and R = 6. We have r3ii 6= L22.
Case S = 26 and R = 7. We have r11 = r12 = pp22, r2 6= r3i, r2 6= r3iii, r2 6= r12, r3i 6= r3iii, r3i 6= r12, r3iii 6=
r12.

In summary, we can compute 63 different topological phase portraits in the Poincaré disc for the
quadratic systems (2). From these phase portraits it follows easily the proof of the statements of the



December 5, 2022 11:43 LlibrePantaziRevisio2

39

S R Phase portraits
9 3 pp5, p4 = r7 = pp19
10 3 p2 = pp58
12 5 pp6
13 4 p3 = L3 = L4 = L26 = pp34, L15 = pp46
13 5 L5 = L27 = pp35
14 5 L2 = pp33, L16 = pp47
15 4 r5 = r6 = L20 = pp18
15 5 r8 = pp20
16 5 r1 = pp7, pp8, r4 = pp17, r9 = r10 = L21 = pp21
16 6 p6 = pp60
17 4 pp1
17 6 p9 = pp62
18 5 L31i = pp54, L31ii = pp55
18 6 L28 = pp52
19 6 pp3, L30 = L29 = pp53, L31iii = pp56, p10 = pp63
19 7 p5 = pp59
20 5 pp10
20 7 p1 = pp57, p8 = pp61
21 4 pp11
21 5 L7 = pp37
21 6 L11ii = pp41, L11iv = pp43
21 7 L14 = pp45
22 5 pp9, pp12, p11 = L8 = L9 = pp38, L18 = pp49, L19 = pp50
22 7 L10 = pp39, L11i = pp40, L11iii = L11v = pp42, p7 = L12 = L13 = pp44
23 4 r17ii = pp27, r18ii = r19ii = L24ii = pp29
23 5 pp2, pp4, r14 = pp24
23 7 L6 = pp36
24 5 L23 = r15 = r16 = pp25, r17i = pp26, r17iii = r18i = r19i = L24i = pp28, r18iii = r19iii = pp30,

r20 = L24iii = L25 = r21 = pp31
24 7 L1 = pp32, L17 = pp48
25 6 r3ii = pp15, L22 = pp51
25 7 r13 = pp23
26 7 r2 = pp13, r3i = pp14, r3iii = pp16, r11 = r12 = pp22

Table 4: The phase portraits for a 6= 0, and either c = 0 and b 6= 0, or c 6= 0.

theorem. �

5. Appendix

This appendix has two subsections.

5.1. Poincaré compactification

We consider the polynomial differential system (1) of degree m and its corresponding vector field X . In
order to plot the global phase portrait of system (1) we need to control the orbits that come or escape at
infinity. For doing this control we consider the Poincaré compactification of system (1). For more details
on this compactification see Chapter 5 of [Dumortier et al., 2006].

Let R2 be the plane in R3 defined by (y1, y2, y3) = (x1, x2, 1). We define the Poincaré sphere S2 = {y =
(y1, y2, y3) ∈ R3 : y21 +y22 +y23 = 1} and we denote by T(0,0,1)S2 the tangent space to S2 at the point (0, 0, 1)

(see [Poincaré, 1891]). We consider the central projection f : T(0,0,1) : R2 → S2. Note that f defines two



December 5, 2022 11:43 LlibrePantaziRevisio2

40

copies of X , one in the northern hemisphere {y ∈ S2 : y3 > 0} and the other in the southern hemisphere.

Let X̂ = Df ◦ X and note that X̂ is defined on S2 except on its equator S1. Then the points at infinity of
R2 are in bijective correspondence with S1 = {y ∈ S2 : y3 = 0}, ( the equator of S2). Hence S1 is identified
to be the infinity of R2. Then the Poincaré compactified vector field p(X ) of X will be analytic vector field

induced on S2 as follows. If we multiply X̂ by the factor ym3 , the vector field ym3 X̂ defined in the whole S2.
Note that on S2 \S1 there are two symmetric copies of X . Hence the behavior of p(X ) around S1 gives

the behavior of X near the infinity. The Poincaré disc D is the projection of the closed northern hemisphere
of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2). Moreover, S1 is invariant under the flow of p(X ).

Two polynomial vector fields X and Y on R2 are topologically equivalent if there exists a homeomor-
phism on S2 preserving the infinity S1 carrying orbits of the flow induced by p(X ) into orbits of the flow
induced by p(Y). Note that the homeomorphism should preserve or reverse simultaneously the sense of all
orbits of the two compactified vector fields p(X ) and p(Y).

Since S2 is a differentiable manifold we can consider the six local charts Ui = {y ∈ S2 : yi > 0},
and Vi = {y ∈ S2 : yi < 0} for i = 1, 2, 3 with the diffeomorphisms Fi : Vi −→ R2 and
Gi : Vi −→ R2, which are the inverses of the central projections from the planes tangent at the points
(1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1) and (0, 0,−1), respectively. Let z = (z1, z2) be the value of
Fi(y) or Gi(y) for any i = 1, 2, 3. Then the expressions of the compactified vector field ,p(X ) of X are

zm2 ∆(z)

(
Q
( 1

z2
,
z1
z2

)
− z1P

( 1

z2
,
z1
z2

)
, −z2P

( 1

z2
,
z1
z2

))
in U1,

zm2 ∆(z)

(
P
(z1
z2
,

1

z2

)
− z1Q

(z1
z2
,

1

z2

)
, −z2Q

(z1
z2
,

1

z2

))
in U2,

∆(z)
(
P (z1, z2), Q(z1, z2)

)
in U3,

where ∆(z) = (z21 + z22 + 1)
− 1

2(m−1) . The expressions of the vector field p(X ) in the local chart Vi is the
same as in the chart Ui multiplying by the factor (−1)m−1. In these coordinates z2 = 0 denotes the points
of S1. We omit the factor ∆(z) by rescaling the vector field p(X ), and so we obtain a polynomial vector
field in each local chart. The infinity S1 is invariant with p(X ).

5.2. Separatrix configuration

Let p(X ) be the Poincaré compactification in S2 of a polynomial vector field X in R2.
We consider the definition of parallel flows given by Markus [Markus, 1954] and Neumann in [Neumann,

1975]. Let φ be a Cω local flow on the two dimensional manifold R2 or R2 \ {0}. The flow (M,φ) is Ck
parallel if it is Cω-equivalent to one of the following ones:

strip: (R2, φ) with the flow φ defined by ẋ = 1, ẏ = 0;
annular: (R2 \ {0}, φ) with the flow φ defined (in polar coordinates) by ṙ = 0, θ̇ = 1;

spiral: (R2 \ {0}, φ) with the flow φ defined by ṙ = r, θ̇ = 1.

The separatrices of the vector field p(X ) in the Poincaré disc D are

(i) all the orbits of p(X ) which are in the boundary S1 of the Poincaré disc (recall that S1 is the infinity of
R2);

(ii) all the finite singular points of p(X );
(iii) all the limit cycles of p(X ); and
(iv) all the separatrices of the hyperbolic sectors of the finite and infinite singular points of p(X ).

We denote by Σ the union of all separatrices of the flow (D, φ) defined by the compactified vector field
p(X ) in the Poincaré disc D. Then Σ is a closed invariant subset of D. Every connected component of D\Σ,
with the restricted flow, is called a canonical region of φ.

For a proof of the following result see [Li et al., 2002] and [Neumann, 1975].
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Theorem 5. Let φ be a Cω flow in the Poincaré disc with finitely many separatrices, and let Σ be the union
of all its separatrices. Then the flow restricted to every canonical region is Cω parallel.

The separatrix configuration Σc of a flow (D,φ) is the union of all the separatrices Σ of the flow
together with an orbit belonging to each canonical region. The separatrix configuration Σc of the flow
(D,φ) is said to be topologically equivalent to the separatrix configuration Σ̃c of the flow (D, φ̃) if there
exists a homeomorphism from Σc to Σc which transforms orbits of Σc into orbits of Σ̃c, and orbits of Σ
into orbits of Σ̃.

Theorem 6. Let (D,φ) and (D, φ̃) be two compactified Poincaré flows with finitely many separatrices
coming from two polynomial vector fields (1). Then they are topologically equivalent if and only if their
separatrix configurations are topologically equivalent.

For a proof of Theorem 6 see [Markus, 1954; Neumann, 1975; Peixoto, 1973].
In sort, in order to classify the phase portraits in the Poincaré disc of a planar polynomial differential

system having finitely many separatrices, it is enough to describe their separatrix configuration.

Acknowledgments

We thank to the reviewers their excellent work which help us to improve this paper.
Both authors are partially supported by the Agencia Estatal de Investigación grant PID2019-

104658GB-I00. J. Llibre is additionally partially supported by the H2020 European Research Council
grant MSCA-RISE-2017-777911. C. Pantazi is additionally partially supported by the grant PID-2021-
122954NB-100 funded by MCIN/AEI/ 10.13039/501100011033 and by “ERDF A way of making Europe”.

References

J.C. Artés, R.E. Kooij & J. Llibre [1998] Structurally stable quadratic vector fields, Mem. Amer. Math.
Soc. 134, 108 pp.

J.C. Artés & J. Llibre [1994a] Hamiltonian quadratic systems, J. Diff. Eqns. 107, 80–95.
J.C. Artés & J. Llibre [1994b] Phase portraits for quadratic systems having a focus and one antisaddle,

Rocky Mount.J. Math. 24, 875–889.
J.C. Artés, J. Llibre, D. Schlomiuk [2006] The geometry of quadratic differential systems with a weak focus

of second order, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16, 3127–3194.
J.C. Artés, J. Llibre, D. Schlomiuk & N. Vulpe [2021] Geometric configurations of singularities of planar

polynomial differential systems, Birkhäuser, 2021.
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Fig. 54: The local and the global phase portraits corresponding to the line L11.
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Fig. 55: The local and the global phase portraits corresponding to the line L12.

.

.

.

O2

P
0

.

.

.
.

P

P

.
+

-.

.Q

P
1

..
.

.

.

.

.

.
.

.

.

.

L13

S=22, R=7

..

=pp
44

Fig. 56: The local and the global phase portraits corresponding to the line L13.
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Fig. 60: The local and the global phase portraits corresponding to the line L17.
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Fig. 61: The local and the global phase portraits corresponding to the line L18.
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Fig. 62: The local and the global phase portraits corresponding to the line L19.
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Fig. 63: The local and the global phase portraits on the line L20.
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Fig. 65: The local and the global phase portraits on the line L22.
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Fig. 66: The local and the global phase portraits on the line L23.
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Fig. 67: The local and the global phase portraits on the line L24.
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Fig. 68: The local and the global phase portraits on the line L25.
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Fig. 70: The local and the global phase portraits on the line L27.
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Fig. 71: The local and the global phase portraits on the line L28.
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Fig. 72: The local and the global phase portraits on the line L29.
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Fig. 73: The local and the global phase portraits on the line L30.
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Fig. 74: The local and the global phase portraits on the line L31.
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Fig. 77: The phase portraits in the points pk for k = 4, ..., 9.
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Fig. 78: The phase portraits in the points p10 and p11.


