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Periodicity analysis of sequences generated by a deterministic system is a long-standing challenge
in both theoretical research and engineering applications. To overcome the inevitable degradation
of the Logistic map on a finite-precision circuit, its numerical domain is commonly converted
from a real number field to a ring or a finite field. This paper studies the period of sequences
generated by iterating the Logistic map over ring Z3n from the perspective of its associate
functional network, where every number in the ring is considered as a node, and the existing
mapping relation between any two nodes is regarded as a directed edge. The complete explicit
form of the period of the sequences starting from any initial value is given theoretically and
verified experimentally. Moreover, conditions on the control parameter and initial value are
derived, ensuring the corresponding sequences to achieve the maximum period over the ring.
The results can be used as ground truth for dynamical analysis and cryptographical applications
of the Logistic map over various domains.

Keywords: chaotic dynamics; the Logistic map; ring; periodicity analysis; pseudo-random number
generator; state-mapping network.

1. Introduction

Complex dynamics of chaos systems attracted researchers use them as an alternative way to design secure
and efficient pseudo-random generators and encryption algorithms: Logistic map [Collins et al., 1992; Chen
et al., 2010; Garcia-Bosque et al., 2018; Buscarino & Fortuna, 2023], Chebyshev polynomials [Liao et al.,
2010; Yoshioka, 2020], Rényi map [Addabbo et al., 2007], Tent map [Jessa, 2002], Cat map [Falcioni et al.,
2005; Chen et al., 2013; Souza et al., 2021], Hénon map [Galias, 2023], Chua’s attractor [Wang et al.,
2019], and Lorenz system [Li et al., 2022b]. Among them, the Logistic map is one of the simplest systems
exhibiting complex dynamics, and it is often used as a classic case to illustrate how complex chaotic
phenomena arise from simple models [May, 1976; Li et al., 2019; Ma et al., 2020]. Due to the effect of
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rounding errors and limited presentation precision in any digital device, real implementation of a chaotic
system inevitably leads to tiresome dynamics degradation problem [Kocarev et al., 2006; Li et al., 2019]. To
solve this problem, the numerical domain of the chaotic map was suggested by some researchers to extend
from real number field to residue ring or finite field. For example, some public-key encryption algorithms
based on Chebyshev polynomials were implemented over ring or finite field to improve security performance
and reliability [Yoshioka, 2020]. In general, the sequences generated by iterating the Logistic map over ring
or finite field have better randomness than that obtained over real number field, which allures them to
design more seemingly efficient image encryption algorithms [Tsuchiya & Nogami, 2017; Yang & Liao,
2017, 2018; Li, 2019; Yoshida et al., 2014].

Period distribution of the sequences generated by a chaotic map over a given domain is a fundamental
characteristic for evaluating its performance, which serves as precondition for real measurement of the
corresponding application merits [Chen et al., 2022]. Using the generating function and Hensel’s lifting
method, F. Chen et al. systematically analyzed period distribution of the sequences generated by iterating
Chebyshev polynomial over a prime field and/or Cat map over ring Zpn , where p is a prime number [Liao
et al., 2010; Chen et al., 2012, 2013]. Generally, the generating function method is used to deal with
the period of sequences generated by a linear recursive generator. However, the nonlinear complexity of
sequences generated by iterating the Logistic map may make the approach fail. Alternatively, the state-
mapping network (SMN), also known as functional graph in some research fields, is an essential visible way
to analyze period of sequences [Rogers, 1996; Vasiga & Shallit, 2004]. A periodic sequence can be viewed as
a circle in a SMN. In [Rogers, 1996; Vasiga & Shallit, 2004], the associated functional graphs of functions
x2 + c and x2 over prime field are disclosed. Reference [Yoshida et al., 2014] presented some statistical
properties and conjectures about the maximum period of sequences generated by iterating the Logistic
map over Z2n . Using dynatomic polynomials, Yang et al. proved conjectures given in [Yoshida et al., 2014]
and analyzed the maximum period of such sequences over Z3n for different control parameters [Yang &
Liao, 2017, 2018]. However, reference [Li, 2019] pointed out some errors about some reported properties in
[Yang & Liao, 2017] and summarized a conjecture about the maximum period of sequences over Z3n .

Multiple research groups studied the sequences generated by iterating the Logistic map over ring
Z3n from various perspectives [Yang & Liao, 2017, 2018; Li, 2019; Yoshida et al., 2014]. However, the full
information on period of the sequence for any parameter and initial value is still unclear. And the condition
for the generated sequences owning the maximum period is also unknown, which limits its applications
in image encryption and other cryptographic applications. Using the internal structure of the SMN of the
Logistic map over ring Z3n , this paper studied the period of sequences generated by iterating the map from
any initial value. The conjecture given in [Li, 2019] and some theorems given in [Yang & Liao, 2017] are
revised and proved.

The rest of the paper is organized as follows. Section 2 reviews the known results on the Logistic map
over ring Z3n , and discloses the corresponding period distribution. Finally, some conclusions are drawn.

2. Sequences generated by iterating the Logistic map over ring Z3n

In this section, we first review some previous work on the period of sequences generated by iterating the
Logistic map over ring Z3n . Then some general properties of the Logistic map are given. Finally, the explicit
expression of the period of sequence generated by iterating the Logistic map from any initial value in ring
Z3n is disclosed.

2.1. Preliminary

Let Zpn = {0, 1, 2, · · · , pn − 1} be the ring of residue classes modulo pn with respect to modular addition
and multiplication, where p is a prime number and n is a natural number. In [Tsuchiya & Nogami, 2017;
Yang & Liao, 2017, 2018; Li, 2019; Yoshida et al., 2014], the numerical domain of the Logistic map was
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extended from real number field to ring Zpn with different p and n. It can be expressed as

fpn(x) =
µx(pn − 1− x)

pn − 1
mod pn

= µx(x+ 1) mod pn,

(1)

where µ, x ∈ Zpn . Given an initial value x0 ∈ Zpn , the i-th iteration of the Logistic map over ring Zpn is

xi = f ipn(x0) = fpn(f i−1
pn (x0)), (2)

where i ≥ 1 and f0
pn(x0) = x0. Then we can get a sequence {f ipn(x0)}i≥0, which is denoted as S(x0;µ, pn).

If there exist integers L > 0 and m0 ≥ 0 such that xm+L = xm for all m ≥ m0, then sequence S(x0;µ, pn)
is called ultimately periodic, and m0 is the pre-period of the sequence. Specially, the sequence is called
periodic if m0 = 0. The minimum positive integer among all possible values of L is called the period of the
sequence, which is denoted as L(x0;µ, pn). Let

L(µ, pn) = max{L(x0;µ, pn) | x0 ∈ Zpn} (3)

represent the maximum period of sequences generated by iterating the Logistic map over ring Zpn . As for
any µ, reference [Yang & Liao, 2017] gave representation form of L(µ, 3n):

L(µ, 3n) =


1 if µ mod 3 ∈ {0, 2};
3n−2 if µ mod 9 = 1;

3n−3 if µ mod 9 ∈ {4, 7}.
(4)

However, reference [Li, 2019] stated that Eq. (4) does not hold for case µ mod 9 ∈ {1, 4, 7} and concluded
Conjecture 1. Moreover, we find Eq. (4) does not hold also when µ mod 3 = 2. In Sec. 2.2, we revise Eq. (4)
and prove Conjecture 1 as Corollary 2.1.

Conjecture 1. When µ mod 3 = 1, the maximum period of sequences generated by iterating the Logistic
map over ring Z3n is 3n−2.

Define Hpn = {x | x mod p = 0, x ∈ Zpn} and

F (x) = µx(x+ 1).

We introduce some properties about F (x), as shown in Properties 1, 2, 3, and 4, which are useful for
analyzing the explicit expression of the period of sequence generated by iterating the Logistic map over
ring Z3n .

Property 1. Define map Γ : Hpn → Hpn by Γ(x) = µx(x+1) mod pn, then Γ is bijective, where µ mod p 6= 0.

Proof. First, let’s prove that Γ is injective. Suppose x′, x′′ ∈ Hpn and x′ 6= x′′, one has

Γ(x′)− Γ(x′′) = (µx′(x′ + 1)− µx′′(x′′ + 1)) mod pn

= µ(x′ − x′′)(x′ + x′′ + 1) mod pn.

Since x′, x′′ ∈ Hpn , (x′ + x′′ + 1) mod p = 1, it follows from the above equation and µ mod p 6= 0 that
Γ(x′) 6= Γ(x′′). Hence, Γ is injective. Then, let’s prove that Γ is surjective, namely there exists x′ ∈ Hpn

such that Γ(x′) = y′ for any y′ ∈ Hpn . Operating polynomial G(x) = µ(x + 1)x − y′ over Zpn , one has
G(x) ≡ µ̄x(x + 1) (mod p), where µ̄ = µ mod p 6= 0. Referring to Hensel’s Lemma [Wan, 2003, Lemma
13.6], there exist f1(x) and f2(x) such that G(x) = f1(x)f2(x) and f1(x) ≡ x (mod p), f2(x) ≡ µ̄(x + 1)
(mod p). It means there exists x′ mod p = 0 such that f1(x) = x − x′. Thus, G(x′) = 0 and Γ(x′) = y′.
Hence Γ is surjective. �

Property 2. Function F (x) satisfies

Fn(x) =

2n∑
i=3

ai,nx
i +

2n−1∑
i=n

µix2 + µnx,

where n ≥ 1, Fn(x) = Fn−1(F (x)), µ and ai,n are positive integers.
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Proof. Prove this property via mathematical induction on n. When n = 1, F (x) = µx2 + µx = µx(x+ 1),
which means this property holds for n = 1. Assume that this property holds for n = s, namely F s(x) =∑2s

i=3 ai,sx
i +
∑2s−1

j=s µjx2 + µsx. When n = s+ 1, one can get

F s+1(x) = F (F s(x))

=
2s+1∑
i=3

ai,s+1x
i + µ(µ2sx2 +

2s−1∑
j=s

µjx2 + µsx)

=
2s+1∑
i=3

ai,s+1x
i +

2s+1∑
j=s+1

µjx2 + µs+1x,

where ai,s+1 is a positive integer. It yields that this property holds for n = s + 1. The above induction
completes the proof of this property. �

Property 3. As for any x ∈ Hpn and n ≥ 3, then

(x+ k · pw)n ≡ xn (mod pw+2),

where k and w are positive integers.

Proof. Since x ∈ Hpn , x = b · p, and b ∈ {0, 1, 2 · · · , pn−1 − 1}. It yields that (x + k · pw)n = xn +∑n
i=1

(
n
i

)
bn−i · ki · pn+(w−1)i. As n ≥ 3 and i ≥ 1, n+ (w− 1)i ≥ w+ 2 for any w. Thus, (x+ k · pw)n ≡ xn

(mod pw+2). �

Property 4. If there is an integer x ∈ Hpn satisfying{
Fn(x) ≡ x (mod pw);

Fn(x) 6≡ x (mod pw+1),
(5)

then

F i·n(x) ≡ x+ k · pw
i−1∑
j=0

µjn (mod pw+2),

where n ≥ 1, w ≥ 2, k mod p 6= 0, and (
∑n−1

j=0 µ
j) mod p = 0.

Proof. Prove this property via mathematical induction on i. When i = 1, one has Fn(x) = x + k · pw ≡
x+ k · pw (mod pw+2) from relation (5). So this property holds for i = 1. Suppose that this property holds
for i = s, namely

F s·n(x) ≡ x+ k · pw
s−1∑
j=0

µjn (mod pw+2).

When i = s+ 1, from the above congruence and Properties 2, 3, one has

F (s+1)·n(x) = Fn(F s·n(x))

≡
2n∑
i=3

ai,n(x+B)i +

2n−1∑
j=n

µj(x+B)2 + µn(x+B) (mod pw+2)

≡
2n∑
i=3

ai,nx
i +

2n−1∑
j=n

µjx2 + 2xB
2n−1∑
j=n

µj + µn(x+B) (mod pw+2)

≡ Fn(x) + 2xB · un
n−1∑
j=0

µj + µnB (mod pw+2),
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where B = k · pw
∑s−1

j=0 µ
jn. Substituting Fn(x) = x + k · pw and (

∑n−1
j=0 µ

j) mod p = 0 into the above
congruence, one can get

F (s+1)·n(x) ≡ Fn(x) + µnB (mod pw+2) ≡ x+ k · pw
s∑
j=0

µjn (mod pw+2).

Thus, this property holds for i = s+ 1. The above induction completes the proof of this property. �

2.2. Explicit expression of the period of S(x0;µ, 3
n)

Let Fpn denote the associate SMN of the Logistic map over ring Zpn . It is constructed as follows: the pn

numbers in ring Zpn are separately considered as pn nodes; node x is directly linked to node y if and only
if y = fpn(x) [Li et al., 2019].

As a typical example, we draw F3n with µ = 19 and n = 1, 2, 3, 4 in Fig. 1, which indicates some
general rules: any node satisfying x mod 3 = 1 is directly linked to a node satisfying x mod 3 = 2; any
node satisfying x mod 3 = 2 is directly linked to a node satisfying x mod 3 = 0; all nodes satisfying
x mod 3 = 0 in F3n form some directed cycles for arbitrary parameter n. Such rules are summarized in
Property 5. In addition, as for a directed cycle Cn in F3n , if the length of Cn is larger than three, Cn is
expanded to one cycle of length 3Tc in F3n+1 . For example, a cycle “3 → 12 → 21” shown in Fig. 1c) is
expanded to cycle of length nine “3→ 66→ 21→ 30→ · · · → 3” shown in Fig. 1d). Moreover, Lemma 1
gives the condition that the length of cycle increases by three times with increase of parameter n. Finally,
combining Property 5 and Lemma 1, one can get explicit expression of the period of the Logistic map over
Z3n as Theorem 1.
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Fig. 1. Functional graphs of the Logistic map implemented with Xilinx Vivado on various domains: a) Z31 ; b) Z32 ; c) Z33 ;
d) Z34 .

Property 5. As for any x0 ∈ Z3n , sequence S(x0;µ, 3n) is periodic if x0 mod 3 = 0; ultimately periodic
with pre-period m otherwise, where m = 1 when x0 mod 3 = 2 and m = 2 when x0 mod 3 = 1.

Proof. Referring to Property 1, one can get Γ(x) = µx(x+ 1) mod 3n is a bijective function from H3n to
itself. Thus, if x0 mod 3 = 0, namely x0 ∈ H3n , one has sequence S(x0;µ, 3n) is periodic from the definition
of the sequence and [Hall, 1959, Theorem 5.1.1]. If x0 mod 3 6= 0, then xm = fm3n(x0) ≡ 0 (mod 3) from

https://www.xilinx.com/products/design-tools/vivado.html
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Eq. (1). It means xm ∈ H3n and sequence S(xm;µ, 3n) is periodic. Thus, sequence S(x0;µ, 3n) is ultimately
periodic and its pre-period is m. �

Lemma 1. If there is an integer x ∈ H3n satisfying{
F µ̄(x) ≡ x (mod 3w);

F µ̄(x) 6≡ x (mod 3w+1),
(6)

then {
F µ̄·3

t
(x) ≡ x (mod 3w+t);

F µ̄·3
t
(x) 6≡ x (mod 3w+t+1),

(7)

where w ≥ 2, t ≥ 1, µ̄ = µ mod 3 ∈ {1, 2}.

Proof. Assume µ mod 3 = 1, we prove this lemma via mathematical induction on t. According to rela-
tion (6), one has F (x) = x+k·3w, where k mod 3 6= 0. Then one can calculate F 2(x) ≡ x+(1+µ+2x)k·3w 6≡
x (mod 3w+2) and

F 3(x) ≡ F (x+ (1 + µ+ 2x)k · 3w) (mod 3w+2)

≡ F (x) + (2µx+ µ)(1 + µ+ 2x)k · 3w (mod 3w+2)

≡ F (x) + (µ+ µ2)k · 3w + (4µ+ 2µ2)xk · 3w (mod 3w+2)

≡ x+ (1 + µ+ µ2)k · 3w (mod 3w+2).

As µ mod 3 = 1, it yields (1+µ+µ2) mod 9 = 3, and (
∑3s−1

j=0 µj) mod 3 = 0. So, from the above congruence,
one has {

F 3(x) ≡ x (mod 3w+1);

F 3(x) 6≡ x (mod 3w+2),

and relation (7) holds for t = 1. Suppose that relation (7) holds for t = s, namely{
F 3s(x) ≡ x (mod 3w+s);

F 3s(x) 6≡ x (mod 3w+s+1).
(8)

When t = s+ 1, setting n = 3s in Property 4, one can get

F 3·3s(x) ≡ x+ (µ2·3s + µ3s + 1)k′ · 3w+s (mod 3w+s+2) (9)

from relation (8), where k′ mod 3 6= 0. It can be known (µ2·3s + µ3s + 1) mod 9 = 3 from µ mod 3 = 1.
Thus, congruence (9) becomes

F 3s+1
(x) ≡ x+ k′ · 3w+s+1 (mod 3w+s+2),

which yields that relation (7) holds for t = s+ 1. The above induction completes proof of the lemma when
µ mod 3 = 1.

The proof for the case µ mod 3 = 2 is similar and omitted here. �

Theorem 1. Given an initial value x0 ∈ Z3n, the period of sequence S(x0;µ, 3n) is

L(x0;µ, 3n) = µ̄ · 3n−vx0

when n ≥ vx0; L(x0;µ, 3n) ≤ µ̄ otherwise, where µ̄ = µ mod 3,

vx0 = max{t | F µ̄(xi∗) ≡ xi∗ (mod 3t)}, (10)

and

i∗ =


0 if x0 mod 3 = 0;

1 if x0 mod 3 = 2;

2 if x0 mod 3 = 1.

(11)
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Proof. As proof of this theorem is similar for different value of µ̄, here we only present the proof for the
case µ̄ = 2.

According to Property 5, if x0 mod 3 6= 0, then xi∗ mod 3 = 0 and sequence S(xi∗ ;µ, 3n) is periodic.
Thus, we only analyze the period of sequence S(x0;µ, 3n) for any x0 ∈ H3n . Referring to Eq. (10) and
µ̄ = 2, one has {

F 2(x0) ≡ x0 (mod 3vx0 );

F 2(x0) 6≡ x0 (mod 3vx0+1).
(12)

When n < vx0 , combining relation (12) and the definition of L(x0;µ, 3n), one has L(x0;µ, 3n) ≤ 2. When
n ≥ vx0 , one can prove

L(x0;µ, 3vx0+t) = 2 · 3t (13)

by mathematical induction on t. When t = 0, L(x0;µ, 3vx0 ) ≤ 2 = µ̄ from relation (12). Assume
L(x0;µ, 3vx0 ) = 1, then F (x0) ≡ x0 (mod 3vx0 ), it means F (x0) = x + k · 3vx0 , where k is an integer.
So

F 2(x0) ≡ x0 + (1 + µ)k · 3vx0 ≡ x0 (mod 3vx0+1).

But the above congruence contradicts with relation (12), so L(x0;µ, 3vx0 ) = 2 and Eq. (13) holds for t = 0.
Suppose that Eq. (13) holds for t = s, namely,

L(x0;µ, 3vx0+s) = 2 · 3s. (14)

When t = s+1, from the definition of L(x0;µ, 3vx0+s+1), one has FL(x0;µ,3vx0+s+1)(x0) ≡ x0 (mod 3vx0+s+1).

Then FL(x0;µ,3vx0+s+1)(x0) ≡ x0 (mod 3vx0+s) and L(x0;µ, 3vx0+s) divides L(x0;µ, 3vx0+s+1), which further
yields 2 · 3s divides L(x0;µ, 3vx0+s+1) from Eq. (14). According to relation (12) and Lemma 1, one has{

F 2·3s+1
(x0) ≡ x0 (mod 3vx0+s+1);

F 2·3s(x0) 6≡ x0 (mod 3vx0+s+1).

It means that L(x0;µ, 3vx0+s+1) 6= 2 · 3s and L(x0;µ, 3vx0+s+1) divides 2 · 3s+1. Thus, L(x0;µ, 3vx0+s+1) =
2 · 3s+1. So, Eq. (13) holds for t = s + 1. The above induction completes the proof of Eq. (13). Setting
t = n− vx0 in Eq. (13) completes proof of the theorem for the typical case. �

When µ = 20, x0 = 50, and n = 7, one can detect L(50; 20, 37) = 486 via numerical simulation. In
comparison, one can calculate µ̄ = 2 and vx0 = 2, which further produces L(50; 20, 37) = 2·37−2 = 486 from
Theorem 1. According to Theorem 1, Eq. (4) is revised and shown in Corollary 2.1. Moreover, referring to
the proof process of Corollary 2.1, one has L(x0;µ, 3n) = L(µ, 3n) when

f i
∗

3n(x0) mod 33 ∈


A ∪B if µ mod 9 ∈ {1, 2, 5};
A if µ mod 9 = 4;

B if µ mod 9 = 7,

where i∗ is given in Eq. (11), A = {3, 12, 21}, and B = {6, 15, 24}.

Corollary 2.1. The maximum period of sequences generated by iterating the Logistic map over ring Z3n is

L(µ, 3n) =



1 if µ mod 3 = 0;

3n−2 if µ mod 3 = 1;

2 · 3n−2 if µ mod 9 ∈ {2, 5};
2 · 3n−3 if µ mod 9 = 8 and µ mod 27 6= 17;

2 · 3n−4 if µ mod 27 = 17.

Proof. When x0 mod 3 6= 0, xi∗ = f i
∗

3n(x0) ≡ 0 (mod 3) from Eq. (11). So, the period analysis of sequence
S(x0;µ, 3n) is the same no matter the value of x0 mod 3. In the following analysis, we assume x0 = 3k,
where k is an integer. Depending on the value of µ, the proof is divided into the following three cases:
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• µ mod 3 = 0: one has L(µ, 3n) = 1 from [Yang & Liao, 2017, Theorem 1].
• µ mod 3 = 1: In such case, F (x) ≡ x (mod 32) for any x ∈ {0, 3, 6}. It means that

F (x0) ≡ F (x0 mod 32) ≡ x0 (mod 32) (15)

for any x0 ∈ H3n . It yields vx0 ≥ 2. Then L(x0;µ, 3n) ≤ 3n−2 from Theorem 1. So, L(µ, 3n) ≤ 3n−2. As

F (3) ≡


12 (mod 33) if µ mod 9 = 1;

21 (mod 33) if µ mod 9 = 4;

3 (mod 33) if µ mod 9 = 7,

and

F (6) ≡


15 (mod 33) if µ mod 9 = 1;

6 (mod 33) if µ mod 9 = 4;

24 (mod 33) if µ mod 9 = 7,

and congruence (15), one can get vx0 = 2 if initial value x0 satisfies

x0 mod 33 ∈


{3, 12, 6, 15} if µ mod 9 = 1;

{3, 21} if µ mod 9 = 4;

{6, 24} if µ mod 9 = 7.

It yields from Theorem 1 that L(x0;µ, 3n) = 3n−2. Therefore, L(µ, 3n) = 3n−2.
• µ mod 3 = 2: one can calculate

F 2(3k) = µ3(3k)4 + 2µ3(3k)3 + (µ3 + µ2)(3k)2 + 3kµ2.

So,

F 2(3k) ≡ 3k (mod 32), (16)

and

F 2(3k) ≡ (µ3 + µ2)(3k)2 + 3kµ2 (mod 33)

≡


12k (mod 33) if µ mod 9 = 2;

21k (mod 33) if µ mod 9 = 5;

3k (mod 33) if µ mod 9 = 8,

(17)

and

F 2(3k) ≡ 2µ3(3k)3 + (µ3 + µ2)(3k)2 + 3kµ2 (mod 34)

≡


(3k)3 + 30k (mod 34) if µ mod 27 = 8;

3k (mod 34) if µ mod 27 = 17;

(3k)3 + 3k (mod 34) if µ mod 27 = 26.

(18)

As for any x0 ∈ H3n , it yields from Eqs. (16), (17), (18) that

vx0 ≥


2 if µ mod 9 ∈ {2, 5};
3 if µ mod 9 = 8 and µ mod 27 6= 17;

4 if µ mod 27 = 17.

Thus, from Theorem 1, one has

L(µ, 3n) ≤


2 · 3n−2 if µ mod 9 ∈ {2, 5};
2 · 3n−3 if µ mod 9 = 8 and µ mod 27 6= 17;

2 · 3n−4 if µ mod 27 = 17.
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If the initial value satisfies x0 mod 3t ∈ {3, 6}, one can obtain vx0 = t − 1 by combining Eqs. (16), (17),
and (18), where

t =


3 if µ mod 9 ∈ {2, 5};
4 if µ mod 9 = 8 and µ mod 27 6= 17;

5 if µ mod 27 = 17.

It means L(x0;µ, 3n) = 2 · 3n−t+1. Thus, L(µ, 3n) = 2 · 3n−t+1 and this corollary holds if µ mod 3 = 2.

�

3. Conclusion

This paper presented explicit expression of the period of sequences generated by iterating the Logistic
map from any initial value in ring Z3n . Based on the explicit expression, we disclose the maximum period
of the sequences. Moreover, we present sufficient and necessary condition for the sequences achieving the
maximum period. The analysis method can be extended to the variants of the Logistic map and other
chaotic maps over ring Zpn . Comparing with the chaotic maps owning bijective functional graph in a
digital domain, say Cat map studied in [Li et al., 2022a], the functional graphs of the Logistic map are
much more complex. Much efforts are deserved to analyze their graph structure over various domains.
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