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Bogdanov-Takens bifurcation of codimension 3 in the
Gierer-Meinhardt model
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Abstract. Bifurcation of the local Gierer-Meinhardt model is analyzed in this paper.
It is found that the degenerate Bogdanov-Takens bifurcation of codimension 3 happens
in the model, except that teh saddle-node bifurcation and the Hopf bifurcation. That
was not reported in the existing results about this model. The existence of equilibria,
their stability, the bifurcation and the induced complicated and interesting dynamics
are explored in detail, by using the stability analysis, the normal form method and
bifurcation theory. Numerical results are also presented to validate theoretical results.
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1 Introduction

Early in [I], Turing discovered the common properties of the breakdown of spatial-temporal symme-
try and the self-organization, selection, and stability of new spatial-temporal structures in systems,
and proposed the idea of patterns as the results of diffusion driven instability. Since then more and
more interests are focused on the Turing patterns and various models are put forward to describe
the diffusion driven instability. One of the important models is the Gierer-Meinhardt model [2],
which was proposed by Gierer and Meinhardt in 1972, and takes the following form

T 2
{3‘2 = pop+ cps —ua+ D58,

oh _ g 1a” 3%h
E—Cpfu*'l}h+DhW

where a(z,t) and h(x,t) respectively represent the concentration of activators and inhibitors at
spatial position x and time t > 0. pop and p’ are the source concentration of a(z,t) and h(z,t),
respectively. The first-order kinetics of activator and inhibitor are represented by wu, and wvp,
respectively. D, and Dy, represent the diffusion coefficients of activators and inhibitors, respectively.

o . T .
Generally, it is necessary to assume 5 > 7 —1> 0, that is, r > 2(r e 7).
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In view of Turing’s idea about pattern formation, to explore the patterns in such model, it is
very necessary to carry out the stability and instability analysis. Instability will be accompanied by
bifurcation in the model. Then spatiotemporal patterns will follow from the different bifurcation.
Until not, various results about bifurcation and the resulting complex dynamics in the Gierer-
Meinhardt model have been obtained. When r = 2,s = 1,7 = 2, and u = 0, Song et al. [3]
studied the Gierer-Meinhardt model with saturation terms and obtained the pattern formation
in the certain parameter space. The Hopf bifurcation, the effect of diffusion on the stability and
the subsequent Turing pattern were presented in [4]. For the delayed a delayed reaction-diffusion
Gierer-Meinhardt system, the bifurcation analysis was also carried out in [5]. With the different
sources for activators and inhibitors, Hopf bifurcation was treated in [6]. For the codimension-2
bifurcation, in [7] the Turing-Hopf bifurcation was considered, without the saturation term. The
Turing-Turing bifurcation was given in [§], the coexistence of multi-stable patterns with different
spatial responses and the superposition for patterns were demonstrated.

Recently, some results are obtained about the localized patterns in the Gray-Scott system and
the bifurcation of the general Gierer-Meinhardt model in [9]. The local one-dimensional Gierer-

%ZQ—F%Q—U, (1)
%zb—i—uZ—dv.

Meinhardt model was given by

where a, b and d are all positive constants. However, when a = 0, the system still has more complex
dynamics and could be further explored. In this work, it is found that the model could admit the
saddle-node, the Hopf and the degenerate Bogdanov-Takes bifurcations of codimension-3, which
is not absent in the system in [9]. Note that highly degenerate bifurcations are more difficult
to deal with and the resulting dynamical behaviors are richer and more interesting, so they are
attracting increasing interests from mathematics and applied sciences. For example, degenerate
bifurcations and the induced complicated dynamics were presented in[10HI2], such as the nilpotent
cusp singularity of order 3 and the degenerate Hopf bifurcation of codimension 3. In [I3], Huang
et al. discovered that there existed a degenerate Bogdanov-Takens singularity (focus case) of
codimension 3 in the predator-prey model. In [I4], the Bogdanov-Takens of codimension 3 and the
Hopf bifurcation of codimension 2 were also found to happen.

In this paper, we will elaborate on these aspects for system with @ = 0. The existence and
their stability of equilibrium points are introduced in Section 2. Bifurcations, such as, the saddle-
node bifurcation, the Hopf bifurcation and the Bogdanov-Takes bifurcation of codimension-3 are
presented in Section 4. Finally, a brief summary is made in Section 5.

2 Existence and stability of equilibria

Now consider the system in the following form

du _ . (Bu® _
dt_c(v u)’

%zb%—uQ—dv.



Let f(u,v) =c <BUL2 - u), g(u,v) = b+u? — dv. Upon solving f(u,v) = 0, we obtain the solutions
u=0orv=up.
It is not difficult to get the boundary equilibrium (0, 3) of system . Next, to find the existence

of positive equilibria of system, substitute v = uf into g(u,v) = 0, then we have
h(u) £ u* — dBu+b=0.

The discriminant of h(u) is
A = d*B% — 4b.

It follows that
(i) if d2% < 4b, then h(u) > 0 for u > 0;
(ii) if d?4% = 4b, then h(u) has a real root u; = %;
(iii) if d®8% > 4b, then h(u) has two distinct positive real roots,

dg+vA dpg —+vA
Uy = ————, ug = ——.
2 2
So we have the following result.

Theorem 1. System @) has only one boundary equilibrium Eq (0,vy) = (0, %), and
(i) if d23% < 4b, then there is no positive equilibria;

(ii) If d* 3% = 4b, then there is a positive equilibrium Ey (ui,vi) = (%, @);

oo . . . . 2
(iii) If d*3% > 4b,then there are two positive equilibrium FEs (ug,vs) = (dﬁz‘/&, dp 4.2/3\/Z>
and E3 (u3,v3) = (dﬁ_z\/ga dﬁLQﬂ\/E)'

Next the stability of the equilibria system will be examined. First consider the boundary
equilibrium Ey (0,v9). The Jacobian matrix of system (2)) at equilibirum Ejy is

-1 0
Jr. =
Eo (0 _d)7

which has the eigenvalues Ay = —1 < 0 and Ao = —d < 0. Therefore, the equilibrium FEj of system
is a stable node.
As for the stability of the equilibrium Fp, we have

Theorem 2. (a) If d = ¢, then Ej is a cusp of codimension three;
(b) If d > ¢, then Ej is a saddle-node with an unstable parabolic sector;
(b) If d < ¢, then E is a saddle-node with a stable parabolic sector.

Proof. The Jacobian matrix of system at equilibrium FE; is

_(¢ %
e (s )



It follows that
trJg, =c—d, detJg, =0.

Now translate F1(uq,v1) = (%, %) into the origin by the translation (u,v) = (U + u1, V + v1),

then system is changed into

U = aloU + a01V + CLQQU2 + a11UV + a02V2 + a21U2V
+a12UV?2 + ag3V3 + ageU?V? + a13UV3 + aga VA + M (U, V), (3)
V = byoU + b1V + byoU? + N (U, V),

where

B ¢ B 2c B 4c B 2c
a0 = G, aplr = —B, a0 = %, a1l = _752’ ap2 = Tm,
_ 4c 8 _ 4c 8 _ 16¢
az) = —dTBg, a2 = W’ aps = _dTBS’ a2 = dTﬂg” a1z = _dT567
8¢
apy = BET bio = dp, bo1 = —d, by = 1,

and M (U, V), N(U,V) are terms of at least order five in U and V.
First, assume d = c¢. Then both eigenvalues of Jg, are zero. Applying the transformation
(U, V) = (z,B(x — £)), we rewrite system ([3) as

. 2 2 3 2,2 3 4 (4)
Y = —%.'132 + 20% - ingQ + c%’:[,/BQ + 86:25% - 151:%% + 085%3 + N2 (xvy)7

. 2 2 3 2,2 3 4
{x =y+ % -+ e+ S - S+ S+ My (3,y),

and Mas(x,y), Nao(z,y) are terms of at least order five in x and y. Further, let (z,y) = (21,11 +
2+ %xlyl — %y%), then is transformed into the following form

i1 =y + 23 + ey + ca3y1 + cremyd + cosys
+es0nt + coaxtyl + cismiyt + coayt + Ma(w1, y1),

U1 = doox? + duiziys + dsoxi + do1xtys + dioxryi + dosy’
+dyor} + ds1z3yr + dogaiyd + disziyd + doayt + Na(z1,y1),

where

2 4 4 2 4
€11 :£7 €21 :%, 612203762’ 003:—W7 040:%, 0222764[327

8 8 c 2
3= g5 1T T 5 d20——§, din = -2, d30——2+@7

4 2 8 4 6 4

doyg = ——+ —, dig=——55 doz = ———5, dioo=————=
21 C,82 + C,B’ 12 02,8’ 03 03/827 40 C/B 6/837
g 41616 12 16 82 16
BT g T2 2p T @Bpz Bp3 BT ags T oagy T4 T T 5g3

and Ms(z1,y1), N3(z1,y1) are terms of at least order five in z; and y;.



Let (z2,y2) = (z1,y1 + 23 + %xlyl + My(x2,y2)), then takes the following form

i? = Y2,
Yo = 620(13% + eogyg + eglx§y2 + 612332y§ + 60393 (6)

4—640176‘42l + 631563242 + 622$%y§ + 61396‘21/5’ + 604y§1 + Na(z2,2),

where
c 2 4 4 8
620:—Ba 602:$7 6’212—%7 612:—ﬁ—%7
4 4 8 16 16 8 40 16
8= Tapy T g 63120252+C3ﬁ3+0253’ 622:_c353+c3ﬁ2_c4ﬁ4’
24 24 16
BT g T ags M gy

and My(x2,y2), Ny(ze,y2) are terms of at least order five in z9 and ys.
To eliminate the yo— term in @, change system @ with the following transformation [14]

( _ 02
_ €02 .2 __ €21 _ €12—€32 .3 _ enze20—ep2€21 .2
T3 = T2 — 57Ty — 35,,L2Y2 5 L3 230 Y2
_9682620—27512502620+18620€22—32651 .T4 B 7632621—12802603620—4612621+3€13620 373
216e20 2 18e20 2
€03€21 -€04€20 .2,,2
+ 2e00 $2y27 )
_ e 2 e 3 €12—e 2 —2eg2e21+3€ep3€e 2
Y3 = Y2 — €02T2Y2 — 355Y2 — 5Ty — — 5 ARl — — 2R = moys
. *3602620621+3€036§0+2621€30 x4 _ 9682620*27602612620+18620622*14631 $3
6e2o 2 54e20 2Y2
_ 4e3,e21—9ep2e03e20 —2€12€21+3e13€20 2242 _ —2e0sez1+3eoaenn 4,3
6e20 292 3e20 —L2Y2,

then we get
{563 = Y3, )
s = f2073 + fa073 + f123y3 + Ns(x3,3),
where
c 11 4 4 16 8
B Jfao = 3¢B3 3¢/ fa1= T2 + 333 + 232’
and Ms5(x3,ys3), N5(zs3,ys) are terms of at least order five in x3 and ys.

Since faog = % # 0, by the change of variables (z4,y4) = <—.C63, —ﬁyg) , T = v/— foot, we
could turn system into

J20 =

deg _
dr Ya, (8)
dys 2 4 11 3 f31

ar = Tat (302,3 - 302/52) Ta \/%xiw‘ + No (24, 9a),

where Ng(z4,y4) are terms of at least order five in x4 and y,.
From the proposition 5.3 in [15], we know that system @ is equivalent to the system

d
{ ar = Y
d
s = 22 + Badys + No(va, ya),



where £ = — ¢f3}20 = <8 \/Ci‘}zo <62 £ (. Therefore, E; is a cusp of codimension three. This

proves (a).
Next, assume d # c. The eigenvalues of Jg, are A3 = 0 and A\y = ¢ —d. Applying the
transformation

U )
U:*"‘i,vzu—f—’U’T: d_c t’
3" Bd (d—c)
then system becomes
du _ 3 2 4d+2 1—4d 9
dr = 52(d—0)2u /32(d—c)2duv + /32d2(d—c)2v + Mz (u,v),
%’Lr) =v-= (d,zj)czl[p u2 - 52(d6,c)2 uv + B2d2QZd5ilc)2 212 + N7(u, U),

and M7 (u,v), N7(u,v) are terms of at least order three in u and v. The coefficient of u? is
3

< 0. From Theorem 7.1 in [I6], the origin is a saddle-node. Considering the time

 B(d—o)?
vatiable 7, if d — ¢ < 0, then E; is a saddle-node with a stable parabolic sector; if d — ¢ > 0, then
F is a saddle-node with an unstable parabolic sector. ]

If A > 0, then h(u) has two equilibria. Finally, we discuss the stability of the positive equilibria
Eg and E3.

Theorem 3. If A > 0, then the positive equilibrium Es of system (@ is always a saddle point and
the positive equilibrium FEo is

(a) a source if d < ¢;

(b) a center or a fine focus if d = c;

(c) a sink if d > c.

Proof. The Jacobian matrix of system at equilibrium FEs and E3 are

c _c c _c
Jg, = A, JE, = A
£ (dﬁ—ﬂ/A —d) b (d,@—\/Z —d)
Then we could have

c/d2BZ — 4b

detJp, = g >0
and
\/d232 — 4b
detJp, = —Cg <0.

So Fj is always a saddle point. The positive equilibrium FEjs is determined by the sign of the trace
trJg,. Specifically, when trJg, > 0, i.e., d < ¢, Ey is a source; When trJg, <0, i.e., d > c, Ey is a
sink. when trJg, = 0,i.e., d = ¢, it is a center or a fine focus. O



3 Bifurcation

3.1 Saddle-node bifurcation

From Theorem 1 we note that the equilibrium points of system vary as the parameter b changes.
When b > %, there is no positive equilibrium point. When b = ﬁTﬁ, there is a positive equilib-
rium. When b < %?2, there are two positive equilibria. This indicates the saddle-node bifurcation
may occur around Fj.

Theorem 4. When b = bgy, the system (@) undergoes the saddle-node bifurcation around E7, with
the threshold value bsy = deQ.

Proof. According to the Sotomayor’s theorem [I7], we need to verify the transversality condition
for the occurrence of saddle-node bifurcation at b = bgy. The Jacobian matrix of system at

(e
e (s )

Because of det(Jg,) = AsA¢ = 0, Jp, has a zero eigenvalue A5. Let V and W represent the

equilibrium Fy is

eigenvectors of Jg, and ng with respect to the eigenvalue A5, respectively.
w) = ()
V = =
<V2 s
1
= ()= ()
Wa —5

Fy(Er,bsn) = <0>7

Simple calculation gives
and

Further, we can obtain

1

9? 9? 9
D*F(Eq,bsn)(V,V) = <6U§V12 +25.4;V1Va + avjzvv22> - <0>.
(E1,bsn)

ik 0° ik
gt Vit + 205 ViVa + AV

Obviously, when b = bgy, V and W satisfy the transversality conditions
c

WTE,(E, bgy) = —— #0
»(E1,bsn) dﬁ#

and 90
W [D*F(Eq,bsn)(V, V)] = T # 0.

Therefore, when the parameter b goes from one side of bgx to the other, the system ([2|) experiences
the saddle-node bifurcation at the equilibrium point Ej. O



3.2 Hopf bifurcation

From Theorem 3, it is found that the stability of the positive equilibrium of E5 changes as the sign
of tr(FEy) varies, that will probably lead to the Hopf bifurcation around Es.
According to the Hopf bifurcation theorem, we need to verify the transversal condition. Based

dtr(J
on the fact that LdEQ)

= —1 # 0, system 1} undergoes the Hopf-bifurcation around FEs.

d=
Furthermore, we need to givg the first Lyapunov coeflicient and determine the stability of the limit
cycle around Fs.
Now translate Fs(ug,v2) to (0,0) by (a,0) = (u — ug,v — vy) and get the following form

:>-

[P 2 2¢c 0 Srla A
=cl — v+—u —Wuv—i-ﬁz % + M(1,), ()
b = 2ugl — O + 4% + N(a,),

where M (@, 9) and N (i, ) are terms of at least order three in @ and 9.

From another transformation z = —u,9 = —4,y = %(cﬁ % 0) and dr = V/Ddt, where

D= 7”#22_417, system (EI) becomes

where

D . 1 TR
f(iag):_\/u:y2+Ml(a7{})v g(j’g):_mi‘2+%+Nl(a7@)a

where M (@i, 9) and Ny (4, 0) are also terms of at least order three in @ and ©.
Using the formal series method described in [16], we can calculate that the first-order Lyapunov

VD
o=-— <0.
4u2

number is

Then the following theorem is available.

Theorem 5. When A > 0 and d = ¢, the system (@ at the equilibrium experiences the supercritical
Hopf bifurcation with a stable limit cycle around Es.

3.3 Bogdanov-Takens bifurcation

When u = % and d = ¢, it follows from Theorem 2(a) that the unique positive equilibrium E; of

system is a cusp of codimension three. The Bogdanov-Takens bifurcation may occur arround
FEy. Now we select 3, b and d as bifurcation parameters, and the Bogdanov-Takens bifurcation may
occur under parameter perturbation.



Theorem 6. When u = % and d = ¢, the parameter (§,b,d) varies within the small neighbor-
hood of (Bpr,bpT,dBT), Where Bpr,bpr, and dpr are the Bogdanov-Takens bifurcation threshold
values. Then system @ undergoes the Bogdanov-Taken bifurcation of codimension 8 in the small
neighborhood of Ey.

Proof. When u = % and d = ¢, it follows theorem 2(a) that Fj is a cusp of codimension three

of system . Perturb the parameters 8, b and d at Spp, bpr and dpr and denote (53,b,d) =
(Ber+e€1,bpr+es, dpr+es), where € = (€1, €2, €3) is a vector of parameters in the small neighborhood
of (0,0,0). Then, the system becomes

+ 2
G = (s — ), 10)
D = b+ e+ u?— (d+e3)v.
Then we translate E1(uj,v;) = (%, %) into the origin by (x,y) = (v — u1,v — v1). The system

is changed into

T = agp + a10T + Gory + (igon +axy + d02y2 + Fzgley + &12xy2
+aosy® + doea®y® + arszy® + aoay® + O(|z, y|*), (11)
= boo + broz + bo1y + baoz? + O(|z,y|?),

where
2
Goo = %7 d10 = 6(2(5261) 1), g = _0(5/8-2 61)7 g — 2(5/8-2 61),
ajl = _4(6;:; 61)7 a2 = 2(/86—2 61)7 a1 = _4<Bc;461)7 a2 = 8(602_561)7
_ 4B+ a) _ _8B+a) _ _ 16(Bt+ea) _ _ 8(B+e)
a03__W7 a22—wy a13——627/877 a04—027ﬁ87

- 122 6263 = = b
boo = b+ €2 — —c"B° — 5 big = cB, bor = —d — e, boo = 1.

4

Then we rewrite system () with the transformation (z,y) = (x1 — C’%xlyl, y1) to

T1 = Cpo + C1oT1 + Co1y1 + 520$% +enziyr + O(lz, y|h),
11 = doo + drow1 + doryr + doox? + di1xiyr + O(|z, y|b),

where
e 2 - 2(8+e€1) c
C = — C prng 71) _— 1 C, = —
€0 =5~ €10= zboo + ¢( 3 ), Co1 5
_ 4 2¢  _ 20c+e3) 4B+ea) 5 -
€20 3 + 5 C11 ez g3 %0 =00,
2

dio =B, do1 = —c— es, dyo=1, dyp=—=.

B



Further, we execute the transformation (z2,y2) = (21, 1) and get

To = Yo,
Yo = €go + €10T2 + €p1Y2 + 52096% + er1x2y2 + éoﬂ/% + 53036‘3 + 521$U%y2 + 5121‘21/% (12)

+€03Y5 + 1073 + E3173Y2 + E2273Y3 + E1372y5 + €oays + O(|z, y[*),

where
_ _ s _ 5 _ I _ 3 _ 3 _ T _ _ - Co0C11
€00 = Co1doo — Coodo1, €10 = C11doo + Co1d1o — Cood11 — C1odo1, €01 = C1o + do1 — —
01
— — — 72 —
_ _ 37 _ 3 _ 7 _ 3 _ _ C10C11 €00C11 7 _ C11
€20 = ¢11d10 + Co1d20 — €10d11 — Co2do1, €11 =200 — —— + —— +di1, ep=_—,
Co1 o1 Co1
_ _ _ _ Clico2 | 10 Coochy TR
€30 = c11dgo — Co2d11, €1 =———+—"F% ——F -, €12=——, e3=0,
o1 o1 o1 o1
_ 47 2 _ 3 - 4 3
_ CcooCiydor  _  C11€2  C10€y; | Co0Cyp - Gy o
q=—3 > E@1=—% ——F3 +— eén==5, e3=0 ¢€u=0
€01 €01 €01 €01 €01

To verify that the Bogdanov-Takens bifurcation occurs at equilibrium point F;, we need to get
the universal unfolding of system @ So we need to eliminate y3, ¥, 2%y, xy?, y3, and x* terms.
Next, we transform system by the procedure similar to that in [I8].

(A) In order to eliminate the y3 term, take the transformation (z2,y2) = (u1 + “Ruf, v +
coou1v1 ), then system takes the following form

% = V1,
%1 = foo + frou1 + forvr + faoud + friuivr + faoud + farufor + frouivf (13)

-FJF40ui1 + JF31U“;’111 + fzw%v% + O([u, 01\5)’

where
= _ = _ o = _ = _ €10€02 , _ _o
foo = €00,  fio = €10 — €o0€o2, fo1 = €01, foo = €20 — + €00€02,
— 72 — —
= _ - _ €10€52 _ _3 = _ €11€02
fii=en, fao=-¢én+ — €00€n2, f21 = €21+ 5
7 €20€%y €106y 4 . €02€30 = _ _ = _ 3€p2€12  _3
fao = 1 9 + €po€ps + 5 f31 = €31 + €p2€21, foo = €22 + 5 €02-

(B) In order to eliminate the ujv? term, take the transformation (u1,v1) = (uz + %u%,vg +
C%Qu%vg), then is reduced to

dde = Goo + 10Uz + Go1v2 + G20u3 + Ji1uava + Gaoui + Ga1uzva (14)

+gaous + ga1uive + gaudvs + O(Jug, val?),

10



where

f_OO.fl2 + .flOleQ,

Goo = foo, G0 = fio, gor = for, G20 = fao —

2 6
_ F _ z /12 | fofiz — 11./12
g1 = fu, 930:f30—f 2f +f 3f : 921:f21+f Gf :
_ = dood foofes - f11./3 _ -
Gao = fao — 206 2+ f004f127 gs1 = fa1+ f116f12, G22 = fo2.
(C) Notice that gop = —62;3 — 35 + O(¢) # 0. To removing the u3 and uj terms, we transform

. 1552, —16g20g . .
system 1' with (ug,v2) = (uz — fg%u% + Wug,vg) and scaling transformation dr =

(14 B0 y3 + 4892094025330 , 2 3+ 48920930940~ 35350 u3)dt to obtain the following system

2g20 80720 8075,
du,
ar = U3
d
% = Zoo + Z10u3 + 2011)3 + 120u3 + 211U31}2 + 121u3113 + Z12’U,31}3 (15)

—|—240u3 + 131u3vg + 122u3v3 + R(us,vs,€),

where
= _ = _ Joogso - _
00 = goo, %10 = J10 — 2,7, 01 = go1,
g2
- 45G00g3y — 6010720530 — 48900920940
120 = g20 +
80920
- gorgso - §10(3573 — 32G20740)
111 = g11 — T 130 = — ;
2go 495,
= 60911920930 — 45501730 + 48901920940
21 = 921 —
80920
5. 910930940 15910930° Ta1 = a1 + 791103  5g30921 + 4911340
40 49202 649203 1T LT ggr 5020
R(u3,v3,€) = v20(|uz, v3]?) + O(|uz, v3]°) + O(e)(O(v3) + O(Juz, v3]*)) + O(e*)O(|us, v3)).
(D) Since
- 9¢  2b N 2527200¢3 N 6210432002
20 = —55 7 53 3 3
% B IR dp | (SR dp

23034240cb 41610240603

- — O(e) #0
3 3 9
55(046 _ %})2 0359(64,3 _ %})2
by the transformation
_ - _ —
21 o 91 3 21 21,2

s s + — -+ = ,dt =(1 + = + —~ d ’
(113, v3) = (4, v4 3 0 47362, vi) ( S ' 3612, vi)r

we can obtain the following form

dug _
{ dr U4, (16)

dug — = Joo + Jioua + jor1va + ]20u4 + J11uavg + ]31U4U4 + R(u4,v4,€),

11



where

- o - - _ - - - Z00Z21
Joo = %00, J10 = %10, Jo1 = to1 — )
220
= = 110021 = 121130
J20 = 120, J11 = 111 - —= , Js1 = 131 .
190 120

Additionally, R(u4,v4,€) has the same properties as R(us, vs, €).
(E) We have jgo and js; with the help of MAPLE

; 26 9¢ N 2527200¢2 N 6210432052 23034240¢b 4161024003 0()
20 = T R3 9np c3 ¢l c3 ¢l B 3 c B c3 c
o2 pPEE -9 S -2 P -9? S -9
#0,
; 15120053 12852002 N 7113602 5781653
31 =~ 2 2 S\ 2
g (B4 2e) et (B4 2e) s () s (224 %)

109278b2 36b 44361b 4131c¢ 27
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Now, we want to turn jao and js; into 1 and notice that the signs of the coefficients of u2 and u3vs
change as the signs of jao and j3;. The details are as follows.
(i) If jog > 0,731 > 0, then system becomes the following form with the transformation
1 2 4 3 1

(U47U4) = (j250j315 U5;j250j315 U5> and 7 = j205j§1t-

Us = Vs,
{155 = koo + k1ous + korvs + u2 + ki1usvs + uivs + R(us, vs, €),

where

7_4 31 _ 2 1

koo = Joojao® J31s k1o = 310]20 ]31, ko1 = jo1Jeg’ J51s K11 = J11J90° J31° -
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Additionally, R(us,vs,€) has the same properties as R(us,vs, €).
(ii) If joo < 0,731 > 0 or jao > 0, j31 < 0, then system becomes the following form with the
1 2 4 3 3 1

transformation (ug,v4) = (j250j315 us, —Joodz1’ vs) and T = —Jo20” I t-

U5 = s,
- 7 7 7 2 7
Us = koo + k1ous + ko1vs + u? + kiyusvs — udvs + R(us, vs, €),

where
7T 4 6 2 3 1 2 1

(=

(u47 U4) = (_j250j315 Uus, _.j250.j315 U5) and 7 = j205j§1t-

Us = Vs,
. 7 7 7 2 7
Us = koo + kious + ko1vs — u? + kiyusvs — udvs + R(us, vs, €),

where
koo = —Joodeo’ J31: K10 = J10Ja0  Ja1, Ko = JoiJag’ Ja1s K11 = —Ji1dag’ Ja1”
(F) Finally, we get the universal unfolding with the transformation (ug,ve) = (us — E%, v5)
Ug = Vg,
L (17)
Vg = ll =+ l2U6 + l3u6v6 + l4u6 + l5u%v6 + R(UG, Vg, 6),

where R(ug, vg, €) has the same properties as R(us, vs,€). There are three results corresponding to
the three situations in (E).
(i) If jo0 > 0,731 > 0, then the cofficients of system are

1 R U 3 _

l1 = koo — Zk%o, lo = ko1 — gk:fo - §k1ok11, I3 = k11 + Zk%m lhy=1, =1

(i) If jap < 0,431 > 0 or jap > 0, j31 < 0, then the cofficients of system are

T N T

lh = koo — Zk%o’ lo = ko1 + gki)’o - §/€1o/€117 ls = k11 — Ek%o’ ly=1, I5=-L

(iii) If jo0 < 0,731 < 0, then the cofficients of system are

- - 1- - - 1- 1- - - - 3- -

= koo + —k3y,  lo=kor — ki + skiokit, l3=kn— ki, lL=-1, I5=-1
4 8 2 4

Then with the help of the MATLAB, we can obtain

‘ (1,12, 13)
8(617 €2, 63)

£0

e1=€2=€3=0

for all three possible situations in (F). Therefore, according to the theory in [19, 20], system
undergoes the Bogdanov-Takens bifurcation of codimension 3 in a small neighborhood of F;. [
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The bifurcation diagram for system can be described as follows. If 7 < 0, there are
no equilibria; if I; = 0, then there is a saddle-node bifurcation plane in a small neighborhood
of the origin (0,0); if [; > 0, then the system has two equilibria, a saddle and an anti-saddle.
The remaining surfaces of the bifurcation diagram in R? have a conical structure, emanating from
(l1,12,13) = (0,0,0), which can be demonstrated by drawing its intersection with the half sphere

S ={(l1,lo,13)[l§ + 15+ 15 = p*,11 > 0,p > 0 sufficiently small} .

Now we project the traces onto the lal3-plane for clear visualization.

L

Figure 1: Bifurcation diagram of system on S.

Here we summarize the bifurcation in system based on the above discussion. Figure 1
contains the Hopf bifurcation curve, the homoclinic bifurcation curve and the saddle-node bifurca-
tion curve, which are represented by H,C, and 05, respectively, where 0S is the boundary of S.
The curves H and C' have the first order contact with the boundary of S at the points b1 and bs.
The curve L is tangent to the curve C at point ¢y and tangent to the curve H at point hs, which
is the saddle-node bifurcation curve of double limit cycles. The system is a cusp singularity
unfolding of codimension 2 around b; and bs.

Along the H, when crossing the arc bihe of H from right to left, the curve H is a subercritical
Hopf bifurcation with an unstable cycle curve of codimension one. And the curve H is a supercritical
Hopf bifurcation with a stable cycle curve of codimension one when crossing the arc hoby of H from
left to right. The Hopf bifurcation of codimension 2 occurs at point hs.

A homoclinic bifurcation of codimension 1 occurs along the curve C. When crossing the arc
bico of C from left to right, the two parts of the saddle point coincide and an unstable limit cycle
appears. And the two parts of the saddle point coincide and a stable limit cycle appears when
crossing the arc cpbe of C' from right to left. A homoclinic bifurcation of codimension 2 occurs at
point ca.

Then we give some numerical simulations about the system. In Figure 2, note that Ej is a stable
node when ¢ = 0.1, 8 = 0.12,b = 0.08,d = 0.08. In Figure 3, there is a boundary equilibrium point
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FEy and a positive equilibrium point E1. Asd = 0.4, F is a cusp when ¢ = 0.4, 5 = 0.5477,b = 0.012;
FE4 is a saddle-node with the stable parabolic sector when ¢ = 0.3, 3 = 0.5,b = 0.01; E; is a saddle-
node with the unstable parabolic sector when ¢ = 0.45,8 = 0.5,b = 0.01. There is a positive
equilibrium Fs in Figure 4. Choose 8 = 0.6,b = 0.0125, E>s is a center when ¢ = 0.4,d = 0.4; E»
is a source when ¢ = 0.45,d = 0.38; E» is a sink when ¢ = 0.3,d = 0.5. Fj3 is a saddle point when
c=0.3,8=0.5,b=0.0075,d = 0.4, which is shown in Figure 5.

Figure 2: Ej is a stable node when ¢ = 0.1, 8 = 0.12,b = 0.08,d = 0.08.

4 Conclusion

Bifurcation analysis of the Gierer-Meinhardt model is carried out. Besides the saddle-node bifur-
cation and the Hopf bifurcation, it is found that the degenerate Bogdanov-Takens bifurcation of
codimension-3 appears in the model. That was not reported in the previous results. By a series
of transformation and based on the bifurcation theory, including the Sotomayor’s theorem and the
normal form method, the detailed bifurcation results are presented and more interesting dynamics
are revealed. Theoretical findings are verified in numerical simulation. More further dynamics
could be explored for the model.
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Figure 3: The stability of E; (a) Ej is a cusp when ¢ = 04,5 = 0.5477,b = 0.012,d = 0.4 (b) E; is a
saddle-node with stable parabolic sector when ¢ = 0.3, = 0.5,b = 0.01,d = 0.4. (c) E; is a saddle-node
with unstable parabolic sector when ¢ = 0.45, 8 = 0.5, = 0.01,d = 0.4.
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