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Abstract. Bifurcation of the local Gierer-Meinhardt model is analyzed in this paper.

It is found that the degenerate Bogdanov-Takens bifurcation of codimension 3 happens

in the model, except that teh saddle-node bifurcation and the Hopf bifurcation. That

was not reported in the existing results about this model. The existence of equilibria,

their stability, the bifurcation and the induced complicated and interesting dynamics

are explored in detail, by using the stability analysis, the normal form method and

bifurcation theory. Numerical results are also presented to validate theoretical results.
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1 Introduction

Early in [1], Turing discovered the common properties of the breakdown of spatial-temporal symme-

try and the self-organization, selection, and stability of new spatial-temporal structures in systems,

and proposed the idea of patterns as the results of diffusion driven instability. Since then more and

more interests are focused on the Turing patterns and various models are put forward to describe

the diffusion driven instability. One of the important models is the Gierer-Meinhardt model [2],

which was proposed by Gierer and Meinhardt in 1972, and takes the following form{
∂a
∂t = ρ0ρ+ cρa

r

hs − ua+Da
∂2a
∂x2

,
∂h
∂t = c′ρ′ a

T

hu − vh+Dh
∂2h
∂x2

.

where a(x, t) and h(x, t) respectively represent the concentration of activators and inhibitors at

spatial position x and time t > 0. ρ0ρ and ρ′ are the source concentration of a(x, t) and h(x, t),

respectively. The first-order kinetics of activator and inhibitor are represented by ua and vh,

respectively. Da and Dh represent the diffusion coefficients of activators and inhibitors, respectively.

Generally, it is necessary to assume sT
u+1 > r − 1 > 0, that is, r ≥ 2(r ∈ Z).
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In view of Turing’s idea about pattern formation, to explore the patterns in such model, it is

very necessary to carry out the stability and instability analysis. Instability will be accompanied by

bifurcation in the model. Then spatiotemporal patterns will follow from the different bifurcation.

Until not, various results about bifurcation and the resulting complex dynamics in the Gierer-

Meinhardt model have been obtained. When r = 2, s = 1, T = 2, and u = 0, Song et al. [3]

studied the Gierer-Meinhardt model with saturation terms and obtained the pattern formation

in the certain parameter space. The Hopf bifurcation, the effect of diffusion on the stability and

the subsequent Turing pattern were presented in [4]. For the delayed a delayed reaction-diffusion

Gierer-Meinhardt system, the bifurcation analysis was also carried out in [5]. With the different

sources for activators and inhibitors, Hopf bifurcation was treated in [6]. For the codimension-2

bifurcation, in [7] the Turing-Hopf bifurcation was considered, without the saturation term. The

Turing-Turing bifurcation was given in [8], the coexistence of multi-stable patterns with different

spatial responses and the superposition for patterns were demonstrated.

Recently, some results are obtained about the localized patterns in the Gray-Scott system and

the bifurcation of the general Gierer-Meinhardt model in [9]. The local one-dimensional Gierer-

Meinhardt model was given by {
∂u
∂t = a+ u2

v − u,
∂v
∂t = b+ u2 − dv.

(1)

where a, b and d are all positive constants. However, when a = 0, the system still has more complex

dynamics and could be further explored. In this work, it is found that the model could admit the

saddle-node, the Hopf and the degenerate Bogdanov-Takes bifurcations of codimension-3, which

is not absent in the system in [9]. Note that highly degenerate bifurcations are more difficult

to deal with and the resulting dynamical behaviors are richer and more interesting, so they are

attracting increasing interests from mathematics and applied sciences. For example, degenerate

bifurcations and the induced complicated dynamics were presented in[10–12], such as the nilpotent

cusp singularity of order 3 and the degenerate Hopf bifurcation of codimension 3. In [13], Huang

et al. discovered that there existed a degenerate Bogdanov-Takens singularity (focus case) of

codimension 3 in the predator-prey model. In [14], the Bogdanov-Takens of codimension 3 and the

Hopf bifurcation of codimension 2 were also found to happen.

In this paper, we will elaborate on these aspects for system (1) with a = 0. The existence and

their stability of equilibrium points are introduced in Section 2. Bifurcations, such as, the saddle-

node bifurcation, the Hopf bifurcation and the Bogdanov-Takes bifurcation of codimension-3 are

presented in Section 4. Finally, a brief summary is made in Section 5.

2 Existence and stability of equilibria

Now consider the system in the following formdu
dt = c

(
βu2

v − u
)
,

dv
dt = b+ u2 − dv.

(2)
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Let f(u, v) = c
(
βu2

v − u
)

, g(u, v) = b+ u2 − dv. Upon solving f(u, v) = 0, we obtain the solutions

u = 0 or v = uβ.

It is not difficult to get the boundary equilibrium (0, bd) of system (2). Next, to find the existence

of positive equilibria of system, substitute v = uβ into g(u, v) = 0, then we have

h(u) , u2 − dβu+ b = 0.

The discriminant of h(u) is

∆ = d2β2 − 4b.

It follows that

(i) if d2β2 < 4b, then h(u) > 0 for u > 0;

(ii) if d2β2 = 4b, then h(u) has a real root u1 = dβ
2 ;

(iii) if d2β2 > 4b, then h(u) has two distinct positive real roots,

u2 =
dβ +

√
∆

2
, u3 =

dβ −
√

∆

2
.

So we have the following result.

Theorem 1. System (2) has only one boundary equilibrium E0 (0, v0) =
(
0, bd
)
, and

(i) if d2β2 < 4b, then there is no positive equilibria;

(ii) If d2β2 = 4b, then there is a positive equilibrium E1 (u1, v1) =
(
dβ
2 ,

dβ2

2

)
;

(iii) If d2β2 > 4b,then there are two positive equilibrium E2 (u2, v2) =
(
dβ+
√

∆
2 , dβ

2+β
√

∆
2

)
and E3 (u3, v3) =

(
dβ−
√

∆
2 , dβ

2−β
√

∆
2

)
.

Next the stability of the equilibria system (2) will be examined. First consider the boundary

equilibrium E0 (0, v0). The Jacobian matrix of system (2) at equilibirum E0 is

JE0 =

(
−1 0

0 −d

)
,

which has the eigenvalues λ1 = −1 < 0 and λ2 = −d < 0. Therefore, the equilibrium E0 of system

(2) is a stable node.

As for the stability of the equilibrium E1, we have

Theorem 2. (a) If d = c, then E1 is a cusp of codimension three;

(b) If d > c, then E1 is a saddle-node with an unstable parabolic sector;

(b) If d < c, then E1 is a saddle-node with a stable parabolic sector.

Proof. The Jacobian matrix of system (2) at equilibrium E1 is

JE1 =

(
c − c

β

dβ −d

)
.
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It follows that

trJE1 = c− d, detJE1 = 0.

Now translate E1(u1, v1) = (dβ2 ,
dβ2

2 ) into the origin by the translation (u, v) = (U + u1, V + v1),

then system (2) is changed into
U̇ = a10U + a01V + a20U

2 + a11UV + a02V
2 + a21U

2V

+a12UV
2 + a03V

3 + a22U
2V 2 + a13UV

3 + a04V
4 +M (U, V ) ,

V̇ = b10U + b01V + b20U
2 +N (U, V ) ,

(3)

where

a10 = c, a01 = − c
β
, a20 =

2c

dβ
, a11 = − 4c

dβ2
, a02 =

2c

dβ3
,

a21 = − 4c

d2β3
, a12 =

8c

d2β4
, a03 = − 4c

d2β5
, a22 =

8c

d3β5
, a13 = − 16c

d3β6
,

a04 =
8c

d3β7
, b10 = dβ, b01 = −d, b20 = 1,

and M(U, V ), N(U, V ) are terms of at least order five in U and V .

First, assume d = c. Then both eigenvalues of JE1 are zero. Applying the transformation

(U, V ) = (x, β(x− y
c )), we rewrite system (3) as{

ẋ = y + 2y2

c2β
− 4xy2

c3β2 + 4y3

c4β2 + 8x2y2

c4β3 − 16xy3

c5β3 + 8y4

c6β3 +M2 (x, y) ,

ẏ = − c
βx

2 + 2y2

cβ −
4xy2

c2β2 + 4y3

c3β2 + 8x2y2

c3β2 − 16xy3

c4β3 + 8y4

c5β3 +N2 (x, y) ,
(4)

and M2(x, y), N2(x, y) are terms of at least order five in x and y. Further, let (x, y) = (x1, y1 +

x2
1 + 2

cβx1y1 − 2
c2β
y2

1), then (4) is transformed into the following form
ẋ1 = y1 + x2

1 + c11x1y1 + c21x
2
1y1 + c12x1y

2
1 + c03y

3
1

+c40x
4
1 + c22x

2
1y

2
1 + c13x1y

3
1 + c04y

4
1 +M3(x1, y1),

ẏ1 = d20x
2
1 + d11x1y1 + d30x

3
1 + d21x

2
1y1 + d12x1y

2
1 + d03y

3
1

+d40x
4
1 + d31x

3
1y1 + d22x

2
1y

2
1 + d13x1y

3
1 + d04y

4
1 +N3(x1, y1),

(5)

where

c11 =
2

cβ
, c21 =

4

c2β
, c12 =

4

c3β2
, c03 = − 4

c4β2
, c40 =

2

c2β
, c22 =

4

c4β2
,

c13 =
8

c5β3
, c04 = − 8

c6β3
, d20 = − c

β
, d11 = −2, d30 = −2 +

2

β2
,

d21 = − 4

cβ2
+

2

cβ
, d12 = − 8

c2β
, d03 = − 4

c3β2
, d40 = − 6

cβ
− 4

cβ3
,

d31 =
4

c2β2
+

16

c2β3
− 16

c2β
, d22 =

12

c3β2
− 16

c3β3
, d13 =

8

c4β3
− 24

c4β2
, d04 = − 16

c5β3
,

and M3(x1, y1), N3(x1, y1) are terms of at least order five in x1 and y1.
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Let (x2, y2) = (x1, y1 + x2
1 + 2

cβx1y1 +M4(x2, y2)), then (5) takes the following form
ẋ2 = y2,

ẏ2 = e20x
2
2 + e02y

2
2 + e21x

2
2y2 + e12x2y

2
2 + e03y

3
2

+e40x
4
2 + e31x

3
2y2 + e22x

2
2y

2
2 + e13x2y

3
2 + e04y

4
2 +N4(x2, y2),

(6)

where

e20 = − c
β
, e02 =

2

cβ
, e21 = − 4

cβ2
, e12 = − 4

c2β2
− 8

c2β
,

e03 = − 4

c3β2
, e40 =

4

cβ3
, e31 =

8

c2β2
+

16

c3β3
+

16

c2β3
, e22 = − 8

c3β3
+

40

c3β2
− 16

c4β4
,

e13 = − 24

c4β2
+

24

c4β3
, e04 = − 16

c5β3
,

and M4(x2, y2), N4(x2, y2) are terms of at least order five in x2 and y2.

To eliminate the y2− term in (6), change system (6) with the following transformation [14]

x3 = x2 − e02
2 x

2
2 − e21

3e20
x2y2 −

e12−e202
6 x3

2 − e03e20−e02e21
2e20

x2
2y2

−9e302e20−27e12e02e20+18e20e22−32e221
216e20

x4
2 −

7e202e21−12e02e03e20−4e12e21+3e13e20
18e20

x3
2y2

+ e03e21−e04e20
2e20

x2
2y

2
2,

y3 = y2 − e02x2y2 − e21
3e20

y2
2 − e21

3 x
3
2 −

e12−e202
2 x2

2y2 − −2e02e21+3e03e20
3e20

x2y
2
2

−−3e02e20e21+3e03e220+2e21e30
6e20

x4
2 −

9e302e20−27e02e12e20+18e20e22−14e221
54e20

x3
2y2

−4e220e21−9e02e03e20−2e12e21+3e13e20
6e20

x2
2y

2
2 − −2e03e21+3e04e20

3e20
x2y

3
2,

then we get {
ẋ3 = y3,

ẏ3 = f20x
2
3 + f40x

4
3 + f31x

3
3y3 +N5(x3, y3),

(7)

where

f20 = − c
β
, f40 =

11

3cβ3
− 4

3cβ2
, f31 = − 4

c2β3
+

16

c3β3
+

8

c2β2
,

and M5(x3, y3), N5(x3, y3) are terms of at least order five in x3 and y3.

Since f20 = c
β 6= 0, by the change of variables (x4, y4) =

(
−x3,− 1√

−f20
y3

)
, τ =

√
−f20t, we

could turn system (7) into
dx4
dτ = y4,
dy4
dτ = x2

4 +
(

4
3c2β
− 11

3c2β2

)
x3

4 −
f31√
−f20

x3
4y4 +N6(x4, y4),

(8)

where N6(x4, y4) are terms of at least order five in x4 and y4.

From the proposition 5.3 in [15], we know that system (6) is equivalent to the system{
dx4
dτ = y4,
dy4
dτ = x2

4 + Ex3
4y4 +N6(x4, y4),
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where E = − f31√
−f20

=
4

c2β3
− 16
c3β3

− 8
c2β2√

−f20
6= 0. Therefore, E1 is a cusp of codimension three. This

proves (a).

Next, assume d 6= c. The eigenvalues of JE1 are λ3 = 0 and λ4 = c − d. Applying the

transformation

U =
u

β
+

v

βd
, V = u+ v, τ = (d− c) t,

then system (3) becomes
du
dτ = − 3

β2(d−c)2u
2 − 4d+2

β2(d−c)2duv + 1−4d
β2d2(d−c)2 v

2 +M7(u, v),

dv
dτ = v − 2+d

(d−c)2β2
u2 − 6

β2(d−c)2uv + 2−5d
β2d2(d−c)2 v

2 +N7(u, v),

and M7(u, v), N7(u, v) are terms of at least order three in u and v. The coefficient of u2 is

− 3
β2(d−c)2 < 0. From Theorem 7.1 in [16], the origin is a saddle-node. Considering the time

vatiable τ , if d− c < 0, then E1 is a saddle-node with a stable parabolic sector; if d− c > 0, then

E1 is a saddle-node with an unstable parabolic sector.

If ∆ > 0, then h(u) has two equilibria. Finally, we discuss the stability of the positive equilibria

E2 and E3.

Theorem 3. If ∆ > 0, then the positive equilibrium E3 of system (2) is always a saddle point and

the positive equilibrium E2 is

(a) a source if d < c;

(b) a center or a fine focus if d = c;

(c) a sink if d > c.

Proof. The Jacobian matrix of system (2) at equilibrium E2 and E3 are

JE2 =

(
c − c

β

dβ +
√

∆ −d

)
, JE3 =

(
c − c

β

dβ −
√

∆ −d

)
.

Then we could have

detJE2 =
c
√
d2β2 − 4b

β
> 0

and

detJE3 = −c
√
d2β2 − 4b

β
< 0.

So E3 is always a saddle point. The positive equilibrium E2 is determined by the sign of the trace

trJE2 . Specifically, when trJE2 > 0, i.e., d < c, E2 is a source; When trJE2 < 0, i.e., d > c, E2 is a

sink. when trJE2 = 0,i.e., d = c, it is a center or a fine focus.
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3 Bifurcation

3.1 Saddle-node bifurcation

From Theorem 1 we note that the equilibrium points of system (2) vary as the parameter b changes.

When b > d2β2

4 , there is no positive equilibrium point. When b = d2β2

4 , there is a positive equilib-

rium. When b < d2β2

4 , there are two positive equilibria. This indicates the saddle-node bifurcation

may occur around E1.

Theorem 4. When b = bSN , the system (2) undergoes the saddle-node bifurcation around E1, with

the threshold value bSN = d2β2

4 .

Proof. According to the Sotomayor’s theorem [17], we need to verify the transversality condition

for the occurrence of saddle-node bifurcation at b ≡ bSN . The Jacobian matrix of system (2) at

equilibrium E1 is

JE1 =

(
c − c

β

dβ −d

)
.

Because of det(JE1) = λ5λ6 = 0, JE1 has a zero eigenvalue λ5. Let V and W represent the

eigenvectors of JE1 and JTE1
with respect to the eigenvalue λ5, respectively.

Simple calculation gives

V =

(
V1

V2

)
=

(
1

β

)
and

W =

(
W1

W2

)
=

(
1

− c
dβ

)
.

Further, we can obtain

Fb(E1, bSN ) =

(
0

1

)
,

D2F (E1, bSN )(V, V ) =

(
∂2f
∂u2

V 2
1 + 2 ∂2f

∂u∂vV1V2 + ∂2f
∂v2

V 2
2

∂2g
∂u2

V 2
1 + 2 ∂2g

∂u∂vV1V2 + ∂2g
∂v2

V 2
2

)
(E1,bSN )

=

(
0

2

)
.

Obviously, when b ≡ bSN , V and W satisfy the transversality conditions

W TFb(E1, bSN ) = − c

dβ
6= 0

and

W T
[
D2F (E1, bSN )(V, V )

]
= − 2c

dβ
6= 0.

Therefore, when the parameter b goes from one side of bSN to the other, the system (2) experiences

the saddle-node bifurcation at the equilibrium point E1.
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3.2 Hopf bifurcation

From Theorem 3, it is found that the stability of the positive equilibrium of E2 changes as the sign

of tr(E2) varies, that will probably lead to the Hopf bifurcation around E2.

According to the Hopf bifurcation theorem, we need to verify the transversal condition. Based

on the fact that
dtr(JE2)

dd

∣∣∣∣
d=c

= −1 6= 0, system (2) undergoes the Hopf-bifurcation around E2.

Furthermore, we need to give the first Lyapunov coefficient and determine the stability of the limit

cycle around E2.

Now translate E2(u2, v2) to (0, 0) by (û, v̂) = (u− u2, v − v2) and get the following form{
˙̂u = cû− c

β v̂ + c
u2
û2 − 2c

βu2
ûv̂ + c

β2u2
v̂2 + M̂(û, v̂),

˙̂v = 2u2û− v̂ + û2 + N̂(û, v̂),
(9)

where M̂(û, v̂) and N̂(û, v̂) are terms of at least order three in û and v̂.

From another transformation x̂ = −û, ŷ = −û, ŷ = 1√
D

(cû − c
β v̂) and dτ =

√
Ddt, where

D =

√
(dβ)2−4b

β , system (9) becomes {
˙̂x = − ˙̂y + f(x̂, ŷ),

˙̂y = ˙̂x+ g(x̂, ŷ),

where

f(x̂, ŷ) = −
√
D

u2
ŷ2 + M̂1(û, v̂), g(x̂, ŷ) = − 1

Dβ
x̂2 +

ŷ2

u2
+ N̂1(û, v̂),

where M̂1(û, v̂) and N̂1(û, v̂) are also terms of at least order three in û and v̂.

Using the formal series method described in [16], we can calculate that the first-order Lyapunov

number is

σ =

√
D

4u2
2

< 0.

Then the following theorem is available.

Theorem 5. When ∆ > 0 and d = c, the system (2) at the equilibrium experiences the supercritical

Hopf bifurcation with a stable limit cycle around E2.

3.3 Bogdanov-Takens bifurcation

When u = v
β and d = c, it follows from Theorem 2(a) that the unique positive equilibrium E1 of

system (2) is a cusp of codimension three. The Bogdanov-Takens bifurcation may occur arround

E1. Now we select β, b and d as bifurcation parameters, and the Bogdanov-Takens bifurcation may

occur under parameter perturbation.
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Theorem 6. When u = v
β and d = c, the parameter (β, b, d) varies within the small neighbor-

hood of (βBT , bBT , dBT ), where βBT , bBT , and dBT are the Bogdanov-Takens bifurcation threshold

values. Then system (2) undergoes the Bogdanov-Taken bifurcation of codimension 3 in the small

neighborhood of E1.

Proof. When u = v
β and d = c, it follows theorem 2(a) that E1 is a cusp of codimension three

of system (2). Perturb the parameters β, b and d at βBT , bBT and dBT and denote (β, b, d) =

(βBT+ε1, bBT+ε2, dBT+ε3), where ε = (ε1, ε2, ε3) is a vector of parameters in the small neighborhood

of (0, 0, 0). Then, the system (2) becomes{
du
dt = c( (β+ε1)u2

v − u),
dv
dt = b+ ε2 + u2 − (d+ ε3)v.

(10)

Then we translate E1(u1, v1) = ( cβ2 ,
cβ2

2 ) into the origin by (x, y) = (u − u1, v − v1). The system

(10) is changed into
ẋ = ā00 + ā10x+ ā01y + ā20x

2 + ā11xy + ā02y
2 + ā21x

2y + ā12xy
2

+ā03y
3 + ā22x

2y2 + ā13xy
3 + ā04y

4 +O(|x, y|4),

ẏ = b̄00 + b̄10x+ b̄01y + b̄20x
2 +O(|x, y|5),

(11)

where

ā00 =
c2ε1

2
, ā10 = c(

2(β + ε1)

β
− 1), ā01 = −c(β + ε1)

β2
, ā20 =

2(β + ε1)

β2
,

ā11 = −4(β + ε1)

β3
, ā02 =

2(β + ε1)

β4
, ā21 = −4(β + ε1)

cβ4
, ā12 =

8(β + ε1)

cβ5
,

ā03 = −4(β + ε1)

cβ6
, ā22 =

8(β + ε1)

c2β6
, ā13 = −16(β + ε1)

c2β7
, ā04 =

8(β + ε1)

c2β8
,

b̄00 = b+ ε2 −
1

4
c2β2 − cβ2ε3

2
, b̄10 = cβ, b̄01 = −d− ε3, b̄20 = 1.

Then we rewrite system (11) with the transformation (x, y) = (x1 − 2
cβ2x1y1, y1) to{

ẋ1 = c̄00 + c̄10x1 + c̄01y1 + c̄20x
2
1 + c̄11x1y1 +O(|x, y|4),

ẏ1 = d̄00 + d̄10x1 + d̄01y1 + d̄20x
2
1 + d̄11x1y1 +O(|x, y|4),

where

c̄00 =
c2ε1

2
c̄10 =

2

cβ2
b̄00 + c(

2(β + ε1)

β
− 1), c̄01 = − c

β
,

c̄20 =
4

β
+

2ε1
β2

, c̄11 = −2(c+ ε3)

cβ2
− 4(β + ε1)

β3
, d̄00 = b̄00,

d̄10 = cβ, d̄01 = −c− ε3, d̄20 = 1, d̄11 = − 2

β
.

9



Further, we execute the transformation (x2, y2) = (x1, ẋ1) and get
ẋ2 = y2,

ẏ2 = ē00 + ē10x2 + ē01y2 + ē20x
2
2 + ē11x2y2 + ē02y

2
2 + ē30x

3
2 + ē21x

2
2y2 + ē12x2y

2
2

+ē03y
3
2 + ē40x

4
2 + ē31x

3
2y2 + ē22x

2
2y

2
2 + ē13x2y

3
2 + ē04y

4
2 +O(|x, y|4),

(12)

where

ē00 = c̄01d̄00 − c̄00d̄01, ē10 = c̄11d̄00 + c̄01d̄10 − c̄00d̄11 − c̄10d̄01, ē01 = c̄10 + d̄01 −
c̄00c̄11

c̄01
,

ē20 = c̄11d̄10 + c̄01d̄20 − c̄10d̄11 − c̄02d̄01, ē11 = 2c̄20 −
c̄10c̄11

c̄01
+
c̄00c̄

2
11

c̄2
01

+ d̄11, ē02 =
c̄11

c̄01
,

ē30 = c̄11d̄20 − c̄02d̄11, ē21 = − c̄11c̄02

c̄01
+
c̄2

11c̄10

c̄2
01

− c̄00c̄
3
11

c̄3
01

, ē12 = − c̄
2
11

c̄2
01

, ē03 = 0,

ē40 =
c̄00c̄

4
11d̄01

c̄4
01

, ē31 =
c̄2

11c̄02

c̄2
01

− c̄10c̄
3
11

c̄3
01

+
c̄00c̄

4
11

c̄4
01

, ē22 =
c̄3

11

c̄3
01

, ē13 = 0, ē04 = 0.

To verify that the Bogdanov-Takens bifurcation occurs at equilibrium point E1, we need to get

the universal unfolding of system (9). So we need to eliminate y2
2, x3, x2y, xy2, y3, and x4 terms.

Next, we transform system (12) by the procedure similar to that in [18].

(A) In order to eliminate the y2
2 term, take the transformation (x2, y2) = (u1 + c02

2 u
2
1, v1 +

c02u1v1), then system (12) takes the following form
du1
dt = v1,

dv1
dt = f̄00 + f̄10u1 + f̄01v1 + f̄20u

2
1 + f̄11u1v1 + f̄30u

3
1 + f̄21u

2
1v1 + f̄12u1v

2
1

+f̄40u
4
1 + f̄31u

3
1v1 + f̄22u

2
1v

2
1 +O(|u1, v1|5),

(13)

where

f̄00 = ē00, f̄10 = ē10 − ē00ē02, f̄01 = ē01, f̄20 = ē20 −
ē10ē02

2
+ ē00ē

2
02,

f̄11 = ē11, f̄30 = ē30 +
ē10ē

2
02

2
− ē00ē

3
02, f̄21 = ē21 +

ē11ē02

2
,

f̄40 =
ē20ē

2
02

4
− ē10ē

3
02

2
+ ē00ē

4
02 +

ē02ē30

2
, f̄31 = ē31 + ē02ē21, f̄22 = ē22 +

3ē02ē12

2
− ē3

02.

(B) In order to eliminate the u1v
2
1 term, take the transformation (u1, v1) = (u2 + f̄12

2 u
3
2, v2 +

d12
6 u

2
2v2), then (13) is reduced to

du2
dt = v2,

dv2
dt = ḡ00 + ḡ10u2 + ḡ01v2 + ḡ20u

2
2 + ḡ11u2v2 + ḡ30u

3
2 + ḡ21u

2
2v2

+ḡ40u
4
2 + ḡ31u

3
2v2 + ḡ22u

2
2v

2
2 +O(|u2, v2|5),

(14)
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where

ḡ00 = f̄00, ḡ10 = f̄10, ḡ01 = f̄01, ḡ20 = f̄20 −
f̄00f̄12

2
+
f̄10f̄12

6
,

ḡ11 = f̄11, ḡ30 = f̄30 −
f̄10f̄12

2
+
f̄20f̄12

3
, ḡ21 = f̄21 +

f̄11f̄12

6
,

ḡ40 = f̄40 −
d̄20d̄12

6
+
f̄00f̄

2
12

4
, ḡ31 = f̄31 +

f̄11f̄12

6
, ḡ22 = f̄22.

(C) Notice that ḡ20 = − 2b
cβ3 − 9c

2β + O(ε) 6= 0. To removing the u3
2 and u4

2 terms, we transform

system (14) with (u2, v2) = (u3 − ḡ30
4ḡ20

u2
3 +

15ḡ230−16ḡ20ḡ40
80ḡ220

u3
3, v3) and scaling transformation dτ =

(1 + ḡ30
2ḡ20

u3 +
48ḡ20ḡ40−25ḡ230

80ḡ20
u2

3 +
48ḡ20ḡ30ḡ40−35ḡ330

80ḡ320
u3

3)dt to obtain the following system
du3
dτ = v3,
dv3
dτ = ī00 + ī10u3 + ī01v3 + ī20u

2
3 + ī11u3v2 + ī21u

2
3v3 + ī12u3v

2
3

+ī40u
4
3 + ī31u

3
3v3 + ī22u

2
3v

2
3 +R(u3, v3, ε),

(15)

where

ī00 = ḡ00, ī10 = ḡ10 −
ḡ00ḡ30

2ḡ20
, ī01 = ḡ01,

ī20 = ḡ20 +
45ḡ00ḡ

2
30 − 60ḡ10ḡ20ḡ30 − 48ḡ00ḡ20ḡ40

80ḡ2
20

,

ī11 = ḡ11 −
ḡ01ḡ30

2ḡ20
, ī30 =

ḡ10(35ḡ2
30 − 32ḡ20ḡ40)

4ḡ2
20

,

ī21 = ḡ21 −
60ḡ11ḡ20ḡ30 − 45ḡ01ḡ

2
30 + 48ḡ01ḡ20ḡ40

80ḡ2
20

,

ī40 =
g10g30g40

4g202
− 15g10g303

64g203
, ī31 = ḡ31 +

7ḡ11ḡ
2
30

8ḡ2
20

− 5ḡ30ḡ21 + 4ḡ11ḡ40

5ḡ20
,

R(u3, v3, ε) = v2
3O(|u3, v3|2) +O(|u3, v3|5) +O(ε)(O(v2

3) +O(|u3, v3|3)) +O(ε2)O(|u3, v3|).

(D) Since

ī20 = − 9c

2β
− 2b

cβ3
+

2527200c3

β4( c
3β
4 −

cb
β )2

+
62104320b2

cβ7( c
3β
4 −

cb
β )2

− 23034240cb

β5( c
3β
4 −

cb
β )2
− 416102406b3

c3β9( c
3β
4 −

cb
β )2

+O(ε) 6= 0,

by the transformation

(u3, v3) = (u4, v4 +
ī21

3̄i20
v2

4 +
ī221

36̄i220

v3
4), dt = (1 +

ī21

3̄i20
v4 +

ī221

36̄i220

v2
4)dτ,

we can obtain the following form{
du4
dτ = v4,
dv4
dτ = j̄00 + j̄10u4 + j̄01v4 + j̄20u

2
4 + j̄11u4v4 + j̄31u

3
4v4 +R(u4, v4, ε),

(16)
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where

j̄00 = ī00, j̄10 = ī10, j̄01 = ī01 −
ī00ī21

ī20
,

j̄20 = ī20, j̄11 = ī11 −
ī10ī21

ī20
, j̄31 = ī31 −

ī21ī30

ī20
.

Additionally, R(u4, v4, ε) has the same properties as R(u3, v3, ε).

(E) We have j̄20 and j̄31 with the help of MAPLE

j̄20 = − 2b

cβ3
− 9c

2β
+

2527200c2

β3(βc
3

4 −
cb
β )2

+
62104320b2

cβ7(βc
3

4 −
cb
β )2
− 23034240cb

β5(βc
3

4 −
cb
β )2
− 41610240b3

c3β9(βc
3

4 −
cb
β )2

+O(ε)

6= 0,

j̄31 = − 151200b3

β11c6
(

2bβ3

c + 9βc
2

)2 +
128520b2

β9c4
(

2bβ3

c + 9βc
2

)2 +
71136b2

5β8c5
(

2b
β3c

+ 9c
2β

) − (
57816b3

5β10c5
(

2bβ3

c + 9βc
2

)2

− 109278b2

5β8c3
(

2bβ3

c + 9βc
2

)2 +
36b

β4c3
+

44361b

5β6c
(

2bβ3

c + 9βc
2

)2 −
4131c

4β4
(

2bβ3

c + 9βc
2

)2 +
27

β2c
)

 218976b3

β10c4
(

2bβ3

c + 9βc
2

)2 −
273048b2

β8c2
(

2bβ3

c + 9βc
2

)2 +
93456b

β6
(

2bβ3

c + 9βc
2

)2 −
9720c2

β4
(

2bβ3

c + 9βc
2

)2


(− 32508b3

5β9c3
(
βc3

4 −
bc
β

)2 +
48519b2

5β7c
(
βc3

4 −
bc
β

)2 +
32508b

5β8
(
βc3

4 −
bc
β

)3 −
35991bc

5β5
(
βc3

4 −
bc
β

)2

+
3159c3

8β3
(
βc3

4 −
bc
β

)2 −
2b

β3c
− 9c

2β
)− 72b

β5c4
− 36288b

β7c2
(

2bβ3

c + 9βc
2

)2 −
13464b

5β6c3
(

2b
β3c

+ 9c
2β

)
+

3402

β5
(

2bβ3

c + 9βc
2

)2 −
432

β4c
(

2b
β3c

+ 9c
2β

) +
18

β3c2
+O(ε) 6= 0.

Now, we want to turn j̄20 and j̄31 into 1 and notice that the signs of the coefficients of u2
5 and u3

5v5

change as the signs of j̄20 and j̄31. The details are as follows.

(i) If j̄20 > 0, j̄31 > 0, then system (16) becomes the following form with the transformation

(u4, v4) = (j̄
1
5
20j̄
− 2

5
31 u5, j̄

4
5
20j̄
− 3

5
31 v5) and τ = j̄

− 3
5

20 j̄
1
5
31t.{

u̇5 = v5,

v̇5 = k̄00 + k̄10u5 + k̄01v5 + u2
5 + k̄11u5v5 + u3

5v5 +R(u5, v5, ε),

where

k̄00 = j̄00j
− 7

5
20 j̄

4
5
31̄, k̄10 = j̄10j̄

− 6
5

20 j̄
2
5
31, k̄01 = j̄01j̄

− 3
5

20 j̄
1
5
31, k̄11 = j̄11j̄

− 2
5

20 j̄
− 1

5
31 .
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Additionally, R(u5, v5, ε) has the same properties as R(u3, v3, ε).

(ii) If j̄20 < 0, j̄31 > 0 or j̄20 > 0, j̄31 < 0, then system (16) becomes the following form with the

transformation (u4, v4) = (j̄
1
5
20j̄
− 2

5
31 u5,−j̄

4
5
20j̄
− 3

5
31 v5) and τ = −j̄−

3
5

20 j̄
1
5
31t.{

u̇5 = v5,

v̇5 = k̄00 + k̄10u5 + k̄01v5 + u2
5 + k̄11u5v5 − u3

5v5 +R(u5, v5, ε),

where

k̄00 = j̄00j
− 7

5
20 j̄

4
5
31̄, k̄10 = j̄10j̄

− 6
5

20 j̄
2
5
31, k̄01 = −j̄01j̄

− 3
5

20 j̄
1
5
31, k̄11 = −j̄11j̄

− 2
5

20 j̄
− 1

5
31 .

(iii) If j̄20 < 0, j̄31 < 0, then system (16) becomes the following form with the transformation

(u4, v4) = (−j̄
1
5
20j̄
− 2

5
31 u5,−j̄

4
5
20j̄
− 3

5
31 v5) and τ = j̄

− 3
5

20 j̄
1
5
31t.{

u̇5 = v5,

v̇5 = k̄00 + k̄10u5 + k̄01v5 − u2
5 + k̄11u5v5 − u3

5v5 +R(u5, v5, ε),

where

k̄00 = −j̄00j
− 7

5
20 j̄

4
5
31̄, k̄10 = j̄10j̄

− 6
5

20 j̄
2
5
31, k̄01 = j̄01j̄

− 3
5

20 j̄
1
5
31, k̄11 = −j̄11j̄

− 2
5

20 j̄
− 1

5
31 .

(F) Finally, we get the universal unfolding with the transformation (u6, v6) = (u5 − k̄10
2 , v5){

u̇6 = v6,

v̇6 = l̄1 + l̄2v6 + l̄3u6v6 + l̄4u
2
6 + l̄5u

3
6v6 +R(u6, v6, ε),

(17)

where R(u6, v6, ε) has the same properties as R(u3, v3, ε). There are three results corresponding to

the three situations in (E).

(i) If j̄20 > 0, j̄31 > 0, then the cofficients of system (17) are

l̄1 = k̄00 −
1

4
k̄2

10, l̄2 = k̄01 −
1

8
k̄3

10 −
1

2
k̄10k̄11, l̄3 = k̄11 +

3

4
k̄2

10, l̄4 = 1, l̄5 = 1.

(ii) If j̄20 < 0, j̄31 > 0 or j̄20 > 0, j̄31 < 0, then the cofficients of system (17) are

l̄1 = k̄00 −
1

4
k̄2

10, l̄2 = k̄01 +
1

8
k̄3

10 −
1

2
k̄10k̄11, l̄3 = k̄11 −

3

4
k̄2

10, l̄4 = 1, l̄5 = −1.

(iii) If j̄20 < 0, j̄31 < 0, then the cofficients of system (17) are

l̄1 = k̄00 +
1

4
k̄2

10, l̄2 = k̄01 −
1

8
k̄3

10 +
1

2
k̄10k̄11, l̄3 = k̄11 −

3

4
k̄2

10, l̄4 = −1, l̄5 = −1.

Then with the help of the MATLAB, we can obtain∣∣∣∣ ∂(l̄1, l̄2, l̄3)

∂(ε1, ε2, ε3)

∣∣∣∣
ε1=ε2=ε3=0

6= 0

for all three possible situations in (F). Therefore, according to the theory in [19, 20], system (2)

undergoes the Bogdanov-Takens bifurcation of codimension 3 in a small neighborhood of E1.
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The bifurcation diagram for system (17) can be described as follows. If l1 < 0, there are

no equilibria; if l1 = 0, then there is a saddle-node bifurcation plane in a small neighborhood

of the origin (0, 0); if l1 > 0, then the system has two equilibria, a saddle and an anti-saddle.

The remaining surfaces of the bifurcation diagram in R3 have a conical structure, emanating from

(l1, l2, l3) = (0, 0, 0), which can be demonstrated by drawing its intersection with the half sphere

S =
{

(l1, l2, l3)|l21 + l22 + l23 = ρ2, l1 ≥ 0, ρ > 0 sufficiently small
}
.

Now we project the traces onto the l2l3-plane for clear visualization.

Figure 1: Bifurcation diagram of system (17) on S.

Here we summarize the bifurcation in system (17) based on the above discussion. Figure 1

contains the Hopf bifurcation curve, the homoclinic bifurcation curve and the saddle-node bifurca-

tion curve, which are represented by H,C, and ∂S, respectively, where ∂S is the boundary of S.

The curves H and C have the first order contact with the boundary of S at the points b1 and b2.

The curve L is tangent to the curve C at point c2 and tangent to the curve H at point h2, which

is the saddle-node bifurcation curve of double limit cycles. The system (17) is a cusp singularity

unfolding of codimension 2 around b1 and b2.

Along the H, when crossing the arc b1h2 of H from right to left, the curve H is a subercritical

Hopf bifurcation with an unstable cycle curve of codimension one. And the curve H is a supercritical

Hopf bifurcation with a stable cycle curve of codimension one when crossing the arc h2b2 of H from

left to right. The Hopf bifurcation of codimension 2 occurs at point h2.

A homoclinic bifurcation of codimension 1 occurs along the curve C. When crossing the arc

b1c2 of C from left to right, the two parts of the saddle point coincide and an unstable limit cycle

appears. And the two parts of the saddle point coincide and a stable limit cycle appears when

crossing the arc c2b2 of C from right to left. A homoclinic bifurcation of codimension 2 occurs at

point c2.

Then we give some numerical simulations about the system. In Figure 2, note that E0 is a stable

node when c = 0.1, β = 0.12, b = 0.08, d = 0.08. In Figure 3, there is a boundary equilibrium point

14



E0 and a positive equilibrium point E1. As d = 0.4, E1 is a cusp when c = 0.4, β = 0.5477, b = 0.012;

E1 is a saddle-node with the stable parabolic sector when c = 0.3, β = 0.5, b = 0.01; E1 is a saddle-

node with the unstable parabolic sector when c = 0.45, β = 0.5, b = 0.01. There is a positive

equilibrium E2 in Figure 4. Choose β = 0.6, b = 0.0125, E2 is a center when c = 0.4, d = 0.4; E2

is a source when c = 0.45, d = 0.38; E2 is a sink when c = 0.3, d = 0.5. E3 is a saddle point when

c = 0.3, β = 0.5, b = 0.0075, d = 0.4, which is shown in Figure 5.

Figure 2: E0 is a stable node when c = 0.1, β = 0.12, b = 0.08, d = 0.08.

4 Conclusion

Bifurcation analysis of the Gierer-Meinhardt model is carried out. Besides the saddle-node bifur-

cation and the Hopf bifurcation, it is found that the degenerate Bogdanov-Takens bifurcation of

codimension-3 appears in the model. That was not reported in the previous results. By a series

of transformation and based on the bifurcation theory, including the Sotomayor’s theorem and the

normal form method, the detailed bifurcation results are presented and more interesting dynamics

are revealed. Theoretical findings are verified in numerical simulation. More further dynamics

could be explored for the model.
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Figure 3: The stability of E1 (a) E1 is a cusp when c = 0.4, β = 0.5477, b = 0.012, d = 0.4 (b) E1 is a

saddle-node with stable parabolic sector when c = 0.3, β = 0.5, b = 0.01, d = 0.4. (c) E1 is a saddle-node

with unstable parabolic sector when c = 0.45, β = 0.5, b = 0.01, d = 0.4.
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