
International Journal of Software Engineering and Knowledge Engineering
Vol. 10 No. 4 (2000) 549–555
c©World Scientific Publishing Company

ISSUES WITH META-KNOWLEDGE

TIM MENZIES∗, KLAUS-DIETER ALTHOFF†, YANNIS KALFOGLOU‡, ENRICO MOTTA§

∗NASA/WVU Software Research Lab, 100 University Drive, Fairmont, WV 26554, USA
†Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany

‡Institute for Representation and Reasoning; University of Edinburgh, UK
§Knowledge Media Institute, The Open University, Walton Hall, Milton Keynes, UK

E-mail:{tim@menzies.com,klaus-dieter.althoff@iese.fhg.de,yannisk@dai.ed.ac.uk,e.motta@open.ac.uk}

At the SEKE’99 conference, knowledge engineering researchers held a panel on the mer-

its of meta-knowledge (i.e. problem solving methods and ontologies) for the development
of knowledge-based systems. The original panel was framed as a debate on the merits
of meta-knowledge for knowledge maintenance [21]. However, the debate quickly ex-
panded. In the end, we were really discussing the merits of different technologies for the
specification of reusable components for KBS. In this brief article we record some of the
lively debate from that panel and the email exchanges it generated.

Keywords: Problem solving methods, ontologies, reuse, knowledge engineering,
evaluation.

What is meta-knowledge? How is it being used? Is that usage a useful thing to do?

This article approaches these questions from our different viewpoints a:

The Constructors: Motta and Kalfoglou focus on the construction of knowl-

edge base systems (KBS) using two special kinds of meta-knowledge: ontologies

[14,33] and problem solving methods (PSMs) [26,6]. PSMs model the use-

ful inference patterns seen in previous applications. Such patterns, it is ar-

gued, simplify and clarify future implementations. Ontologies model common

domain terminology. This terminology might include the data structures re-

quired by a PSM. Using a good ontology, it is argued, can guide developers

in the construction of new systems. For more information on ontologies, see

http://www.dai.ed.ac.uk/daidb/people/homes/yannisk/seke99panelhtml.html.

The Maintainers: Althoff and Menzies focus on the maintenance and modification

of KBS using case-based reasoning (CBR) [3,1] and continual testing [10,22].

CBR researchers argue that people rarely solve problems from scratch. Rather,

they find similar old solutions, then adapt them to new situations. Continual

testing is a reflective approach to design; i.e. improvements are prompted by

some device reporting errors [30,7]. The most important component of reflective

aFor more details on these views, see our position papers in the proceedings of SEKE’99.

549



550 T. Menzies et al.

design is the evaluation device since failed evaluations are essential for improving

the design.

Construction vs maintenance is only an approximation of our different positions.

Clearly, the two approaches overlap. Constructors believe that maintenance can be

simplified via use of good ontologies and problem solving methods. Maintainers

believe that their “maintenance” tools can really be used as construction tools

since any maintenance task involves some (re)construction of parts of a system.

The following list of reported benefits for meta-knowledge shows specific areas

where we agree and disagree. We all agree on the communications, interoperabil-

ity and browsing/searching benefits. However, while the constructors endorse the

guidance and systems engineering benefits, the maintainers do not.

The communications benefit: Any communication task is simplified by a shared

lexicon. Ontologies are a very useful collection of knowledge for systematically

viewing and sharing a specific topic/problem. For example, ontologies provide a

unified framework within an organization that reduces the terminological confu-

sion [34] arising from different contexts and viewpoints for a particular domain.

Meta-knowledge is also useful for any teaching situation. For example, meta-

knowledge can simplify a student’s task when (e.g.) reading textbooks. Also,

Menzies reports that abstract meta-knowledge descriptions are useful when tu-

toring software or knowledge engineering [24]. Such abstractions serve as a

useful final initiation ritual for a novice designer. When they “get” abstrac-

tions, we know that the students are capable of comparing and contrasting a

wide range of systems.

The interoperability benefit: Inter-operability among systems with different

modeling methods, paradigms, languages and software tools can be achieved

with ontologies that act as an inter-lingua [16].

The browsing/searching benefit: The meta-knowledge within an ontology can

assist an intelligent search engine with processing a query. For example, if

a query returns no results, then the ontology could be used to automatically

generalize the query to find nearest partial matches.

The systems engineering benefit: Ontologies and PSMs, it is argued, simplifies

system construction. For example, Kalfoglou executes the constraints found

in existing ontologies to check new systems. Such pre-existing constraints, are

a powerful tool for checking knowledge when other oracles are absent [14]. In

other work, one commercial company used the ontology associated with Motta’s

PSM design tools to formalize the regulations applicable to the design of a truck

cabin. This formalization, associated with a constraint analyzer, cut the design

of the geometric layout of the cabin from 4 months to 1 day(!!). Elsewhere, an

intelligent PSM librarian was used to build nine KBS applications. Development

times changed from one to 17 days (using the librarian) to a range of 63 to 250

days (without using the librarian) [19]. Finally, as a last example, we mention



Issues with Meta-Knowledge 551

the SALT KBS editor used for the VT elevator configuration system. SALT

restricted its knowledge editors to only those terms relevant for the propose-

and-revise PSM used in VT [18,17]. 2130/3062 ≈ 70% of VT’s rules could be

auto-generated by SALT.

The guidance benefit: While we may use little of an ontology or a PSM, it may

still be useful as a “pointer tool”. That is, the ontology/PSM could be used

as a structuring tool for exploring a new domain. Roughly speaking, reusing

abstracted forms of old knowledge is pointing the way saying “these kinds of

things are important, even if these particular things are not”. In this approach,

developers kick-start the development with an ontology/PSM.

Motta argues strongly for the systems engineering and guidance benefits. PSM

research, he says, has transformed knowledge engineering from “an art” [13] to

a structured discipline, organized in terms of a number of generic problem areas

(e.g., diagnosis, planning, etc...). The PSM-literate KBS developers can worry less

about issues such as (e.g.) conflict resolution strategies for production systems.

Such low-level details do not reflect the knowledge-level goals of a domain expert

[27,8] In a knowledge-level analysis, the task is to map the space of knowledge

engineering techniques and develop handbooks similar to those of other engineering

disciplines. These handbooks specify the type of problems we deal with and the

kind of techniques we use. In Motta’s view PSMs and ontologies provide the key

technologies for writing these handbooks.

Menzies disagrees with Motta, arguing that, despite arguments like those made

by Motta and Kalfoglou and their colleagues, PSMs are not used widely around the

world. Many other approaches exist [20] and some can claim significant successes.

For example:

• The United States DARPA High Performance Knowledge Based initiative

(HPKB) studied how to write KBs faster [23]. In HPKB year one, the

George Mason team generated the most new axioms added per day (787 bi-

nary predicates) using DISCIPLE: an incremental knowledge acquisition tool

[32]. DISCIPLE includes machine learning tools for abstracting learnt rules

which makes them more generally applicable. As DISCIPLE runs, it builds

and updates the metaknowledge used for the purposes of abstraction.

• Proponents of randomized search algorithms do not use PSM-style structuring

tools for organizing their knowledge bases. Instead, they model their entire

domains in simple disjunctive normal form (DNF). In comparative studies,

such randomized search over 3DNF has out-performed knowledge-intensive

approaches by 2 to 3 orders of magnitude [31].

• In the RDR approach, a KBS stores a patch tree to a knowledge base (each

patch fixes a rule and may itself patched recursively). Candidates for new

patches are inferred by an analysis of the paths taken through the KB and

the patches found on those paths. Patch histories are low-level syntactic



552 T. Menzies et al.

knowledge yet they capture the context of change of an expert system. Very

large expert systems have been built and maintained in this manner, without

needing knowledge engineers [10,11,28,29].

Althoff and Menzies have other doubts about systems engineering and the guid-

ance benefits using PSMs and ontologies:

• It may not be cost-effective to routinely devote a significant portion of the sys-

tems engineering effort to formalizing most of the domain knowledge. Althoff

argues that enshrining domain terminology (e.g. into an ontology) should be

the exception, rather than the rule. Over time, the evaluation of some expe-

rience base will show which artifacts will be the most useful ones (and only

these useful artifacts should be enshrined).

Also, the level of abstraction at which we formalize domain terms should be

learnt via extensive experience with that particular term [4]. For example,

sometimes, simple text-based descriptions of meta-knowledge are powerful

tools. Object-oriented “guidance patterns” serve to direct the analyst’s focus

onto a set of issues that previous analysts have found insightful. Such pat-

terns include CHECKS [12], Caterpillar’s Fate [15], and Coad’s strategies [9].

This type of meta-knowledge is stored as simple checklists of English text.

• The systems engineering benefits described above assumed some reuse of on-

tologies and PSMs. The software engineering experience is that reuse comes

at a cost. Verbatim reuse is very rare: often artifacts from a reuse library have

to be modified prior to their use. The COCOMO-II software cost estimation

model offers an estimate of the cost of adapting reusable sub-routines for a

new project [2]. A learning curve must be traversed before a module can be

adapted. According to COCOMO-II, by the time you know enough to change

a little of that module, you may as well have rewritten 60% of it from scratch

(see Fig. 11 in Menzies’ panel notes [21]). The COCOMO-II results relate

to the adaption cost of procedural systems. Hence, they may not apply to

declarative descriptions of system terminology (i.e. an ontology). However,

at the very least, these results caution us that just because we are reusing

an ontology or a PSM, this does not necessarily mean that we are building

systems more cheaply. Ontologies and PSMs must be learnt prior to use and

this learning time may have a non-trivial impact on the overall cost.

It can be argued that that the last point must be false. If it were true, then

why can we find the spectacular optimizations of systems development using PSMs

and ontologies seen above (recall the examples in the systems engineering sections)?

Menzies objects to this counter-argument, arguing that without more precise metrics

collection, it is hard to interpret these reported optimizations [20,23] (e.g. when

Motta’s colleagues reduced their design time from 4 months to 1 day, how much

of that reduction was due to the PSM framework and how much to the constraint

analyzer that they used?).



Issues with Meta-Knowledge 553

Another point of contention was the stability of the meta-knowledge:

• Motta defines meta-knowledge as that knowledge which is stable across do-

mains. Stable knowledge does exist, he says and argues by example: “You

do not change the C compiler every time you change the C code”. For many

PSMs such as diagnosis: there exist a finite number of different approaches

to diagnosis, each one with pros and cons [5].

• Menzies took the opposite view. Unlike Motta, he doubts that any detailed

description of meta-knowledge will ever be stable. Meta-knowledge is not use-

ful if it simplifies system construction but complicates system maintenance.

Meta-knowledge is still knowledge, he says, and the maintenance of system

knowledge is a significant cost of any successful system. Further, he rejects

the diagnosis example stating that his reading of the details of the diagnosis

literature is that separate and incompatiable abstractions are offered by dif-

ferent authors [24]. More generally, based on a recent literature review [25]

he claims that in the usual case, expert use of a KBS produces significant

changes to that KBS.

In the end, what did we learn? Due to these discussions, we now have a clear

definition of where we agree and disagree. Also, we now have an explicit list storing

the potential benefits of ontologies and PSMs (to the best of our knowledge, this

list was only implicit in the current literature). Lastly, the participants learnt much

about each other’s positions which would be useful for future debates (at SEKE

2000?). Based on a flurry of email, we now have the guidelines on what arguments

would win over the other side:

• We need more KE metrics. In particular, we need to evaluate the success

(or otherwise) of different parts of our systems. Also, we need to test for the

stability of our meta-knowledge.

• The constructors/maintainers have to be more explicit about their mainte-

nance/construction methods respectively.

References

1. A. Aamodt and E. Plaza, “Case-based reasoning; Foundational issues, methodological
variations, and system approaches,” AI Communications 7(1) (1994) 39–59. Available
from http://www.iiia.csic. es/People/enric/AICom ToC.html.

2. C. Abts, B. Clark, S. Devnani-Chulani, E. Horowitz, R. Madachy, D. Reifer, R. Selby,
and B. Steece, COCOMO II Model Definition Manual, Technical report, Center for
Software Engineering, USC,, 1998.
http://sunset.usc.edu/COCOMOII/cocomox.html#downloads.

3. K-D. Althoff, A. Birk, S. Hartkopf, W. Muller, M. Nick, D. Surmann, and C. Tautz,
“Managing software engineering experience for comprehensive reuse”, in Proc. 11th
Int. Conf. on Software Engineering and Knowledge Engineering, SEKE’99, Kaiser-
slauten, Germany, June 1999, pp. 10–19.



554 T. Menzies et al.

4. K.-D. Althoff, M. Nick, and C. Tautz, “Improving organizational memories through
user feedback”, in Proc. Workshop on Learning Software Organizations (LSO) (in con-
junction with the 11th International Conference on Software Engineering and Knowl-
edge Engineering, SEKE’99, Kaiserslauten, Germany), ed. F. Bomarius, June 1999,
pp. 27–44.

5. R. Benjamins, Problem Solving Methods for Diagnosis, PhD thesis, University of Am-
sterdam, 1993.

6. R. Benjamins and D. Fensel, “Special issue on problem solving methods”, International
Journal of Human Computer Studies 49(4) (1998).

7. G. Casady, “Rationale in practice: templates for capturing and applying design exper-
tise”, in Design Rationale: Concepts, Techniques, and Use, eds. T.P. Moran and J.M.
Carroll (Lawerence Erlbaum Associates, 1996), pp. 351–372.

8. W. Clancey, “Heuristic classification”, Artificial Intelligence 27 (1985) 289–350.
9. P. Coad, D. North, and M. Mayfield, Object Models: Strategies, Patterns, and Appli-

cations (Prentice Hall, 1997).
10. P. Compton, G. Edwards, A. Srinivasan, P. Malor, P. Preston, B. Kang, and L.

Lazarus, “Ripple-down-rules: Turning knowledge acquisition into knowledge main-
tenance”, Artificial Intelligence in Medicine 4 (1992) 47–59.

11. P. J. Compton and R. Jansen, “A philosophical basis for knowledge acquisition”,
Knowledge Acquisition, 2 (1990) 241–257.

12. W. Cunningham, “The CHECKS pattern language of information integrity”, in Pat-
tern Languages of Program Design, eds. J. Coplien and D. Schmidt (Addison-Wesley,
1995). Also available at http://c2.com/ppr/checks.html.

13. E. A. Feigenbaum, “The art of artificial intelligence: Themes and case studies of knowl-
edge engineering”, in IJCAI ’77, 1977.

14. Y. Kalfoglou and D. Robertson, “A case study in applying ontologies to augment and
reason about the correctness of specifications”, in Proc. 11th International Confer-
ence on Software Engineering and Knowledge Engineering, SEKE’99, Kaiserslauten,
Germany, June 1999, pp. 64–71.

15. N. Kerth, “Caterpillar’s fate: A pattern language for transformation from analysis to
design”, in Pattern Languages of Program Design, eds. J. Coplien and D. Schmidt
(Addison-Wesley, 1995). Also available from http://c2.com/ppr/catsfate.html.

16. J. Lee, M. Gruninger, Y. Jin, T. Malone, A. Tate, G Yost, and other members of the
PIF working group, “The PIF process interchange format and framework”, Knowledge
Engineering Review 13(1) (1998) 91–120.

17. S. Marcus and J. McDermott, “SALT: A knowledge acquisition language for propose-
and-revise systems”, Artificial Intelligence 39 (1989) 1–37.

18. S. Marcus, J. Stout, and J. McDermott, “VT: An expert elevator designer that uses
knowledge-based backtracking”, AI Magazine, Winter 1987, pp. 41–58.

19. D. Marques, G. Dallemagne, G. Kliner, J. McDermott, and D. Tung, “Easy program-
ming: Empowering people to build their own applications”, IEEE Expert, June 1992,
pp. 16–29.

20. T. Menzies, “hQkb — The high quality knowledge base initiative (Sisyphus
V: Learning design assessment knowledge)”, in KAW’99: the 12th Workshop
on Knowledge Acquisition, Modeling and Management, 1999. Available from
http://www.tim.menzies.com/99hqkb.pdf.

21. T. Menzies, “Knowledge maintenance heresies: Meta-knowledge complicates KM”,
in 11th Annual International Conference on Software Engineering and Knowledge
Engineering, 1999. Available from http://tim.menzies.com/pdf/99sekekm.pdf.



Issues with Meta-Knowledge 555

22. T. Menzies and C. C. Michael, “Fewer slices of PIE: Optimising mutation testing via
abduction”, in SEKE ’99. Available from http://tim.menzies.com/pdf/99seke.pdf,
1999.

23. T. Menzies and F. van Harmelen, “Editorial: Evaluating knowledge engineering
techniques”, International Journal of Human Computer Studies, Special Issue on
Evaluation of Knowledge Engineering Techniques, 2000. forthcoming; available from
http://tim.menzies.com/pdf/99ekend.pdf.

24. T. J. Menzies, “OO patterns: Lessons from expert systems”, Software Practice
& Experience 27(12) (1997) 1457–1478. Available from http://tim.menzies.com/

pdf/97patern.pdf.
25. T. J. Menzies, “Towards situated knowledge acquisition”, International Journal of

Human-Computer Studies 49 (1998) 867–893. Available from http://tim.menzies.

com/pdf/98ijhcs.pdf.
26. E. Motta, D. Fensel, M. Gaspari, and A. Benjamins, “Specifications of knowledge

components for reuse”, in Proc. SEKE ’99, 1999.
27. A. Newell, “The knowledge level”, Artificial Intelligence 18 (1982) 87–127.
28. P. Preston, G. Edwards, and P. Compton, “A 1600 rule expert system without knowl-

edge engineers”, in Second World Congress on Expert Systems, ed. J. Leibowitz, 1993.
29. D. Richards and P. Compton, “Combining formal concept analysis and ripple down

rules to support the reuse of knowledge”, in SEKE ’97: Proc. 1997 Conf. on Software
Eng. & Knowledge Eng.

30. D. A. Schon, The Reflective Practioner (Harper Collins/Basic Books, 1983).
31. B. Selman, H. Levesque, and D. Mitchell, “A new method for solving hard satisfiability

problems”, in AAAI ’92 (1992), pp. 440–446.
32. G. Tecuci, “Building intelligent agents: An apprenticeship multistrategy learning the-

ory”, Methodology, Tool and Case Studies (Academic Press, 1998).
33. M. Uschold and M. Gruninger, “Ontologies: Principles, Methods, and Applications”,

The Knowledge Engineering Review 11(2) (1996) 93–136.
34. M. Uschold, M. King, S. Moralee, and Y. Zorgios, “The enterprise ontology”, The

Knowledge Engineering Review 13(1) (1998).


