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One of the challenges for bioinformaticians is to approximate, in silico, tried and tested
research methods used in vitro. One of the problems standing in their way is the lack
of a concrete framework for designing and expressing in silico experiments that aim at
being isomorphic to in vitro experiments. This paper introduces such a framework in
the form of a specification language called ISXL. ISXL projects to biologists a model
of in silico experiments that approximates the research method they are most familiar
with, as follows. An ISXL-specified experiment (1) conforms to a conceptual model that
explicitly captures the basic constituents of experiments in the empirical sciences; (2)
may be defined in relation to explicit hypothesis formulation and validation rather than
simply taking the form of an evidence gathering process as in alternative approaches;
(3) may be long-lived and evolve over time, in the sense that there is built-in support
for denoting past versions of specifications, past results, past hypotheses, past validation
criteria; (4) may denote other experiments and their constituent parts, thereby reflecting
the interrelatedness of scientific processes. Features (1)-(4) above are made possible by
endowing ISXL with certain characteristics of a persistent workflow environment. This
allows ISXL experiments to be rich in metadata without imposing too great a burden on
the biologist. The metadata in turn open the way for ISXL experiments to be capable
of introspection and reflection. This paper focuses on describing of ISXL conceptually
and syntactically, and indicates how ISXL experiments are given a formal semantics.

Keywords: Bioinformatics; in silico experiments; scientific workflows; workflow
languages.

1. Introduction

There is great awareness that data integration is, and is likely to remain for the

foreseeable future, a central concern in bioinformatics. Much progress has been

made in addressing that concern [3, 1]. More recently, some researchers have moved

on to tackle the problem of process integration as well [2, 15]. This later devel-

opment benefits greatly from advances in both workflow technology and service

orchestration. The combined effect of these advances is to provide biologists with

∗This paper incorporates material first presented in [12] and [13].
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the conceptual means to cast part of their experimental protocols in computational

form. In this form, such protocols are referred to as in silico experiments. This

paper postulates that referring to such constructs as in silico experiments is an

overstatement insofar as the computational form they assume is far from isomor-

phic to the form a comparable in vitro activity would take. They are, at best, a

computational model of the evidence-gathering stage of the in vitro experimental

process, and hence, only partially isomorphic to the latter. The linguistic frame-

work contributed in this paper addresses this concern by providing explicit support

not just for evidence gathering (based on data and process integration) but also for

linking that evidence gathering with hypothesis formulation and validation. More-

over, the framework is conceptualized as a persistent environment. This means that

an experiment is long-lived and interrelated with other experiments. Thus, it can

refer to its previous specifications and the results obtained from those as well as

to those of other experiments. This means that experiments specified in the pro-

posed language, called ISXL, are not merely self-centred, transient computational

entities, rather they can evolve in response to their own history and that of other

experiments it relates itself to.

The remainder of this paper is structured as follows. Section 2 explains in more

detail the main motivations underlying this paper, the challenges arising from them,

and the contributions reported in the form of specific responses to the challenges

identified. Section 3 introduces a motivating scenario based on distant homology

detection. Section 4 describes how ISXL experiments provide the working biologist

with support for binding conceptually and concretely the core evidence-gathering

specification with both the hypothesis for which the evidence is sought and with the

validation process that computes the level of support that the gathered evidence

lends to the hypothesis. Section 5 describes the mechanisms behind the support for

long-lived, evolving, interrelated in silico experiments, exemplify their use in the

language and suggests the benefits that then accrue. Section 6 provides, within the

constraints of the space available, a description of the most salient syntactic and

semantic aspects of ISXL. Section 7 situates the contributions of the paper against

the background of related work. Section 8 concludes by discussing the potential

impact of the contributions presented.

2. Motivation, Challenges, Contributions

The main motivation for the contributions reported in this paper stems from the

broad aim of replicating in silico the experimental method carried out in vitro, as

closely as it is possible, and useful, to do so. The goal is to provide biologists with

computational mechanisms that allow for in silico experiments to be sufficiently

isomorphic to in vitro ones that the transition from one experimental context to

the other is not unduly burdensome. This is a step in the direction of fulfilling some

of the crucial promises implied by the use of phrases such as e-science to denote

the growth in in silico experimental practices.
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Consider the following observations: most bioinformatics tools for process co-

ordination provide only (1) a computational model of the evidence-gathering stage

of the experimental process; and (2) the means to carry out experiments that are

isolated and atemporal. However, scientific practice involves: (a) not just evidence

gathering but relating the latter to an explicitly formulated hypothesis (for which

the evidence is presumably collected) and an explicitly specified validation process

through which one can conclude which level of support the gathered evidence lends

to the hypothesis; and (b) relating the current expression of the experiment with

previous ones, the current results with previous results, the current formulation of

the hypothesis (and its associated validation) with previous ones, both of this very

same experiment as it evolves over time as well as of other experiments with which

it is, or should be, explicitly related. Experimentalists currently lack expressive

support for (a) and (b) above. Granted that technologies such as lab information

management systems (LIMSs) do offer some support in this respect, they also often

suffer from lack of integration with the computational artifacts by means of which

evidence is gathered. The contributions reported in this paper aim at improving

matters for biologists with respect to (a) and (b) above in a more integrated manner.

The motivation above gives rise to challenges that can be stated as follows:

(C.1) how to conceptualize, from the viewpoint of in vitro experimental practice,

what current computational models of in silico practice lack? (C.2) how to support,

concretely, the extended in silico computational models of in vitro practice that such

a conceptualization task identifies?

The classical components of an evidence-gathering activity in the empirical sci-

ences are materials (e.g., a probe s and a biological sequence database D), methods

(e.g., sequence alignment) and a protocol (e.g., ‘apply the latter to the former’).

The specific materials, methods and protocol used can only be decided upon in

light of a specific hypothesis (e.g., s is involved in pathology p) in support of which

the evidence is sought. The degree of support provided by the evidence gathered

is calculated by some validation procedure (e.g., support is high if the sequence

similarity score of s is above some threshold e against sequences s1, . . . , sn ∈ D

known to be involved in p, for some threshold value n).

For a claim of isomorphism between in silico and in vitro practice to be credible,

a computational framework is required that can: (R.1) express explicitly the hy-

pothesis as an operational procedure; (R.2) specify precisely the evidence-gathering

process to be used in obtaining the data needed to associate some degree of support

to the hypothesis; (R.3) specify precisely how the data obtained in the evidence-

gathering stage map to a specific degree of support for the hypothesis; and (R.4)

satisfy (R.1) to (R.3) under a model of scientific practice that recognizes that ex-

periments are neither isolated nor atemporal, i.e., they refer to itself and to other

experiments and to the past states and results of those experiments.
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The contributions reported in this paper constitute a specific, effective, well-

integrated response to challenges (C.1) and (C.2) above, as follows:

1. An in silico experiment language, ISXL, is proposed whose underlying conceptual

model encompasses not just evidence gathering but also the explicit statement

of the hypothesis the evidence is gathered for, and of the procedure used to

validate that hypothesis by computing the degree of support that the evidence

gathered confers to the latter. This satisfies requirements (R.1) to (R.3) above.

2. Implicit persistence mechanisms for ISXL-specified experiments are provided

that enable the language to offer explicit constructs which denote (and hence

allow a biologist to refer to) past versions of an experiment, other experiments

(and possibly past versions of these), and past results obtained by enacting any

of the above. This satisfies requirement (R.4) above.

These contributions are described and discussed in detail in Secs. 4 and 5,

respectively. More details on the more salient syntactic and semantic aspects of

ISXL is provided in Sec. 6. The consideration of the benefits that accrue from them

is best done in the context of a motivating example that Sec. 3 now introduces and

describes.

3. Motivating Example

As a motivating example, consider the problem of hypothesizing protein function

(PF) from biological sequence analysis. PF remains an important problem in spite

of the intense recent activity in bioinformatics. It is also a fairly complex problem in

two senses at least. Firstly, from a purely biological point of view, the basic scientific

knowledge required is not yet established in the minute detail needed. In view of this

and other difficulties, bioinformaticians have devoted a significant amount of effort

to developing tools for analysis whose combined use, it is believed, increases the

tractability of the problem. However, here too the complexity is daunting, insofar

as, from a purely computational point of view, the integration of data and process

at the grain required is a complex problem. This is compounded by the fact that

the topology of the computation (i.e., the flow graphs over both data and process

nodes) is quite complex too.

Consider, for simplicity, a sub-problem of PF, viz., that of detecting distant

homology (DH). The following is one possible DH protocol: (1) given a probe,

perform a search over a sequence database to retrieve matches; (2) perform a filter-

ing step; (3) if more than one match survived the filtering, then perform multiple

sequence alignment, otherwise, perform pairwise alignment; (4) perform profile gen-

eration over the resulting alignment; (5) using the profile as probe, perform a search

over a sequence database to retrieve matches; (6) if no new matches were found,

then the profile and the sequences in the previous pass are the solution, otherwise

perform multiple sequence alignment over the profile and the new matches; (7) go

back to performing profile generation over the resulting alignment.
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Although this protocol seems innocuous enough, closer analysis reveals that it

poses many specific challenges. Firstly, it requires combining (and hence, interop-

erating across) very distinct data resources, e.g., protein sequence databases and

protein family databases. Secondly, it requires combining (and hence, interoperating

across) very distinct computational resources, e.g., homology filters and profile gen-

erators. Thirdly, note that the latter gives rise to a process model in the technical

sense, i.e., a computation with a complex topology, composed of many sequen-

tial steps, involving branch selection, requiring iteration, etc. Fourthly, and more

importantly, note that, even if only for usability by non-bioinformaticians, such

process models are better expressed as a coordination of components, at a particu-

larly coarse granularity, so that the components (i.e., the data and computational

resources) are appropriately abstracted away from implementation detail.

Admittedly, given precise, complete and stable requirements, and a non-

negligible amount of time (e.g., of the order of days, if not weeks), an expert software

engineer could hope to capture the protocol in silico by writing an application using

some general-purpose language (e.g., Java, or Perl, or Python), especially if she can

count on domain-specific libraries (e.g., BioJava, or BioPerl, or BioPython, from the

Open Bioinformatics Foundation (http://open-bio.org/)). However, this route is

closed to biologists who are not expert software engineers: for them, this level of

detail is inappropriate in the sense defined above.

One widely-used approach to counteract this impediment has been to front-end

expertly-developed protocols with interfaces for non-bioinformaticians. However,

by doing so one loses compositionality and closure, insofar as, short of the costly,

tedious and error-prone approach of cutting and pasting results from interface to

interface, such protocols do not (at the level of non-bioinformaticians) components

make. In particular, since DH is but one subproblem of PF, a non-bioinformatician

would naturally expect the automation of many such subproblems to be composable

up to a complete protocol for PF. However, this is far from being the case with-

out, again, precise, complete and stable requirements, and, again, a non-negligible

amount of time from an expert software engineer to carefully craft the in silico

solution of PF from the in silico solution of its subproblems, such as DH.

Now, suppose that such carefully crafted composition is, indeed, developed and

front-ended for the benefit of non-bioinformaticians. Still, this approach to in silico

biology fails to be isomorphic to in vitro biology on at least the following grounds:

(a) automating the protocol automates the gathering of evidence but this does not

imply support for the explicit validation of an explicitly formulated hypothesis

that supposedly explains the evidence generated by the protocol;

(b) automating the protocol automates the execution of an experiment but this

does not imply support for the dynamics of the scientific process (which requires

records of lineage and provenance for all methods, materials and protocols to

be explicitly kept and cross-referenced).
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In the DH problem, implementing the protocol means the automation of the

gathering of evidence but this does not imply support for the explicit validation of

an explicitly formulated hypothesis that supposedly explains the evidence generated

by the protocol. Sequence similarity is evidence for homology but does not imply

it. This means that the evidence gathered by performing the DH protocol above

must be tied to some explicitly formulated hypothesis that is meant to explain that

evidence. This hypothesis must then be subject to explicit validation by some well-

founded, principled process. Currently, bioinformatics offers adequate automated

support for evidence gathering while the validation of process of the hypothesis

that is meant to explain the evidence gathered is largely done off-line, e.g., using

statistical tools (and one is back to a dependence on expert software engineers for

composition and front-ending). Note, however, that the magnitude of the need (and

the difficulty of managing it by hand at this scale) is compounded many times when

one moves from each sub-problem to the full PF problem. Moreover, automating the

protocol automates the execution of an experiment but this does not imply support

for the dynamics of the scientific process. The need for such support can be seen

in the DH problem in the fact that different methods (e.g., different approaches to

alignment) may produce different results, and it is an essential part of the scientific

process that different protocol formulations are attempted and that the trail of

such attempts is kept in mind all the time for the best scientific knowledge to be

attained. Here too, bioinformatics offers little support, thereby relegating biologists

to the use of time-consuming (and methodologically brittle) off-line or decoupled

methods (e.g., from lab books and personal file stores to fully-fledged LIMSs).

In this case which is, in the relevant respects, typical of many, a biologist would

only be partially supported in her goal of approximating in silico the experimental

practices she is used to in vitro. This is because most in silico frameworks only offer

partial isomorphism to in vitro practices. In contrast, the conceptual model that

underpins ISXL allows for the specification of in silico experiments, in which the

constituent parts of the experimental process can be explicit stated and are logically

bound. Moreover, unless all of the specification, (possibly) the values consumed and

produced in each enactment, and the sequence of protocol steps taken (i.e., the trace

of each enactment) are kept in a structured, denotable manner, one will have to

generate from the in silico activity a significant amount of metadata by hand (e.g.,

for lab book entries, for provenance records, etc.). However, those metadata are

but a by-product of the in silico process, and hence are derivable from it in an

automated fashion.

ISXL is a persistent workflow language. It can, therefore, both collect and later

resolve references to such metadata as are associated with, or derivable from, the en-

actment of experiment specifications. Also, ISXL does such metadata management

using versioning, and hence supports reference to past events in the experimental

process. Finally, since persistence is supported by default, reference by one experi-

ment to any other experiment in the ISXL persistent repository is supported too.
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The benefits of the contributions reported in this paper can thus be seen to

be associated with the greater degree of isomorphism to in vitro practices that is

achievable by ISXL-specified in silico experiments. Scientific experimentation is a

collaborative activity of significant duration. The knowledge discovery process that

underlies scientific activity can become laborious, especially with regard to the need

to keep information about how hypotheses acquire or lose support. The associated

metadata are both voluminous and functional, in the sense that scientists often

reason with their records of the experimental process, not just with the evidence

that it produces. How and when an experiment was conducted, with which materials

and methods, what was the protocol followed and the results achieved, are all

important for the understanding of open and closed options.

Sections 4 and 5 provide more detail as to how ISXL supports biologists in the

ways suggested in this section via the motivating example just introduced.

4. Contextualizing Evidence Gathering

It seems that the idea of using workflows in bioinformatics is gaining credibility in

the community [2, 15]. The reason seems to be that workflow technologies lie at a

convenient abstract level for the representation of (and a suitable enactment envi-

ronment for) data integration and process coordination. ISXL follows this workflow

approach: it is, therefore, essentially a workflow specification language with an un-

derlying target enactment environment. The workflow approach, in and of itself,

goes a long way towards capturing the constituent parts of in vitro experiments as

in silico processes.

Basically, a workflow models a process as a composition of smaller units of work

(i.e., individual processing steps typically referred to as tasks). Whenever there is a

data flow connection between two tasks (e.g., alignments being passed to a profile

generator), a data dependency arises to which one can also attach constraints (e.g.,

to wait, or not, until the data stream is entirely produced before it begins to be

consumed). Task coordination is specified by control flow connections (e.g., start

two tasks concurrently). Here, again, a control dependency arises which, again, can

be constrained (e.g., do not start until handles on the necessary ports have been

secured). The data and flow dependencies define a topology for the process. Runtime

circumstances determine which data and control flow constraints are satisfied and

when. From the runtime circumstances data and control traces (i.e., paths through

the data and control flow graphs) arise [14, 7, 6].

Bioinformaticians stand to benefit from using workflow technology as a model

of the in silico experimental process. The constituent part of in vitro practices that

a workflow models most visibly is the evidence gathering stage of that process, as

follows. Evidence gathering is described by a protocol that relates the mate-

rials used in the experiment with methods that somehow process those materials

and produce new ones as results. The relationships established by the specified

protocol are captured in a workflow by the data and control flow dependencies and
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constraints. Each method is defined as a processing unit, whose signature comprises

the work to be done (as a binding to an internal or external service) by consuming

the contents of in-trays (i.e., metaphorically, the container for input materials) and

producing contents for out-trays (ditto, for output materials).

evidence gathering

materials

probe
end

methods

M1 ( # givena probe,performa search
task: FASTA@http://www.ebi.ac.uk/fasta33/
inTrays: probe
outTrays: probe results
),
M2 ( # filteringstepforG+Ccontent
task: eval(python,"filterForGCContent(60)")
inTrays: probe results
outTrays: results
),

#... othermethods

end

protocol

controlflow

: -> M1;
: M1 -> M2;
if eval(python,"cardinality(results) > 1")
: M2 -> M.3.1;
#... othercontrolflowrules

end

dataflow

probe -> M1.probe;
M1.probe results -> M2.probe results;
#... otherdata flowrules

end

end

end

Fig. 1. Evidence-gathering in ISXL.

Figure 1 shows an excerpt of the ISXL specification of the motivating example

in Sec. 3 where the syntax for the evidence-gathering stage is applied to the example

from the previous section. Materials and methods are declared in their respective

sections of the specification. The protocol declares the coordination rules for

the computation in two groups: one for control flow and another for data flow.

The operational semantics of ISXL is defined in terms of state-transition diagrams

for methods and trays, as described in Sec. 6. Briefly, Fig. 1 shows part of the

evidence gathering block in ISXL. The definition of methods M1 and M2 (the first

two steps in the motivating example) is shown. Each method has its associated task

(in this case, one example is of a remote service, the other uses an eval calla), as

well as inTrays and outTrays .

aeval calls are motivated in Sec. 6.
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The protocol is expressed as a set of coordination rules. In this example,

M1 -> M2 stipulates that the completion of the M1 method enables the M2 method

to start executing. That M1 also has a data dependency with M2 is indicated by the

data flow rule M1.probe results -> M2.probe results, indicating that once the

probe results out-tray of M1 is full, its contents can flow into the probe results

in-tray of M2.

Now, the evidence gathering stage needs to be logically bound to a hypothesis

in whose support the evidence is gathered and the hypothesis, in turn, is logically

bound to some validation procedure, i.e., an assessment of the degree to which the

evidence gathered does lend support to the hypothesis. To the best of our knowledge

no other workflow approach to bioinformatics has accounted for this logical binding

of the evidence gathered with the other constituents.

This is surprising because the validation procedure is, by definition, repre-

sentable as a process. Moreover, a hypothesis can (and should) be given an op-

erational form (typically, as the specification of a relationship) and hence, can also

be expressed as a process (essentially one that ascertains whether the relationship

is true of the entities involved). What distinguishes these two processes from the

one that models the evidence gathering stage is their methodological status: to be

properly contextualized, the evidence gathering process must be logically bound

to the corresponding hypothesis and validation procedure. If so, it would be ex-

pected that proposals for workflow languages in bioinformatics would also express

hypotheses and validation procedures as processes, especially because this allows

the language to enforce the logical binding between the constituent parts of an

experiment rather than overburdening the biologist with the administrative task of

ensuring that this methodological requirement is satisfied. This is, therefore, one of

the contributions of ISXL, viz., it confers the hypothesis and validation procedure

that correspond to the evidence gathering stage a methodological status that the

underlying mechanisms can then take upon themselves to enforce.

One could argue that the same functionality could be achieved in other workflow

languages by simple compositional mechanisms. However, the logical relationship

would still have to be specified in the language if it is to be enforced. This rela-

tionship being, at the appropriate abstraction level, the same for all experiments,

it would be wasteful and error prone to specify it on a per-experiment basis: its

proper locus is the language itself, i.e., the compilation process should ensure that

an executable mechanism is generated that enforces the relationship. Although the

syntactic cues for the compiler are simple, the beneficial consequences are quite

significant. Thus, ISXL conforms to a conceptual model in which the logical rela-

tionship between constituent parts of an experiment is explicitly stated (and hence

can be automatically enforced by the compiler, just as type relationships routinely

are). Figure 2 depicts the conceptual model underlying the language.
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experiment

hypothesis

validation
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protocol
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data flow
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{ or }
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0..*

0..*

0..*

0..*

Fig. 2. ISXL conceptual model.

The advantage of such a conceptual model is that the semantics of the integrated

specification of experiments as workflows are enforced without requiring the user to

implement them, as would be needed in general-purpose programming languages

or other workflow languages. The import of the conceptual model in Fig. 2 is,

therefore, that in order to bind the constituents logically, all that is needed is to

relate them syntactically.

Figure 3 shows another excerpt of the ISXL specification of the motivating

example in Sec. 3. The syntactic cues represented by the explicit declaration of the

materials involved, together with the explicit statement of an operational hypothesis

and a validation procedure imply the need for the ISXL compiler to generate the

mechanisms through which the logical relationships expressed in the conceptual

model are enforced at runtime.

The hypothesis is an executable specification that wraps the evidence and con-

jectures that some property of the evidence gathered holds. In the example, the

conjecture might be that “no profile with G+C content above 60% is longer than

15 letters”. The validation is an executable specification that wraps the hypothesis

and assesses its validity, typically over a sample (for example, one might count the

true and false predictions over a given sample).

Upon processing the hypothesis specification, the ISXL compiler can gener-

ate a partially instantiated procedure (e.g., using programming techniques such as
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experiment DH filtered for G+C content
inTrays: probe
outTrays: profile, results
evidence gathering

#... omitted,seeFigure1

end

hypothesis

# profilesarenomorethan15letterslong

eval(python,
"length(DH for highG+C(probe).profile <= 15") end

validation

# counttrueandfalsepredictionsina sample

eval(python,
"X = [hypothesis for probe in sample];
True = X.count;
False = sample.count - True")
end

end

Fig. 3. Binding evidence and hypothesis.

currying). This partially instantiated procedure can then be invoked in the valida-

tion specification by the mere mention of the hypothesis keyword. The compiler

output for the validation procedure makes sure that the context provides the nec-

essary arguments to completely determine the curried function, so that it can be

called and return a truth value. In the Python code in Fig. 3, a list comprehension

expression is used to traverse a sample and identify the true predictions. This can

then be used to count the number of cases in which the hypothesis evaluates to

true and false. Notice the way in which the ISXL compiler has enough handles (as

well as expressive means) to enforce the logical relationship between hypotheses,

the evidence associated with them, and the validation procedures that are used to

ascertain the degree of support the hypotheses enjoy.

This section has shown how ISXL allows in silico experiments to enjoy a greater

degree of isomorphism to in vitro ones than other workflow approaches to date

have allowed. The benefits accruing manifest themselves in the lessening of the

administrative burden on biologists coupled with assurance of methodological rigor.

Section 5 describes how the design of ISXL has taken a further, important step from

the definition of the conceptual model depicted in Fig. 2 by instantiating it as (part

of a) schema for a persistent repository. This opens the way for ISXL to have

persistent process language aspects with benefits that Sec. 5 describes in detail.

5. Evolving, Interrelated ISXL Experiments

Referring to the constituent parts of past experiments and the evidence they pro-

duced is a common way to understand what has been achieved, and how, before one

sets out to seek new knowledge. It is part and parcel of the experimental method to

seek to improve upon past experiments by deriving, from their specifications and

from the results obtained through them, new experiments that in this sense are
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versions of their predecessors, given that this approach structures experiments into

lineages.

In in vitro experiments, there is normally a lab book where scientists write down

the specification of experiments (comprising all of materials, methods and protocol,

as well as the hypothesis and the validation results, albeit without a formal, regular

structure), the results obtained each time the experiment was run, and, in crucial

cases, provenance data and logs describing how the experiment proceeded. If, as a

result of insights obtained, a new experiment suggests itself as the next step of what

has now become an extended, multi-step investigation, then all this information in

the lab book is available to inform the specification of the new experiment.

While it is true that great effort has been poured into automating the manage-

ment of the metadata that lab books traditionally collect, integrating the metadata

collected by such systems with an in silico experiment has not, to the best of the

authors’ knowledge, been attempted by many researchers (one exception being the
myGrid project [11]). The challenge in integrating collected metadata with an ex-

periment is that of providing the means for the specification of the latter to refer to

the former. At a technical level, this presupposes that the language engine (i.e., the

execution environment) keeps state so as to provide constructs for referring to en-

tities, say, in a persistent repository that the language engine itself is aware of, and

hence knows how to access and use (as opposed to a generic, standard file system

accessible to any process running in the host machine). Languages whose engines

possess this ability are referred to as persistent languages. ISXL is a domain-specific

persistent process modeling language for in silico experiments in biology. Therefore,

it systematically and automatically collects and stores metadata not only about the

results of experiments but also about past versions of such experiments.

The formal structure of the ISXL repository is given by the conceptual schema

in Fig. 2, augmented as indicated in Fig. 4. It shows that ISXL embraces the idea

that experiments can have many specifications (through what can be thought of as

a versioning process) and that each of these specifications can be run many times,

as a result of which metadata are kept (e.g., the materials used, the data and control

traces, etc.).

���
���
���

�
�
�

experimentrun specification
{ordered}

1..*

{ordered}

1 10..*

used in

Fig. 4. Extended ISXL conceptual schema.

In silico experiments whose metadata are systematically kept can be referred

to and can also evolve. This means that experiments can be derived to give rise to

new (perhaps improved, perhaps alternative) versions. They can also be invoked as

subcomponents of new specifications (for instance, the evidence-gathering part of

one experiment can be reused with a different validation procedure for the same
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hypothesis, or perhaps for a hypothesis that was differently expressed in a previous

version of the same, or another, experiment). The effect of these design decisions is

the support for evolving, interrelated in silico experiments.

If reference to such metadata is integrated well into the expressive capabilities

of the language, questions like the following can be asked:

1. What was the hypothesis in the first specification of this family of experiments?

2. How was the evidence gathering specified then and how was it obtained, as

revealed in the control and data traces the last time it was run?

3. What were the results of run i of this experiment?

4. What other experiments involving the same materials and methods produced

better degree of support for their hypotheses and what were these hypotheses?

5. Has the same evidence been gathered in support of one particular hypothesis

but with different validation procedures?

6. Which one of those resulted in a degree of support above a certain threshold?

7. What is the complete lineage that has led to this experiment specification?

These questions can be converted into ISXL syntax that, when evaluated, yields

an answer that can influence the outcome of the experiment in whose specification

they occur. This capability is not easily replicated by recourse to non-persistent

languages, because one would have to code not only the data management func-

tions but, more challengingly, the retrieval and use of the stored metadata into the

body of the experiment. In non-persistent languages, in order to write a program

one is expected to have determined, precisely and in advance, the (type of) data

the program will receive as input and produce as output. So, if biologists are speci-

fying an experiment as a program in Perl, or in Java, or in any other non-persistent

language, they must plan in advance all data and metadata that are to be denotable

(otherwise, by default, they will not be), and then design and implement the ap-

propriate repository. Only then would experiments be capable of referring back to

previous versions, thereby giving rise to a lineage relationship. This is by no means

a trivial task even for skilled programmers, because it presupposes the possession of

the software engineering skills necessary for the development of as sophisticated an

infrastructure as an implementation of ISXL provides out-of-the-box. The second

contribution of ISXL described in this paper is, therefore, the support for long-lived,

evolving experimental processes through the provision of linguistic constructs (and

corresponding infrastructure) for cross-reference between experiments.

Figure 5 shows an excerpt of an ISXL specification (not related to the mo-

tivating example in Sec. 3) where its support for cross-reference is exemplified.

The example shows a data flow rule that will send data to someMethod.inTray.

If run01 of specification version specVers1 (by default, of this experiment) has

collected more sequences than run01 of specification specVers2 (ditto) in their re-

spective evidence-gathering stages, then specVers1 provides someMethod.inTray

with those sequences, otherwise not.
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data flow

[if (length(specVers1.run01.evidence)) >
length(specVers2.run01.evidence))] :
specVers1.run01.evidence ->
someMethod.inTray;

#... otherdataflowrules

end

Fig. 5. Example cross-reference in ISXL.

run results (past and current)
specifications, provenance, traces,

parser code generator

parser

objectsource

source

classical compiler architecture

ISXL compiler architecture

in−memory structures

TARGET
MACHINE

in−memory structures

persistent structures

source
workflowISXL

ISXL repository

input

input

output

output

to repository
bindings

workflow language
code generator enactment engine

workflow

Fig. 6. ISXL compilation strategy.

The syntax to access elements of experiments is similar to file system addressing

and can be translated to XPath expressions (as indicated more precisely in Sec. 6).

Figure 6 contrasts the abstract architecture of a classical compiler with that of

ISXL. The top half shows that non-persistent programming languages must take

specific steps to achieve persistence. In contrast, the bottom half shows the extent

to which ISXL can be said to be persistent, viz., both the compilation and the

enactment processes leave traces in a repository whose contents language constructs

can denote. This can be achieved by any of many persistence bindings available

(associated either to a general-purpose programming language, e.g., as in JDBC or

JDO for Java, or to a data model, e.g., as in the ODMG standard for object-oriented

databases).
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ISXL source code is first mapped to a canonical representation (which gives

that source a regular structure). Then, if it constitutes a new version of an existing

experiment, that canonical form is added to the lineage of the experiment that it

versions and that resides in a repository concretely instantiating the ISXL concep-

tual model (in Figs. 2 and 4). The canonical representation is then compiled into

the workflow language whose enactment engine is used to endow ISXL specifica-

tions with an operational semantics. The compiled version of the canonical form of

an ISXL specification is also stored in the repository. Finally, metadata generated

by each run of a specification are also kept. This comprises the data and control

traces of the run, i.e., precisely which materials and methods were used and which

control and data flow transitions took place. Any results (i.e., evidence and degree

of support) are also kept.b If ISXL specifications are enacted more than once, the

run metadata are stored in association with the version of the specification that

was enacted. Run metadata, therefore, accumulate (rather than overwrite the most

recently stored) which allows previous results to be referred to in the language,

and hence influence both the course of the evidence gathering (or of the hypothesis

validation) or the functional design of future versions, for example.

The combined effect of the facilities arising from the persistence model adopted

in the design of ISXL is to support the formulation of questions (1) to (7) above

as ISXL expressions that can be evaluated at run time. These facilities for persis-

tence with introspection allow ISXL-specified in silico experiments to mirror more

closely the way in which, in vitro, scientists proceed tentatively towards their goal

of generating new scientific knowledge.

As pointed out above, the ISXL repository organizes experiments into lineages

that represent, in effect, the network of relationships between an experiment and

its evolving history, as well as between one experiment and many others. Through

lineages that share specification components in the repository, the connectedness

of scientific investigations over (networked) space and over time is more faithfully

captured. This is, therefore, another way in which it can be said that ISXL-specified

in silico experiments come closer to the ideal of being isomorphic to in vitro ones.

6. Syntactic and Semantic Aspects of ISXL

This section provides additional information on some salient syntactic and semantic

aspects of ISXL with a view towards indicating how any concrete implementation

of the language builds upon an array of techniques and technologies. In particu-

lar, the section indicates those that could be deployed to build a proof-of-concept

implementation of the language.

Syntactically, an ISXL specification of an in silico experiment must contain

an evidence gathering section, and may contain, as a pair, a hypothesis and the

bClearly, this is not to be understood as the keeping of replicas of datasets but rather of references
to them. So, ISXL experiments can be rerun but not, strictly speaking, necessarily replicated.
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specification of how to validate it. The evidence gathering section contains decla-

ration of materials (e.g., data services) and methods (e.g., computational services),

and a specification of the protocol to be followed. Methods map to stateful tasks,

whose inputs and outputs are also stateful. The latter are referred to as in-trays

and out-trays, respectively.

The protocol takes the form of a set of control flow rules and a set of data

flow rules. A control flow rule has in the antecedent a guard, i.e., a Boolean-valued

expression over task and tray states (and tray values), and in the consequent, an

action that effects transitions in task and tray states (and tray values). A data

flow rule is only different in that its action typically effects the transport of data

between trays.

In Fig. 1, in the control flow specification, given methods M and M ′, the expres-

sion M → M ′ is syntactic sugar for M = finished: M ′ := enabled, meaning

that M ′ can execute once, and only once, M has finished executing. In Fig. 1,

M1 -> M2 is an example of the type of rule just described. Analogously, in the data

flow specification, given trays T and T ′, the expression M.T → M ′.T ′ is syntactic

sugar for M.T = full: M.T -> M ′.T ′, meaning that once, and only once, the

out-tray T in M is full, its content can be transferred to the in-tray T ′ in M ′. In

Fig. 1, M1.probe results -> M2.probe results is an example of the type of rule

just described.

The above examples suggest how flows of control and data occur (and how

enactment progresses) as a result of transitions in the state of tasks and trays, re-

spectively. In other words, the abstract semantics of ISXL is specified with respect to

state transition diagrams associated with tasks and trays. This engine-independent

semantics is based on the evaluation of the control and data flow rules until a qui-

escent state is reached.c Thus, the consequent of control and data flow rules affects

the state of tasks and trays as prescribed by the separate state-transition diagrams

depicted in Fig. 7.

The abstract operational semantics of a protocol is given in terms of the forward-

chaining rule engine in Fig. 8, as explained below. The hypothesis is an executable

specification that wraps the evidence and conjectures that some property of the

gathered evidence holds. In the example, the conjecture might be that no profile

with G+C content above 60% will be longer than 15 letters. The validation is an

executable specification that wraps the hypothesis and either assesses its validity,

typically over a sample or against thresholds, or provides the information needed

for doing so. For example, one might count the true and false predictions over a

given sample to assess its accuracy on the materials used.

cIf a quiescent state is reached at all, because ISXL specifications are much too expressive for
termination and confluence to be guaranteed. Undoubtedly, the development of static analysis
tools would be useful future work to identify, whenever feasible, that a specification might lead to
non-termination.
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rule engine (R, ≺ = textual occurrence, from = 1, to = 1)

while TRUE :

R
′ = []

for r in R :

if [[condition(r)]] = TRUE :

R
′ ++ [r]

if R
′ = [] :

return

else :

R
′′ = sort(R′, ≺)

R
′′′ = slice(R′′,from,to)

for r in R
′′′ :

if action(r) = STOP :

return

else :

[[action(r)]]

Fig. 8. A rule engine for ISXL protocol evaluation.

However, as is the case with most sufficiently expressive languages, the seman-

tics of ISXL is more informatively formulated as being relative to an execution

environment. This concrete semantics of an ISXL specification is given by transla-

tion to a process modeling language with an associated enactment engine. ISXL,

therefore, does not come equipped with its own enactment engine and is not, in

principle, tied to any specific engine.

Preliminary work by the authors has shown that ISXL compiles into the PML

process modeling language as enacted by a PWI (for Process Wise Integrator)

engine [4, 8]. The PML/PWI environment is a modern, object-oriented industrial-

strength and state-of-the-art process modeling and enactment platform whose most

distinctive (and distinctly useful) feature is its seamless support for process evo-

lution via orthogonal persistence mechanisms. Given the requirement to support

long-lived, evolvable in silico experiments, the PML/PWI environment is particu-

larly suitable as a compilation/enactment target for ISXL.

In addition, the authors have ascertained that it is possible to compile an

ISXL experiment into a BPEL4WS [7] orchestration that can be enacted over

the BPWS4J (http://www.alphaworks.ibm.com/tech/bpws4j) engine. The ba-

sic compilation strategy can be briefly sketched, as follows. Each ISXL experiment

compiles into a BPEL4WS process whose main body implements the saturation

algorithm in Fig. 8 by which task states and tray states both progress through the

transition diagrams in Fig. 7. Each task compiles into a subprocess inside which

a set of BPEL4WS containers are defined, viz., one to record the task state, as

many to record tray states as there are in- and out-trays, and, again, as many to

record tray contents as there are trays. The container corresponding to the task

state is managed so as to behave according to the ISXL task state transition se-

mantics. Likewise, the containers corresponding to tray states. Finally, and most

crucially, the subprocess acts as a wrapper for the required web service (e.g., a

FASTA service), insofar as its main responsibility is to prepare the call (e.g., a
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SOAP RPC request) that invokes the required web service as a result of the task

it models entering the perform state. Thus, a change in task state (as a result of

some action in some rule consequent) is the consequence of a message having been

received by the subprocess that represents the task. In other words, an action in

a rule consequent compiles to a message-send to the subprocess that implements

the task or tray referred in the action. Upon receipt, the subprocess updates the

appropriate containers, and, in consequence, the task (or tray) state undergoes a

transition, and, in turn, the required web service may be invoked, data may start

to be sent, or be requested, etc. Data exchange, as standard in SOAP-based in-

teractions, is document-based and is kept in containers that model tray contents

and, from there, are subsequently passed around and shared by message exchange

within the component activities of the root process that models the experiment as

a whole.

The ISXL design refrains from implementing within-language support for any

data types, and hence the language does not come with any operations to side-effect

state, other than via coordination rules (which are constrained to operate on task

and tray states). This is consistent with the intention of coordinating coarse-grained

processes that map to fully-fledged, highly-aggregated services. Nevertheless, ISXL

provides syntax for source code Σ, in some general-purpose language Λ, to be eval-

uated. This is done by means of tasks that rather than being defined via a reference

to a service are defined by an eval(Λ,Σ) statement. It is part of the ISXL com-

pilation strategy to pair up the compiler with both one target process enactment

engine (or more) and one general-purpose language (or more). With respect to the

latter, of course, an interpreted language makes this binding easier, but this is not

mandatory: one might expose a compilation/execution server as a service for most

modern non-interpreted languages. For instance, in the running example, Python is

used, so the filtering step M2 might map to a call to a function that processes a list

of sequences and returns that sublist of it whose elements all satisfy the filtering

property.

As described in Sec. 5, ISXL support for long-lived, evolvable in silico experi-

ments is founded on a persistent repository. One possible route to the implementa-

tion of the repository uses Xindice, the Apache Software Foundation native XML

database. Since there are many convenient approaches to map XML in-memory

structures to persistent ones, the ISXL compiler can cleanly generate the code for

metadata management. This option for an XML database also means that the

concrete schema is written in XML Schema, that references to metadata map to

XPath expressions, transformations to XSLT ones and side-effects to the repository

to XUpdate commands.

7. Related Work

Many different motivations, raising intersecting (but not identical) issues to those

stated in Sec. 2, have resulted in many proposals with many points of contact
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with the work described here and touching aspects of the language. To the best

of our knowledge, there is no proposal that offers alternative approaches to all the

functionalities exhibited by ISXL.

One prominent initiative is the family of Bio* projects from the Open

Bioinformatics Foundation (http://open-bio.org/). It aims to support open

source programming in bioinformatics. The approach is to specify programs as

in silico experiments, using fine-grain abstractions for the bioinformatics domain.

Many libraries have been made available for this purpose, e.g., BioPerl, BioJava and

BioPython, offering greater fitness-for-purpose than their underlying languages.

BioPerl, for example, captures concepts of the biological domain (e.g., data for-

mats for sequences termed Bio::Seq) and provides the computational abstractions

for application developers to code methods that can be used as building blocks in

bioinformatics process models (e.g., parsing analysis reports with the Bio::SearchIO

module) including process coordination (e.g., pipelining data with the BioPipeline

module). In contrast, ISXL aims to support the expression of in silico experiments

as specifications that approximate the in vitro model with abstractions that are se-

mantically closer to those that are familiar to experimental scientists. Bio* projects

do not follow any conceptual model of the experimental process, as ISXL does,

therefore they do not offer built-in support for in silico experiments as such.

With regard to long-lived, evolving, interrelated experiments, Bio* offers no

built-in mechanisms to keep track of the necessary metadata: programmers them-

selves must design and implement the associated functionalities. For biologists to

take on such tasks, they would need to be proficient software engineers, to the ex-

tent necessary for them to tackle the associated complexity, especially with regard

to the infrastructure for the repository.

Work that is more closely related to the contributions of this paper can

be categorized into the following kinds: data integration, fine-grained process

integration, fine-grained process composition, fine-grained process coordination,

and coarse-grained process coordination. Proposals that fall under the data

integration category have aimed primarily at reducing impediments stemming

from the semantic diversity of data stocks in biology. Their contribution has been

to layer on top of semantically diverse data sources an integrated view of the data in

the form of a query language (e.g., BioKleisli [1]), or a query interface front-ending a

query language (e.g., TAMBIS [3]). Proposals that fall under the fine-grained pro-

cess integration category have aimed primarily at reducing impediments stem-

ming from the semantic diversity of analysis tools in biology. Their contribution has

been to layer on top of semantically diverse analysis tools sources an integrated view

of the data in the form of libraries (e.g., EMBOSS [10]) that are crafted for consis-

tency. Proposals that fall under the fine-grained process composition category

have aimed primarily at building on the contributions of the previous two categories.

Their goal has been to facilitate the composition of data access and data analysis

into simple, largely-linear topologies, i.e., steering clear of coordination proper, for

which concurrency mechanisms are typically presupposed. Their contribution has
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been to layer on top of data and process integration suites a query interface with

which a user can (with different degrees of effort) form a chain of evidence gathering

steps (e.g., SRS [16]). Proposals that fall under the fine-grained process coordi-

nation category differ from the latter kind in that they support concurrency and

hence allow more complex, nonlinear topologies to be specified that are best seen

as computations based on component coordination. Their contribution has been to

allow data and analysis tools to be seen as interacting components (e.g., Intelli-

GEN [9]). A more recent initiative is Biopipe [5]. The design of ISXL assumes that

all the above proposals are meritorious in their goal. It therefore takes their achieve-

ments for granted and aims to build on top of such initiatives by viewing them as

encapsulated components that an ISXL experiment can simply invoke. In contrast,

proposals that fall under the coarse-grained process coordination category

share with ISXL the view that the components they coordinate are more abstractly

defined and bundle more aggregated, added-value functionality than simple query-

ing and fine-grained analysis. All the proposals in this category are work in progress

at the time of writing. Characteristic examples are BioMOBY [15] and myGrid [11],

both of which adopt a service-oriented architecture, in which data sources and anal-

ysis tools are exposed as services that can be invoked through messaging protocols

such as SOAP. While BioMOBY focusses on the registration and discovery aspects

of service-based architectures, myGrid focusses on orchestration and on supporting

end-users. ISXL also aims to express coarse-grained process coordination. It is a

tool for building applications of the kind also supported by BioMOBY and myGrid,

but unlike them it is language, not an application in itself. It can be compiled into

many target orchestration languages at different grains. So, while BioMOBY of-

fers facilities for service registration and discovery, ISXL presupposes them (e.g.,

as supplied by BioMOBY); while myGrid can be seen as an e-scientist workbench,

ISXL is a tool that that workbench might include. ISXL adds capabilities to both

BioMOBY and my
Grid in the following respects. It covers not just evidence gathering

but also result interpretation, and supports long-lived, evolving experiments whose

specification and results can be referred to within and across experiments. Thus,

an ISXL-expressed in silico experiment comes closer to the ideal of isomorphism

with the equivalent in vitro.

8. Conclusions

This paper has described some of the contributions of ISXL, focussing, in particular,

on its goal to allow the expression of in silico experiments that approximate better

the structure and practices observed in vitro.

An ISXL-specified experiment (1) conforms to a conceptual model that ex-

plicitly captures the basic constituents of experiments in the empirical sciences;

(2) may be defined in relation to explicit hypothesis formulation and validation

rather than simply taking the form of an evidence gathering process as in alterna-

tive approaches; (3) may be long-lived and evolve over time, in the sense that there



June 21, 2005 14:57 WSPC/117-ijseke 00224
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is built-in support for denoting past versions of specifications, past results, past

hypotheses, past validation criteria; (4) may denote other experiments and their

constituent parts, thereby reflecting the interrelatedness of scientific processes.

Some of the problems that such contributions help ameliorate include the fol-

lowing. For in silico experiments to be the backbone of e-science, they are required

to be truer representations of scientific practice. Ideally, the way the experimental

process is conducted should remain the same irrespective of the environment in

which it is enacted, modulo the appropriate adjustments. Therefore, one should

be entitled to expect to easily find the constituent parts of experiments logically

bound in one single conceptual object, but only data and process integration have

been so bound. The diversity of data sources and tools, as well as the amount of

data generated by experiments, place a heavy burden on scientists. This takes the

form of great costs in managing the data and metadata their experiments produce

and of great loss in their ability to use this metadata in the specification of new ex-

periments. For example, there are significant impediments at present for scientists

to look back on the evolving nature of their investigations and to look forward to

derive new versions from past experiments, when the process is being conducted

in silico. This compromises their throughput in generating and assimilating new

knowledge, whereas one would expect the opposite effect from the deployment of

such powerful tools as modern computers are. So far, only provenance data has

been kept, but scientists need to manage their data and metadata on their own

because there is no support for experiments that are aware of their own history.

This paper describes the extent in which ISXL fulfils its goal of providing bi-

ologists with computational mechanisms that allow for in silico experiments to be

sufficiently isomorphic to in vitro ones that the transition from one experimental

context to the other is not unduly burdensome. In this respect, ISXL seems to fare

much better in addressing (or not incurring) the problems above. Thus, ISXL is a

step in the direction of fulfilling some of the crucial promises that have led to the

growth in in silico experimental practices in biology.
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