
June 6, 2006 17:28 WSPC/Guidelines IJSEKE

International Journal of Software Engineering and Knowledge Engineering
© World Scientific Publishing Company

COST SIMULATION AND PERFORMANCE OPTIMIZATION
OF WEB-BASED APPLICATIONS ON MOBILE CHANNELS∗

MATTHIAS BOOK, VOLKER GRUHN, MALTE HÜLDER, ANDRÉ KÖHLER

Deutsche Telekom Chair of Applied Telematics/e-Business,Dept. of Computer Science, University of Leipzig
Klostergasse 3, 04109 Leipzig, Germany

{book, gruhn, huelder, koehler}@ebus.informatik.uni-leipzig.de

ANDREAS KRIEGEL

Commerz Business Consulting, Commerzbank AG†

Mainzer Landstr. 185, 60327 Frankfurt am Main, Germany
andreas.kriegel@commerzbank.com

Received (20 January 2006)
Revised (6 June 2006)

Accepted (Day Month Year)

When considering the addition of a mobile presentation channel to an existing web-based application,
a key question that has to be answered even before developmentbegins is how the mobile channel’s
characteristics will impact the user experience and the costof using the application. If either of these
factors is outside acceptable limits, economical considerations may forbid adding the channels, even if
it would be feasible from a purely technical perspective. Both of these factors depend considerably on
two metrics: The time required to transmit data over the mobile network, and the volume transmitted.

The PETTICOAT method presented in this paper uses the dialog flow model and web server
log files of an existing application to identify typical interaction sequences and to compile volume
statistics, which are then run through a tool that simulates the volume and time that would be incurred
by executing the interaction sequences on a mobile channel. From the simulated volume and time data,
we can then calculate the cost of accessing the application on a mobile channel, and derive suitable
approaches for optimizing cost and response times.

Keywords: Web engineering; mobile communications; cost estimation.

1. Introduction

As thin client applications, web-based applications have the advantage of independence
from the user and his preferred device. Just the existence ofa browser and a suitable net-
work connection are needed. Thus, web-based applications seem to be convenient for mo-
bile use. But in hands-on trials of such scenarios, the response time of the application is
often notably worse compared to its use in a LAN environment.Furthermore, the commu-
nication costs are hard to predict. An organization that plans to provide mobile access to its

∗A preliminary version of this paper was presented at the5
th Intl. Conference on Quality Software (QSIC 2005)1.

†The work described in this paper was performed at the University of Leipzig.

1



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

2 Book, Gruhn, Ḧulder, Köhler, Kriegel

existing web-based applications for a large group of mobileworkers needs detailed infor-
mation about the usability and estimated cost of the application in a mobile environment
beforeinvesting any effort in building it. Therefore, the expected performance (in terms of
response time) as well as the expected cost of the application on different mobile networks
need to be quantified at an early stage. With PETTICOAT (PerformanceTuning and cost
discovery of mobile web-basedApplications), we present a method that can be used to
address this situation1.

The PETTICOAT method can be used by software developers as well as software
project managers. After compiling all necessary information, a tool calculates indicators
that reveal the application’s response time and communication costs in the mobile environ-
ment. This way, decisions about the development of a mobile channel for an application
can be based on quantitative arguments. If the application is classified as not immediately
suitable for mobile use, decision makers can use the detailed results to consider whether
it is reasonable to address particular deficits in the application’s design revealed by the
simulation. This optimization can be conducted for single features or the whole applica-
tion. Note that since the PETTICOAT approach extrapolates characteristics from existing
to additional channels, it cannot be used when the whole application is still in the con-
ceptual stage, but is intended to assess the feasibility of later channel additions to existing
applications.

In this paper, we describe how the PETTICOAT method was employed in a case
study that we performed in cooperation with an insurance company. The following sec-
tion presents each step of the method in detail: After an overview of the related work in
Sect. 2, we use examples from a case study to show how to model the application structure
as a dialog flow (Sect. 3.1), identify typical interaction sequences within the application
(Sect. 3.2), measure the time and data volume in the existingapplication (Sect. 3.3), spec-
ify the mobile channels’ characteristics (Sect. 3.4), simulate the application’s interaction
sequences on different mobile channels and evaluate the usability and cost implications
of the observed time and data volume (Sect. 3.5). In Sect. 4, we then present different
approaches for optimizing the underlying factors affecting cost and usability. Section 5
concludes by outlining our ongoing and future work in this area.

2. Related Work

Dutta et al. show how frequent and thus critical user paths can be identified in e-commerce
applications2. They provide a model of user behavior in the form of session graphs and
conduct analyses regarding the most frequently used user paths, as well as critical edge
sequences. This technique could be useful for our approach,since the identification of the
most frequently used subset of all possible user paths in theapplication model is needed.

Furthermore, there are lots of approaches for web log analysis aimed at classifying user
paths, e.g. the work of Spiliopoulou3, Berkhin et al.4, Kim et al.5, Heer and Chi6, Chi et
al. 7, and Gillenson et al.8. Especially the identification of long sequences by Pitkow and
Pirolli 9 seems to be an important topic for the PETTICOAT concept. Theidentification
of actually chosen user paths vs. all possible user paths in the application model is needed



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels3

in order to obtain meaningful results from the following simulation. In this context, the
work of Mao et al.10 is of specific interest. They present an idea for a cluster-based online
monitoring system for web traffic. The target-oriented analysis of web traffic is a task to be
solved within the PETTICOAT approach.

As PETTICOAT particularly addresses the analysis of dynamic web applications in-
stead of static web pages, the analysis of web traffic is even more difficult. This problem
is addressed e.g. by Berendt and Spiliopoulou11, who deal with dynamic web content
generation and website analysis.

Other approaches to improving the performance of web-basedapplications have fo-
cused on using thin clients to transmit just the image of the application (e.g. the work of
Lai et al.12). The findings of this work are of relevance for the deductionof consequences
(application design, bandwidth restriction) based on the simulation results. In this context,
Bent et al.13 as well as Krishnamurthy and Wills14 report interesting results from an
analysis of large websites regarding performance, cache and cookie issues. These results
could be used for the creation of a package of measures in order to modify the analyzed
website regarding performance issues in the mobile environment.

3. The PETTICOAT Method

The PETTICOAT method provides decision makers with indicators on the economical fea-
sibility of mobile channel development. In a nutshell, it involves identifying interaction
sequences in a dialog flow model of the existing application,measuring the time and data
volume incurred in their execution (either by analyzing webserver log files or observing
real-time traffic), and then simulating how the same interaction sequences would perform
when subjected to the frame conditions of a mobile channel. As a result of the simula-
tion, we gain time and volume projections for the interaction sequences that allow us to
estimate the cost and response times incurred by working with the application on different
mobile channels, and to optimize these values by modifying the application’s contents and
infrastructure (Fig. 1).

The following subsections present these steps in more detail and illustrate them with
excerpts from a case study we performed for an insurance company. In that project, we
applied the PETTICOAT method to the prototype of a new web-based offer management
system in order to estimate the cost that will be incurred each month by insurance agents
accessing the system over mobile networks such as GSM, GPRS and UMTS.

3.1. Modelling the Dialog Flow

As a basis for our analysis, we need a model of the application’s complete dialog structure.
We use the Dialog Flow Notation (DFN)15 for this purpose. This graphical notation models
an application’s dialog flow as a directed graph of states that are connected by transitions.
We call the transitions “events” and the states “dialog elements”, distinguishing “masks”
(web pages rendered on the client) and “actions” (business logic executed on the server).
Events can carry parameters that transport business data such as form input.



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

4 Book, Gruhn, Ḧulder, Köhler, Kriegel

Dialog Flow

Model

Web Server

Logfiles

Sequence

Identification

Volume

Analysis

Interaction

Sequences

Volume

Statistics

Channel

Profiles

Simulation

Comunication

Cost Estimate

Response

Time Estimate

Optimization

Page

Contents

Caching

Strategies

Protocol

Parameters

Fig. 1. The PETTICOAT method

By building such dialog graphs from masks, actions and events, the developer can spec-
ify all possible user interactions with the application. Toincrease the expressive power of
the specification, dialog graphs can be encapsulated in “dialog modules” that can be reused
in different contexts within the same application by nesting them into the dialog flow at
arbitrary levels. This allows the developer to build complex dialog structures that closely
mirror the users’ mental model of the complex business processes supported by large-scale
web applications. While tool support for automatically deriving the dialog graphs of com-
plex applications would be desirable, re-engineering methods like path analysis in web
server log files cannot capture the semantics of the encountered links and produce as clean
dialog graphs as a manual reconstruction can yield.

As an example, Fig. 2 shows the dialog flow of the offer management system analyzed
in the case study. Since we were looking at a rather simple prototype, the model does not
make use of the DFN’s dialog modularization capabilities and comprises only seven dialog
masks connected through a number of actions that implement various business operations,
an exemplary selection of which is shown in Table 1. Field staff users enter the application
through theinitialize systemaction(0), which leads to theSearch Transaction Formmask
(A) where they can look up, create or edit transactions. Using the other masks and actions,



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels5

A2 B4

3

25 26

27

28

29

G 30

5

6

7

24

E

21

20

8

C

11

10

9

13 18

16 22D

1512

F

2319

0

Fig. 2. Dialog graph of the offer management system

Mask ID Content
A Search Transaction Form
B Edit Transaction Form
C Associate Agent Form
D Create Agent Form
E Associate Insurance Holder Form
F Create Insurance Holder Form
G Edit Offer Form

Action ID Function
0 initialize system
2 search transactions
4 prep transaction for editing
6 prep offer for editing
... ...
26 expand transaction elements
27 collapse transaction elements
28 load documents
29 browse transaction elements
30 process offer modifications

Table 1. Masks and actions of the offer management system (excerpt)



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

6 Book, Gruhn, Ḧulder, Köhler, Kriegel

transactions can be associated with insurance agents, insurance holders and policy offers.
In order to use these graphical specifications as input for the following steps, they can be

automatically translated into the XML-based Dialog Flow Specification Language (DFSL)
15. However, we will skip this straightforward conversion step here.

3.2. Identifying Interaction Sequences

The dialog graphs of an application specify all possible ways of interaction that the user
interface allows. Since the same business process may be accomplished in a number of
similar, but still different ways, there will typically be some more and some less frequently
traversed paths through the dialog graph (called “interaction sequences” from now on).
To arrive at a representative cost projection for the business processes performed with the
application, we therefore need to analyze the actual interaction sequences that occur in the
application. By identifying the sequences that the users traverse most frequently, we can
later weigh the cost they incurred accordingly.

In the case study, we identified and analyzed 15 interaction sequences (i.e. subsets of
the whole dialog graph) of the offer management system. As anexample, Fig. 3 shows
the sequence for finding a transaction, browsing its elements and editing the associated
offer. The events in this sequence are annotated with probabilities to reflect the different
possibilities of executing this business process. Since a user’s interaction steps are not
isolated from each other, but depend on the history of his interactions, these probabilities
are conditional: In the notation, we first note the probability of a user following this event,
and then (after a vertical bar) note which action the user must have executed before as a
condition for this probability. For example, from maskA, there is a 1.0 probability that the
user will execute action2 under the condition that he executed action0 before, but a 0.5
probability that he will execute action2 if he already executed that action before. In other
words, if the user just entered the application, he will definitely use the search feature, but
if he already searched for a transaction, there’s only a 50% probability that he will use the
search feature again. Rather, there’s also a 50% probability that he will proceed to edit the
transaction he found (denoted by the0.5|2 probability for the event leading to action4).
For events without annotation, the implicit probability oftraversal is 100%, regardless of
the previously executed action.

One might argue that the events’ probabilities may depend ona longer history than
just the last executed action. Indeed, we are currently investigating the level of history that
should be incorporated into this model in order to achieve sufficiently accurate approxima-
tions of the users’ behavior. In our case study, the probabilities were estimated based on
practical considerations. Alternatively, a more realistic probability model can be reached
by evaluating user tracking information that is routinely collected in web server log files9.
In complex web applications, however, the logged URLs may not always indicate unam-
biguously which page was ultimately presented to the user. To increase the quality of the
path identification, it may be necessary to log interaction data directly in the dialog control
logic instead at the web server level. We are currently investigating ways of accomplishing
this, ideally with non-invasive methods that do not requirechanges to the application logic.



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels7

While it is helpful to visualize the interaction sequences graphically in the conceptual-
ization phase of the study, they need to be converted to a machine-readable format in order
to be processed by the simulation tool. We use a variation of the DFSL for this purpose. The
resulting sequence specification also contains estimates on how often each sequence will
be executed by each user each month, which will be used towards the end of the simulation
in order to calculate the approximate monthly cost of executing all sequences.

3.3. Measuring Data Volume and Time

As mentioned in the introduction, the two main factors influencing the cost of interaction
with an application over a mobile channel are the time spent online and the data volume
transmitted. To project these metrics for mobile channels,we measure them on the existing
stationary channel and then input them into the simulation.

There are a few challenges in the details of this measurementprocess, however: Most
importantly, for the volume measurement, we need to distinguish between static and dy-
namic content. While static content (such as images) always incurs the same volume (apart
from caching effects, which can be accounted for in the simulation), dynamic content (such
as search result pages) can produce a different volume for each request. To obtain accurate
estimates, we need to deduce a probability distribution or an average value from the accu-
mulated volume data. Since the distribution for each page depends heavily on its contents
and context, we cannot use a generic formula for this purpose, but must rely on individ-
ual measurements. Also, web server log files only log the net volume of the content, but
not any overhead introduced on lower levels of the protocol stack that nevertheless does
count for billing purposes. This overhead can either be ascertained by observing the data
flow directly on a sufficiently low protocol level instead of relying on server logfiles, or by
factoring it into the simulation in accordance with the respective protocol specifications.

In our case study, we used HttpWatch 3.2, a simple HTTP trafficlistener16 to obtain
the necessary data. The characteristics of each web page, image etc. were described in an
XML-based format where each of those “web elements” is represented by aWebElement

A2 B4
0.5 | 2

26

27

28

29

0
.2

0
.2

0
.2

0
.3

G

1.0 | 0

0.5 | 2

0

306
0.1

Fig. 3. Interaction sequence for finding and editing an offerassociated with a transaction



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

8 Book, Gruhn, Ḧulder, Köhler, Kriegel

tag that contains tags for its various attributes: Tags starting withRequest orResponse,
for example, contain the data volume incurred for the request and the response of the web
element in bytes, depending on whether the web server configuration allows HTTP com-
pression or not. TheInlines tag contains references to web elements such as images
included in a page. For each of these, we can specify the offset of their include point on the
page (i.e. the number of bytes of the parent web element that need to be loaded before the
inline web element is requested by the browser).

To measure the time it takes to complete an interaction sequence, a number of con-
tributing factors need to be considered. This total time a user spends online is the sum of
user activity (e.g. filling in forms), upstream and downstream transmission time, channel
latency and server processing time. To accurately distinguish all these contributing factors,
we would need synchronized timing on both the server and the client. Fortunately, however,
only the user and server activity matter for the subsequent simulation, since the observed
transmission time and latency already depend on the stationary channel that we measured
on. We can thus deduct them from the overall time during the simulation based on our
knowledge of the stationary channel characteristics and volume transmitted. This way, we
are left with the user and server activity time, to which we can add the newly calculated
transmission time and latency based on the mobile channel’scharacteristics. These times
are specified for each action, i.e. each transition between masks, in an XML-based format.

3.4. Defining Channel Characteristics

Besides the description of the application’s interaction patterns, mask and action charac-
teristics, we still need a detailed specification of the target (usually mobile) network en-
vironment, since different mobile networks have differentcharacteristics regarding band-
width, latency, pricing etc. We define these characteristics in XML-based “channel pro-
files” for each network that shall be considered in the simulation. In our case study, we de-
fined 16 channels, including different compression variants for GSM, HSCSD, GPRS and
UMTS networks. The tool also considers effects of fluctuating signal strength. Each profile
contains the gross uplink and downlink bandwidth in bits/s,as well as several attributes
for packet and compression characteristics. Furthermore,the network provider’s rates for
volume-based and time-based billing are contained in the profile description. The rates in
the case study were based on pricing plans of a German telecommunications provider. The
channel profiles are stored in XML documents and can be editedby the user in the sim-
ulation tool, as illustrated by the definition of a GPRS 53.6 channel profile without data
compression under the assumption of strong reception in Fig. 4.

3.5. Simulation of Interaction Sequences on Different Channels

In order to perform the simulation, our tool requires the XMLdocuments produced in the
previous steps as input, i.e. the application profile that contains the web elements and their
volume data, the actions and their timing data, and the sequences with their probability
and frequency data; and also the channel profiles containingthe bandwidth, latency and



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels9

Fig. 4. Specification of channel characteristics in the simulation tool

pricing characteristics. Using this input, the simulationtool works in three steps that will
be described in detail in the following sections:

(1) The simulator begins each interaction sequence at its entry point. Taking into account
the branching probabilities, it then simulates the time it takes to load each mask in
the sequence, considering the inline element offsets whichincur latency and traffic
that delay the completion of the mask. This step already yields insights into usability
problems that may be caused by unacceptably high response times.

(2) The results for each interaction step of a sequence are accumulated, taking the user’s
idle time between interactions into account.

(3) The results for each interaction sequence are multiplied by its estimated frequency per
user and month. Summing up the results finally yields the projected communication
costs of the application per user and month.

3.5.1. Simulation of Interaction Steps

The simulation results for the response times of the actions(i.e. the transitions between
the masks) in the interaction sequence shown in Fig. 3 are given in Fig. 5 for a selection
of channels. The diagram clearly shows that the use of a client-side cache (actions marked
“with cache (w/c)”) significantly reduces the response timein contrast to executing the
same sequence without a cache (marked “no cache (n/c)”). However, it may still be relevant
to investigate an application’s response time without a cache since not all mobile platforms



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

10 Book, Gruhn, Ḧulder, Köhler, Kriegel

provide sufficient cache memory (we will discuss the optimiziation potential of different
caching strategies in more detail in Sect. 4.3).

From Fig. 5, we can also determine that only the UMTS channel with enabled browser
cache supports answering times of less than three seconds for this application and thus
provides adequate usability (if we follow Shneiderman’s rule that response times for simple
actions should not exceed one second, while four seconds arethe maximum response time
for standard actions17).

Figure 5 also indicates that in our case study, the response times on the GPRS channel
are longer than those on the GSM or HSCSD channel (using the identical compression and
caching mechanism). This may come as a surprise, as GPRS may provide three to four
times the bandwidth of a GSM 14.4 channel. On the other hand, GPRS has a network la-
tency of about two seconds, so any request is delayed by abouttwo seconds before the
transmission of the requested data actually begins. By thattime, the requested data would
already have reached the recipient on the GSM channel. Only when the cache is deacti-
vated, the GPRS channel can make up for the latency with its higher bandwidth.

Other, more complex timing constraints than the above-mentioned three-second usabil-
ity rule are also conceivable. For example, we could define the constraint that maskn has
to be loaded withint seconds after leaving maskm. The results gained in the simulation
may then indicate which masks are responsible for failing the constraints and need to be
optimized. If no redesign seems feasible, the application cannot be used on the simulated
channel with the specified constraints. For example, in our case study, the results on the

G
SM

 1
4.

4

G
SM

 1
4.

4 
(T

C
)

G
SM

 1
4.

4 
(H

C
)

G
SM

 1
4.

4 
(H

C
+T

C
)

H
SC

SD
 (H

C
+T

C
)

G
PR

S
 (T

C
)

G
PR

S
 (H

C
)

G
PR

S
 (H

C
+T

C
)

U
M

TS
 (H

C
+T

C
) 0 w

/c

2 w
/c

4 w
/c

6 w
/c

26 w
/c

27 w
/c

28 w
/c

29 w
/c

30 w
/c

0 n/c

2 n/c

4 n/c

6 n/c

26 n/c

27 n/c

28 n/c

29 n/c

30 n/c

0

3

6

9

12

15

18

21

24

Time [s]

Channels

Actions

Fig. 5. Simulation results for response times



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels11
S

eq
ue

nc
e

us
in

g
ca

ch
e

D
at

a

G
S

M
14

.4

G
S

M
14

.4
(T

ra
ns

fe
r

C
om

p.
)

G
S

M
14

.4
(H

T
T

P
C

om
p.

)

G
S

M
14

.4
(H

T
T

P
C

om
p.

+
T

ra
ns

fe
r

C
om

p.
)

H
S

C
S

D
(H

T
T

P
C

om
p.

+
T

ra
ns

fe
r

C
om

p.
)

G
P

R
S

(T
ra

ns
fe

r
C

om
p.

)

G
P

R
S

(H
T

T
P

C
om

p.
)

G
P

R
S

(H
T

T
P

C
om

p.
+

T
ra

ns
fe

r
C

om
p.

)

U
M

T
S

(H
T

T
P

C
om

p.
+

T
ra

ns
fe

r
C

om
p.

)

4 w/c Time [s] 81.4 63.9 66.2 64.0 62.9 75.2 76.1 74.6 52.0

Volume [kB] 61 62 22 23 22 62 22 23 22

Charge (t) [C] 0.41 0.34 0.35 0.34 0.28 0.13 0.13 0.12 0.09

Charge (vol) [C] – – – – – 0.06 0.02 0.02 0.02

4 n/c Time [s] 206.2 105.5 108.9 105.3 76.5 89.2 90.6 88.6 58.7

Volume [kB] 292 292 109 109 109 293 109 109 109

Charge (t) [C] 1.03 0.56 0.57 0.55 0.34 0.15 0.15 0.15 0.10

Charge (vol) [C] – – – – – 0.29 0.11 0.11 0.11

11 w/c Time [s] 185.4 121.1 130.9 144.3 129.0 156.2 160.5 154.4 110.2

Volume [kB] 143 126 40 45 41 137 42 41 43

Charge (t) [C] 0.93 0.64 0.69 0.76 0.58 0.26 0.27 0.26 0.18

Charge (vol) [C] – – – – – 0.13 0.04 0.04 0.04

11 n/c Time [s] 420.8 219.0 230.2 212.2 165.3 191.4 203.4 199.5 124.7

Volume [kB] 580 577 222 209 220 566 221 222 212

Charge (t) [C] 2.10 1.16 1.21 1.12 0.74 0.32 0.34 0.33 0.21

Charge (vol) [C] – – – – – 0.55 0.22 0.22 0.21

12 w/c Time [s] 210.1 157.3 154.6 162.5 149.1 191.0 184.7 182.9 129.9

Volume [kB] 150 150 43 47 43 152 45 45 45

Charge (t) [C] 1.05 0.83 0.81 0.86 0.66 0.32 0.31 0.31 0.22

Charge (vol) [C] – – – – – 0.15 0.04 0.04 0.04

12 n/c Time [s] 467.5 250.9 257.0 248.5 193.8 222.4 223.8 217.3 150.8

Volume [kB] 621 622 231 230 236 620 226 223 230

Charge (t) [C] 2.34 1.32 1.35 1.30 0.87 0.37 0.37 0.36 0.25

Charge (vol) [C] – – – – – 0.61 0.22 0.22 0.23

Table 2. Simulation results for performing interaction sequences on different channels (excerpt)

GPRS channel indicate that a redesign should particularly focus on embedding inline ele-
ments at the top of a mask (as described in Sect. 4.2), so that requests for these elements
can be sent earlier by the browser and the network latency is mitigated by the initial page
still being loaded.

3.5.2. Simulation of Interaction Sequences

In the second step, the simulation tool sums up the results for the individual steps in a
sequence gained in the first step. It also adds the user’s estimated idle time to simulate how
long a user works with a mask on average before the next mask isrequested. This way,
the tool determines how long it typically takes to execute a whole interaction sequence
on a channel (taking the different probabilities for the sequence variants into account),
and how many bytes are transferred in the process. Using the providers’ rates specified
in the channel profiles, the tool can then calculate the cost of performing each interaction
sequence on each channel.

In Table 2, an excerpt of the results gained for a selection ofchannels and sequences
from our case study is given. For each of the available channels (GSM, HSCSD, GPRS
and UMTS), four simulations were carried out using no compression, HTTP compression
(by the web server), transfer compression (by the carrier),and both HTTP and transfer
compression. Sequence 4 denotes the process of a user creating a new policy offer, which



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

12 Book, Gruhn, Ḧulder, Köhler, Kriegel

has to be associated with an existing insurance agent and a new insurance holder. Sequence
11 represents the process of creating a new policy offer by copying an existing one. Finally,
sequence 12 contains the results for finding and editing a policy offer, as shown in Fig. 3
and Fig. 5. For each channel/sequence combination, the table contains the time taken to
execute the whole sequence, the total amount of kilobytes transferred in the process, and
the cost incurred under a time- and volume-based pricing plan on the respective channel.
Since volume-based billing is not available for GSM and HSCSD channels, the respective
fields remain blank.

The results indicate that the use of data compression reduces the data volume to roughly
a third of the uncompressed volume, resulting in lower transmission times. It is important
to note, however, that when using transfer compression, thecarrier will charge for the
uncompressed data volume. HTTP compression (discussed in Sect. 4.1) thus seems to be
the better choice for volume-based pricing plans, as only the reduced data volume is billed.
This effect can be observed e.g. when comparing the results for scenario 11 (with and
without cache) on the GPRS channel with transfer vs. HTTP compression. A volume-based
plan also allows for more flexibility regarding idle times, since longer client-side activities
before requesting the next mask are not billed. On the other hand, transfer compression
seems to be the best choice for time-based plans, because it yields shortest transfer times
resulting in lower charges. Combining both transfer and HTTP compression may combine
their advantages, but due to a greater overhead and slightlylonger execution time on the
web server, this combination may not yield the lowest cost regarding time and/or volume.

3.5.3. Simulation of Monthly Usage

In the final simulation step, the tool uses the results gainedso far to project the total cost
that will be incurred when one user works with all interaction sequences in the application
over the course of one month. This enables project managers to estimate the total commu-
nication costs that can be expected on all channels, and decide if the addition of a mobile
channel will pay off.

For our case study, the final results indicated that a UMTS channel with combined
transfer and HTTP compression and a volume-based pricing plan is the best option. This
scenario would incur an estimated monthly cost ofC 55.11 per user. A volume-based plan
on a GPRS channel with transfer and HTTP compression would cost only C 54.94 per
user and month, but exhibits worse usability due to the high network latency, as Fig. 5
illustrated. Since UMTS is currently not available all overthe country, GPRS can still be
recommended as a suitable backup solution with limited usability. The time-based plans
for the HSCSD and GSM channel would result in monthly costs ofC 298.35 andC 421.19
per user, respectively, with both using only transfer compression, since the combination of
transfer and HTTP compression would be even more expensive in total.

4. Cost and Response Time Optimization

Whilte the simulation results presented above cannot be generalized, they serve as an ex-
ample illustrating that due to the typical bandwidth and pricing schemes of today’s mobile



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels13

channels, the transmitted data volume is a decisive factor in the cost and response time of
web-based applications. To keep cost and reponse time belowcertain thresholds that deter-
mine the economical and ergonomical feasibility of the application, one or more optimiza-
tion strategies may have to be employed. We can distinguish protocol-based, content-based
and cache-based optimization approaches, each of which will be discussed in more detail
in the following sections.

4.1. Protocol-based Approaches

Users of web applications interact with pages written in theHypertext Markup Language
(HTML). These pages are transmitted between client and server using the Hypertext Trans-
fer Protocol (HTTP) at the OSI application layer, which in turn is encapsulated by the
Transmission Control Protocol (TCP) at the transport layer. The understanding of certain
aspects of these underlying protocols is necessary in orderto address performance issues.

4.1.1. Persistent Connections

When opening a new connection, TCP uses a “slow start” algorithm 18: The server first
transmits only one packet and waits for an acknowledgment from the receiver. After this,
it transmits some more packets and again waits for the acknowledgment. The number of
packets sent at a time without waiting for acknowledgementsis then successively increased.
This algorithm is useful for detecting congestion in the network before excessive packet
loss has occured, but it can cause performance problems for web applications19. In HTTP
versions prior to 1.1, each request established a new TCP connection, where precious time
was spent during the slow start waiting for acknowledgements. The impact of this effect
becomes especially crucial when a web page contains many inline elements such images,
style sheets etc., and when the communications network introduces a high latency for trans-
mitting packets, as is the case with GPRS.

In contrast to previous versions, HTTP 1.1 uses persistent connections20, so client and
server can send multiple messages through one persistent connection without having to wait
for acknowledgement messages. This pipelining mechanism avoids the major problems
caused by TCP behaviour. Comparisons of the communication behaviour between HTTP
1.1 and earlier protocol versions show bandwidth savings ofup to 40%19. Enabling HTTP
1.1 on the server and all clients should therefore be a mandantory optimization step for
increasing the performance of a web application, especially when it is accessed over a
mobile network.

4.1.2. HTTP Compression

In addition to employing persistent connections, HTTP 1.1 can be used to deliver content in
a compressed format. If the compression algorithms that server and client announce in their
HTTP headers are compatible (e.g. with both usinggzip), the browser will transparently
decompress any compressed content received from the serverprior to rendering it20. If the
formats are not compatible, the server will just fall back touncompressed transmission.



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

14 Book, Gruhn, Ḧulder, Köhler, Kriegel

For HTML pages, developers can either choose to provide compressed versions explic-
itly, or configure the server to compress pages on-the-fly when they are requested. While
the latter requires more processing power, it is the only feasible solution when pages are
generated dynamically for each user request. The potentialsavings that can be achieved
this way are considerable; comparisons show file size differences of typically 60% (even
higher compression rates may be achieved by using lowercaseletters for HTML tags, since
the compression algorithms will more likely find matching patterns in the page text)19.

Note that HTTP compression typically only makes sense for HTML pages and other
ASCII content – images and other multi-media content are typically already stored in for-
mats with intrinsic compression (such as GIF, JPG or even better PNG), so the server-side
compression will not yield significant savings in file size.

4.2. Content-Based Approaches

The time it takes to completely load a page depends not only onthe overall data volume
of its HTML code and inline elements such as images, style sheets, client-side scripts etc.
Rather, the page loading time is affected by the internal structure of the page, i.e. by the
position of references to those inline elements, as Fig. 6 illustrates.

When a browser requests a page from a web server, some network-dependent latency
time tl passes before the request is actually transmitted to the server. The server then sends
the response to the browser. Depending on the size of the requested page, this transmission
takes a certain transmission timett. While the structure of this request-response-cycle21

is the same on any network, the time the cycle takes to complete depends mostly on the
network’s bandwidth and latency (obviously the computation time required by the server
to provide the requested page also plays a minor role; however, it is typically only a small
fraction of the delay introduced by a mobile network and thusnot considered here).

As Fig. 6 shows, a new request-response cycle is triggered for every inline element
referenced in the page. Today’s browsers are typically multi-threaded and will therefore

Fig. 6. Request-response timing with inline elements placed at bottom of page



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels15

send requests for inline elements as soon as the respective references are encountered,
even if the responses to previous requests have not been received completely yet. However,
since the browser cannot request elements that he does not yet know about, and loading the
underlying page itself also takes some time, an inline element that is referenced at the end
of the page will not be requested until the browser has received the whole page source code.
With latency time (tl) and transmission time (tt) added to the late request, the user will have
to wait quite a while before all content has been received andrendered completely.

In order to use the network as efficiently as possible and increase the application’s us-
ability, developers should try to reduce the waiting times,which are mainly caused by net-
work latency. Regarding inline elements, optimizations can be achieved by smart placement
of their references on the page, or by reducing the number of requests for them altogether.
Both approaches will be discussed in the following subsections.

4.2.1. Placing of Inline Elements

While latency times of the network (tl) cannot by reduced, Fig. 7 shows how they can
be “hidden” by letting them occur during the transmission time (tt) of an earlier response.
This way, most of the waiting time experienced by the user is actually spent for transmitting
data, not waiting for the network, and the parallelization results in faster page completion.

A theoretical optimization strategy would be to put all inline element references at the
top of the page. For some resources such as style sheets and scripting code fragments, this
is not a problem, since they are typically placed in the<head> section of an HTML-page
anyway. However, image references are usually located wherever they are needed in the
page body, and cannot always be moved without affecting the page layout.

When deciding which image references can be moved within the page source code, we
need to distinguish between layout images and content images, where the former contribute
to the overall appearance of the page (and are typically present on every page), while the

Fig. 7. Request-response timing with inline elements placed at top of page



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

16 Book, Gruhn, Ḧulder, Köhler, Kriegel

latter provide actual information that has close ties with its immediate textual context. By
authoring pages according to the guidelines of separation of content and layout, it should
be possible to reference all layout images within the style sheet that is referenced at the
beginning of the page. This should already shift the bulk of the inline requests towards the
beginning of the page transmission time.

If necessary, requests for content images can also be moved closer to the top through
the use of various CSS or JavaScript “tricks” that trigger the pre-fetching of an image
that will be displayed much lower on the page. However, we won’t go into detail on the
technicalities here for the sake of brevity.

4.2.2. Reducing the Number of Requests

A more drastic way of eliminating the latency times associated with each request is to
reduce the number of requests sent by the server. Since some elements such as style sheets
and scripting code can also be included directly into the HTML page instead of being
referenced from a separate file, it would seem like a straightforward optimization approach
to just incorporate as much content as possible directly into the HTML page. With the
individual requests for these elements eliminated, we could save not only their latency
times, but also the data overhead introduced by the HTTP and TCP communication.

However, this approach precludes any savings that could be achieved by caches (as
explained in Sect. 4.3), especially since style sheets and scripting code are typically the
identical on every page and thus ideal candidates for caching. Thus, the time and volume
savings that can be achieved using either approach should beexamined (possibly with the
help of the simulator described in Sect. 3) before a concretestrategy is implemented.

4.3. Cache-Based Approaches

4.3.1. Browser Cache

In the previous sections, we already explored the idea of notjust reducing the amount of
data transferred in every request, but also to avoid sendingrequests across the network
in the first place: Whenever possible, information that has already been downloaded once
should be stored in a client-side cache from which it can be retrieved immediately if it is
needed again, rather than being requested over the network another time. Two problems
routinely occur when dealing with caching approaches: Firstly, since clients’ memory is
limited, we cannot cache everything forever, but need a strategy for clearing up space in a
full cache in order to store new content. Secondly, when the data in the original source is
updated, the cached copy becomes outdated, so we need a strategy for avoiding delivery of
stale data to the client. Both problems have been discussed extensively already – Podlipnig
and B̈osz̈ormenyi give an overview of the literature with a focus on webcaches22.

In web engineering, the first problem is usually beyond control of application develop-
ers and users, since the cache replacement strategy is hard-coded into the browser. It is also
the lesser of the two problems, since the cache memory of today’s clients is typically much
bigger than the amounts of data transferred in a user’s session with a web application.



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels17

To address the second problem, HTTP 1.1 supports two alternatives20: Using theval-
idation strategy, the client asks the server for confirmation that a cached element is still
up-to-date by requesting just the header of the required element. The server answers with
a “last modified” header that contains the modification date.Using this information, the
client can determine if the cached copy is still current or ifa new version must be requested
in a second step. The advantage of this approach is that the client will never deliver stale in-
formation from the cache since it always confirms its validity with the authoritative source
first. However, in an environment where latency times can be comparatively large, such as
on a GPRS connection, the necessary validation requests will take an unacceptably long
time, even though the amount of data actually transferred isvery small.

For such environments, theexpiration strategyof HTTP 1.1 is more efficient: When
the server delivers a requested element to the client, it also provides an “expires” header
that contains a timestamp indicating when this informationwill go out of date. Until that
time, the client may serve the data directly from its cache without having to reconfirm the
validity with the server. And obvious advantage of this approach is not only the reduced
data volume, but also the reduced request frequency, so no additional latency times are
introduced by caching. However, the usefulness of the strategy relies on the accuracy of
the expiry predictions. Since these are typically determined by factors beyond the server’s
control (such as other users modifying the same data, developers updating the application,
etc.), they can only be estimated in a way that tries to balance the risk of serving stale data
from the cache vs. the possibility of wasting time and bandwidth on requesting redundant
versions from the server.

One may argue that in web applications, most pages are dynamically generated accord-
ing to the user’s request and thus not cacheable. While this istrue, caching can still be
applied to supplemental elements such as images, style sheets and scripting code, which
typically incur considerable transfer volume.

4.3.2. Local Proxy

Cache implementations of today’s web browsers are optimized for general purpose “surf-
ing”, where the structure and contents of the sites that users will visit, as well as their navi-
gation patterns, are entirely unknown. When trying to optimize the mobile performance of
a specific web application, however, developers typically have much better knowledge of
the actual site structure and typical user behaviour. This knowledge can be used to build an
application-specific client-side proxy23. Running on the same machine as the web browser,
this local proxy intercepts all requests sent by the browserand transparently optimizes them
for communication with a particular application over a particular network.

Most simply, the proxy can serve as an additional, application-specific caching level:
Equipped with the knowledge that certain elements of a web application (e.g. layout graph-
ics, style sheets) virtually never change, the proxy can provide “permanent” local copies of
these elements to the browser, as well as answer validation requests that the browser may
generate unnecessarily. Instead of relying on the HTTP validation/expiration strategies that
treat each resource separately, the local proxy can also employ known relationships be-



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

18 Book, Gruhn, Ḧulder, Köhler, Kriegel

tween elements in order to update its cache more efficiently:For example, if the first page
requested from the server contains an encoded version number that is incremented with
every deployment of the application, a change in the versionnumber could serve as an
indicator to the cache handler that the cached elements havebecome stale and need to be
re-requested.

A prototypic implementation of these strategies in a local proxy used to access the
intranet application of a German insurance company alreadyyielded notable page load
time reductions: The average time for performing the login process was reduced from 62
seconds down to 15 seconds on a GPRS network and from 18 seconds down to 8 seconds on
a UMTS network. In the rest of the application, the time for performing business processes
was reduced by 25% on a GPRS network and by 7% on a UMTS network,on average. The
difference in time savings between the login process and theother business processes is
due to the fact that the login process comprises mostly static resources, while most other
pages in the application are generated dynamically. The observed differences between the
GPRS and UMTS networks stem from the latter’s higher bandwidth and lower latency
times, which reduce the impact of caching.

While these measurements are application-specific and obviously cannot be general-
ized, they can serve as an indicator of the scale of delay reduction that is possible using
this approach. Our ongoing research focuses on further optimization strategies that may be
implemented in a local proxy. For example, in applications where a manual re-design of
the page layout for parallelization of latency times (as suggested in Sect. 4.2) would be in-
feasible, a server- and client-side proxy could work in tandem to rewrite the pages’ source
code dynamically in order to optimize the page load time.

4.4. Summary of Optimization Approaches

Due to different structure and usage characteristics of different web applications, there
cannot be one optimization strategy that works best in all cases. Rather, when optimizing
a web application for mobile use, developers need to examinethe approaches presented in
the previous sections and weigh the effort required to implement them against the estimated
time and bandwidth savings that they promise.

For example, benefits can quite easily be gained from enabling the compression and
caching features of HTTP 1.1, provided that most clients arecapable of handling them.
Adapting the page layout to optimize the request-response patterns can improve response
times considerably, but typically requires more effort (unless content management systems
or templating engines are already being used), and has more impact on high-latency net-
works such as GPRS. Last but not least, the implementation ofindividual caching and
optimization strategies in a client-side proxy allows developers to leverage technical and
application domain knowledge for additional time and bandwidth savings, but requires
considerable development effort. While the need for optimization is often obvious, the
PETTICOAT approach presented in Sect. 3 can support this process by giving estimates
on the savings that can be expected by using different strategies on different parts of the
application, and thus help to focus the optimization efforton those aspects that will yield



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

Cost Simulation and Performance Optimization of Web-basedApplications on Mobile Channels19

the highest benefit.

5. Conclusions and Future Work

In this paper, we have shown a method for assessing the usability implications and com-
munication costs of adding mobile channels to an existing web-based application, and pre-
sented approaches for the optimization of web applicationsfor mobile use.

As illustrated by the case study, the results of the simulation indicate if an existing
application can be accessed efficiently on certain mobile channels, and provide clues on
how the application may have to be optimized for lower response times. The simulation
also provides an estimate of the cost of using the application on various mobile channels,
which is a valuable factor in deciding if the introduction ofa mobile channel will pay off
for an organization in the future.

In our ongoing work, we are currently focusing on automated analysis of web appli-
cations to simplify the initial steps of the PETTICOAT method. This includes deriving the
dialog flow model and the probabilities and frequencies of typical interaction sequences
from the data contained in web server log files, rather than modeling them manually. We
are also working on a refinement of the probabilistic model for the interaction sequences.
Finally, we are collecting empirical evidence from industry projects to derive best practices
for optimizing web applications for mobile access.

Acknowledgements

The authors would like to thank Clemens Schäfer and Daniel Trabold for their input on the
local proxy optimization approach.

References

1. M. Book, V. Gruhn, M. Ḧulder, A. Köhler, and A. Kriegel. Cost and response time simulation for
web-based applications on mobile channels. In M.F. Lau Kai-Yuan Cai, Atsushi Onishi, editor,
Proceedings of the 5th International Conference on Quality Software, pages 83–90. Swinburne
University of Technology, University of Hong Kong, IEEE Computer Society, 2005.

2. Kaushik Dutta, Debra VanderMeer, Anindya Datta, and Krithi Ramamritham. Discovering criti-
cal edge sequences in E-commerce catalogs. InEC ’01: Proceedings of the 3rd ACM conference
on Electronic Commerce, pages 65–74. ACM Press, 2001.

3. Myra Spiliopoulou. Web Usage Mining for Web Site Evaluation.Commun. ACM, 43(8):127–
134, 2000.

4. Pavel Berkhin, Jonathan D. Beche, and Dee Jay Randall. Interactive path analysis of web site
traffic. In KDD ’01: Proceedings of the seventh ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 414–419. ACM Press, 2001.

5. Dong-Ho Kim, Vijayalakshmi Atluri, Michael Bieber, Nabil Adam, and Yelena Yesha. A
Clickstream-based Collaborative Filtering Personalization Model: Towards a Better Perfor-
mance. InWIDM ’04: Proceedings of the 6th annual ACM international workshop on Web
information and data management, pages 88–95. ACM Press, 2004.

6. Jeffrey Heer and Ed H. Chi. Separating the Swarm: Categorization Methods for User Sessions
on the Web. InCHI ’02: Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 243–250. ACM Press, 2002.



June 6, 2006 17:28 WSPC/Guidelines IJSEKE

20 Book, Gruhn, Ḧulder, Köhler, Kriegel

7. Ed H. Chi, Peter Pirolli, and James Pitkow. The scent of a site: a system for analyzing and
predicting information scent, usage, and usability of a Web site. InCHI ’00: Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 161–168. ACM Press, 2000.

8. Mark Gillenson, Daniel L. Sherrell, and Lei da Chen. A taxonomy of web site traversal patterns
and structures.Communications of the AIS, 3(4es):5, 2000.

9. James Pitkow and Peter Pirolli. Mining Longest Repeating Subsequences to Predict World Wide
Web Surfing. InProceedings of the 2nd USENIX Symposium on Internet Technologies and Sys-
tems, 1999.

10. Yun Mao, Kang Chen, Dongsheng Wang, and Weimin Zheng. Cluster-based online monitoring
system of web traffic. InWIDM ’01: Proceedings of the 3rd international workshop on Web
information and data management, pages 47–53. ACM Press, 2001.

11. Bettina Berendt and Myra Spiliopoulou. Analysis of Navigation Behaviour in Web Sites Inte-
grating Multiple Information Systems.The VLDB Journal, 9(1):56–75, 2000.

12. Albert M. Lai, Jason Nieh, Bhagyashree Bohra, Vijayarka Nandikonda, Abhishek P. Surana,
and Suchita Varshneya. Improving web browsing performance on wireless pdas using thin-client
computing. InWWW ’04: Proceedings of the 13th international conference on World WideWeb,
pages 143–154. ACM Press, 2004.

13. L. Bent, M. Rabinovich, G. M. Voelker, and Z. Xiao. Characterization of a Large Web Site
Population with Implications for Content Delivery. InWWW ’04: Proceedings of the 13th Inter-
national Conference on World Wide Web, pages 522–533. ACM Press, 2004.

14. Balachander Krishnamurthy and Craig E. Wills. Analyzing Factors That Influence End-to-End
Web Performance. InProceedings of the 9th International World Wide Web Conference on Com-
puter Networks: The International Journal of Computer and Telecommunications Networking,
pages 17–32. North-Holland Publishing Co., 2000.

15. Matthias Book and Volker Gruhn. Modeling Web-Based Dialog Flows for Automatic Dialog
Control. In 19th IEEE International Conference on Automated Software Engineering (ASE
2004), pages 100–109. IEEE Computer Society Press, 2004.

16. Simtec Limited. HttpWatch 3.2. http://www.simtec.ltd.uk, 2005.
17. Ben Shneiderman.User Interface Design. mitp, 2002.
18. Van Jacobson. Congestion Avoidance and Control. InSIGCOMM ’88: Symposium Proceedings

on Communications, Architectures and Protocols, pages 314–329, New York, NY, USA, 1988.
ACM Press.

19. Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric Prud’hommeaux,
Håkon Wium Lie, and Chris Lilley. Network Performance Effects of HTTP/1.1, CSS1, and
PNG. InSIGCOMM ’97: Proceedings of the ACM SIGCOMM ’97 conference on Applications,
Technologies, Architectures, and Protocols for Computer Communication, pages 155–166, New
York, NY, USA, 1997. ACM Press.

20. W3C. RFC2616: Hypertext Transfer Protocol – HTTP 1.1, 1999.
21. David Olshefski, Jason Nieh, and Dakshi Agrawal. Using Certes to Infer Client Response Time

at the Web Server.ACM Transactions on Computer Systems (TOCS), 22(1):49–93, 2004.
22. Stefan Podlipnig and Laszlo Bösz̈ormenyi. A survey of Web cache replacement strategies.ACM

Comput. Surv., 35(4):374–398, 2003.
23. Bruce Zenel. A general purpose proxy filtering mechanism appliedto the mobile environment.

Wirel. Netw., 5(5):391–409, 1999.


