
FEATURE-BASED RATIONALE MANAGEMENT

SYSTEM FOR SUPPORTING SOFTWARE

ARCHITECTURE ADAPTATION
¤

BEDIR TEKINERDOGAN

Department of Computer Engineering

Bilkent University 06800 Bilkent, Ankara, Turkey

bedir@cs.bilkent.edu.tr

HASAN SOZER

Department of Computer Science
€Ozye�gin University, _Istanbul, Turkey

hasan.sozer@ozyegin.edu.tr

MEHMET AKSIT

Department of Computer Science

University of Twente

Enschede, P. O. Box 217 7500 AE, The Netherlands

m.aksit@ewi.utwente.nl

Received 15 March 2010
Revised 20 January 2012

Accepted 1 March 2012

Each software architecture design is the result of a broad set of design decisions and their

justi¯cations, that is, the design rationale. Capturing the design rationale is important for a

variety of reasons such as enhancing communication, reuse and maintenance. Unfortunately, it
appears that there is still a lack of appropriate methods and tools for e®ectively capturing and

managing the architecture design rationale. In this paper we present a feature-based rationale

management approach and the corresponding tool environment ArchiRationale for supporting
software architecture adaptation. The approach takes as input an existing architecture and

captures the design rationale for adapting the architecture for a given quality concern. For this

we de¯ne a feature model that includes the possible set of architectural tactics to realize the

quality concern. The presented approach captures the rationale for deciding on feature selec-
tions and for selecting the corresponding architecture design alternatives. ArchiRationale cus-

tomizes and integrates the Eclipse plugin tools XFeature, ArchStudio and XQuery to provide

*This work has been carried out as part of the TRADER project under the responsibility of the Embedded
Systems Institute. This project is partially supported by the Netherlands Ministry of Economic A®airs

under the Bsik program.

International Journal of Software Engineering

and Knowledge Engineering

Vol. 22, No. 7 (2012) 945�964

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S021819401250026X

945

http://dx.doi.org/10.1142/S021819401250026X

tool support for capturing, storing and accessing the design rationale. We illustrate the
approach for adapting a software architecture for fault tolerance.

Keywords: Architecture design rationale; architecture adaptation; tools.

1. Introduction

Research on architecture design in the last two decades has resulted in various useful

approaches [1�3]. With the help of these approaches, the software architect makes a

wide range of design decisions that leads to the selection of a particular design

alternative. The reasons behind the design decisions, the justi¯cation, the alter-

natives considered, the trade-o®s evaluated, and the argumentation that lead to the

decision is de¯ned as design rationale [4�7]. The explicit capturing, documentation

and usage of the design rationale is important for many di®erent reasons such as

design communication, design evolution, design maintenance, design veri¯cation,

and design reuse [8, 9]. Recent publications have discussed the concept of design

rationale for software architecture and have provided better insight in the related

concepts [7, 9�14]. In general these studies show that practitioners recognize the

importance of documenting and usage of design rationale to support the reasoning

about design choices. Yet, architecture design rationale is still not being documented

in a consistent manner, if documented at all, due to \barriers to the use and docu-

mentation of design rationale" and as such \further research is needed to develop

methodology and tool support for design rationale capture and usage" [9].

One of the important phases in capturing the design rationale is during the

maintenance of the architecture whereby the architecture needs to be adapted to

include new requirements. For example, an existing architecture might need to be

enhanced for meeting some quality concerns such as persistence, security, reliability,

etc. In such cases it is important to capture the design decisions together with the

rationale behind these design decisions.

In this paper we provide a systematic approach to capture the design rationale for

software architecture adaptation. The approach ¯rst de¯nes a feature model [17] that

includes the possible set of architectural tactics [2]. Hereby, architectural tactics are

de¯ned as a characterization of architectural decisions that are used to achieve a

desired quality attribute response [18]. Based on the feature model of architectural

tactics, the presented approach captures the rationale for deciding on feature selec-

tions, for adapting the architecture and for selecting the corresponding architecture

design alternatives.

The approach that we present is implemented in the corresponding tool envi-

ronment ArchiRationale, customizes and integrates the Eclipse plugin tools

XFeature, ArchStudio and XQuery. ArchiRationale is a design rationale manage-

ment system dedicated for supporting the rationale capture and rationale access for

adapting software architecture for quality concerns. ArchiRationale expects as input

a software architecture that has been designed using a given software architecture

946 B. Tekinerdogan, H. Sozer & M. Aksit

design method. As such ArchiRationale is agnostic and not invasive to the adopted

architecture design methods.

The reminder of this paper is organized as follows. In Sec. 2, we provide a case

study that is used to illustrate the problem and importance of capturing and

accessing architecture design rationale for adapting the architecture. Section 3 ela-

borates on rationale management systems and de¯nes the context for the approach

that we explain in this paper. In Sec. 4, we provide the metamodel for architecture

design rationale on which the approach and the tools is based. Section 5 de¯nes the

architecture rationale process for adapting software architecture for quality.

Section 6 describes our tool environment ArchiRationale using the example case.

Section 7 characterizes our approach with respect to existing rationale management

approaches. Section 8 provides the related work and ¯nally Sec. 9 concludes the

paper.

2. Motivation and Context

In this section we will discuss the motivation and the context of the rationale

management system that we present in subsequent sections.

2.1. Case study ��� initial architecture sub-headings

In the following we present the case study MPlayer [19] which will be used

throughout the paper to describe the problems and illustrate our approach. MPlayer

embodies approximately 700K lines of code and it is available under the GNU

General Public License. The architecture consists of modules for reading input media

demultiplexing the input to audio and video channels, maintaining the synchroni-

zation of audio and video, and displaying video frames, controlling playing of audio

and presenting the graphical UI.

We assume that the architecture is the result of any architecture design method

and do not consider the rationale behind this architecture. Instead we assume that

the architecture needs to be adapted and it is the design rationale for architecture

adaptation that we would like to capture. We have determined the basic require-

ments (cost-e®ectiveness, performance, availability) and adapted the architecture

accordingly. As an example, in the following we will shortly discuss the adaptation of

the architecture for fault tolerance.

2.2. Adapting architecture for fault tolerance

Fault-tolerance is a complementary technique to fault avoidance and fault removal

for ensuring the systems reliability even if faults remain and they get activated [20].

When faults manifest themselves during system operations, fault tolerance techni-

ques provide the necessary mechanisms to detect and recover from errors, if possible,

before they propagate and cause a system failure. Error recovery is generally de¯ned

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 947

as the action, with which the system is set to a correct state from an erroneous

state [20]. The domain of recovery is quite broad due to the di®erent type of errors

and the di®erent requirements imposed by di®erent type of systems (e.g., safety-

critical systems, consumer electronics). Figure 1 shows a partial view of the feature

diagram of recovery, which organizes the set of architectural tactics for fault toler-

ance. In fact the feature diagram de¯nes the architectural tactics space, that is the

possible set of architectural tactics for the given quality domain. Features are derived

using a domain analysis process [20, 21].

As shown in Fig. 2, recovery can be characterized through three main features.

The ¯rst feature is the error type that is recovered. This involves the characteristics

of the errors like their persistence (persistent versus transient) and source (internal

versus external) of the error [20]. The second important feature is the granularity of

the recovery mechanism, which can be global or local. In the case of global recovery,

the recovery mechanism can take actions on the system as a whole (e.g., restart the

whole system). In the case of local recovery, erroneous parts can be isolated and

recovered while the rest of the system is available. The third feature is the applied

recovery technique, which is organized into three categories; total compensation,

forward recovery and backward recovery [20]. We will not elaborate further on the

details of recovery here. For the complete domain analysis we refer to [22]. Rather in

recovery

error type granularity technique

total
compensation

forward
recovery

backward
recovery

stable
storage

log-basedcheck-pointing

coordinateduncoordinated communication
induced

blockingnon-blocking

persistence

permanenttransient

localglobal

pessimistic optimistic causal

replication graceful
degradation

KEY
feature

optional
sub-feature

mandatory
sub-feature

alternative
sub-features

Fig. 1. A partial view of the architectural tactics space for recovery in fault-tolerance.

948 B. Tekinerdogan, H. Sozer & M. Aksit

the following sections we will indicate the impact of the selection of particular fea-

tures on the architecture design.

2.3. Design alternatives

We can now enhance the Mplayer architecture for particular recovery features,

which are selected from the feature diagram in Fig. 1. Obviously, many di®erent

<< RU >>
MPLAYER

<<NRU>> recovery mgr

(a)

<< RU >>
AUDIO

<< RU >>
MPCORE

<< RU >>
GUI

<<NRU>> recovery mgr<<NRU>> comm mgr

(b)

<< RU >>
AUDIO

<< RU >>
MPCORE

<< RU >>
GUI

<<NRU>> recovery mgr<<NRU>> comm mgr

<< RU >>
DEMUX

<< RU >>
CODECS<< RU >>

VIDEO

(c)

Fig. 2. Recovery design alternatives.

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 949

feature decisions can be made and each of them will possibly lead to a di®erent

architecture design alternative. Architecture design alternatives may di®er with

respect to the granularity for recovery, the error detection protocols, the criticality of

components etc.

Assume that it is required to choose to enhance the architecture to recover the

complete system from transient failures using restart mechanisms. In this case, we

can observe that di®erent design alternatives are possible. Figure 2(a) presents, for

example, one design alternative for this case. Here the MPlayer architecture (on the

left) is enhanced with a central component recovery mgr (on the right) that restarts

the complete system in case of failures. The stereotypes <<RU>> and <<NRU>>

represent recoverable unit and non-recoverable unit, respectively. This alternative is

less preferable in case the availability of the system is an important concern.

Instead of global recovery we might decide to apply local recovery. This will have

also an impact on the architecture design alternative. Figure 2(b) is one example in

this case, in which the system has been split up into three so-called recoverable units

MPCORE, GUI and AUDIO. Hereby, each recoverable unit is a nonempty, disjoint

subset of the set of system modules. The names of recoverable units, which are

assigned based on the comprised module(s), are not signi¯cant. Compared to the

design alternative of Fig. 2(a), this alternative is better with respect to availability

since it is expected that failures in of the three modules will usually not lead to

failures in other modules. As such the system can continue working, if needed at a

reduced level. With respect to time performance the alternative of Fig. 2(b),

however, is less favorable to the alternative in Fig. 2(a) because it includes more

recoverable units and as such the recovery will require more time. Obviously, in this

case study, performance and availability are the con°icting and most relevant

quality attributes. Other quality attributes can be more relevant for di®erent types

of adaptation of the architecture. In Fig. 2(c) yet another alternative is given in

which each module is considered as a separate recoverable unit. This alternative will

be typically preferred if availability is prioritized over time performance. Of course

we can continue searching for all design alternatives. In fact, each fault-tolerant

architecture will be the result of a set of design decisions and there is a rationale

behind these decisions (e.g., to reduce cost, to achieve high availability/performance).

From the examples above we can identify two di®erent layers of decisions. First

we need to decide on the features for recovery that need to be realized by the

enhanced architecture. For example in Fig. 2(a) we have decided for global recovery

and Fig. 2(b) on local recovery. Second, for a given set of feature decisions we can

have di®erent alternative architecture designs. For example, both the architecture

alternatives in Figs. 2(b) and 2(c) are de¯ned for local recovery. However, they

decompose the system di®erently. So, a feature selection is a strategic design decision

and it is followed by further decisions related to the resulting design alternatives.

It is important to make the architecture design rationale explicit because design

decisions made for enhancing a quality concern can in°uence the design of the

architecture signi¯cantly. The captured rationale can be used for similar purposes

950 B. Tekinerdogan, H. Sozer & M. Aksit

like design communication, design evolution, design maintenance, design veri¯ca-

tion, and design reuse.

3. Rationale Management Systems

Design rationale management approaches can be categorized based on various cri-

teria. An important classi¯cation is the distinction between process-oriented versus

feature-oriented approaches [23, 4].

Process-oriented approaches are often applied for dynamic design domains in

which the design principles are not well-established. Hereby, the approach considers

the design rationale usually as a history of the design process [4, 24]. The represen-

tation of design rationale in this approach is usually graph-based in which the nodes

represent questions, positions and arguments and the links the relations among these

concepts. In the literature early approaches such as Ibis [25], QOC [26] , DRL [5] and

PHI [27] can be categorized as process-based [4].

Feature-based rationale approaches have actually evolved from the process-based

rationale approaches but di®er in the rationale capturing approach. In a feature-

based rationale approach the design rationale is based on features of a system rather

than the arguments raised during the development process. A feature is de¯ned as a

characteristic of a domain that is relevant to its stakeholders [17]. Feature-based

rationale approaches are typically used for well-de¯ned domains with established

design rules. Several feature-based rationale approaches can be identi¯ed in the

literature including CRACK and GTMD [4].

To apply feature-based approaches, there should be certain features known in a

mature-domain. In process-based approaches, there is no well-de¯ned set of features

or options. Di®erent new questions, arguments can be raised during the development

process. The approach that we described in this paper can be classi¯ed as a feature-

based approach. We assume that the architecture is given and needs to be adapted

for a particular quality concern. Using the case, for example, we assume that the

MPlayer architecture is given and that this needs to be enhanced for fault tolerance.

In general, in feature-based approaches a feature diagram is de¯ned for the system

and the decisions for features, that is, system properties, are recorded. In our

approach a feature diagram is de¯ned for architectural tactics that are used to

implement quality concerns. In our case study, we focus on adapting for fault

tolerance, and thus the rationale management process will be based on a feature

diagram that organizes architectural tactics for fault tolerance. We will explain the

details of the approach in the following sections.

4. Design Rationale Meta-Model

In Fig. 3 we provide the meta-model that de¯nes the key concepts for capturing

design rationale. The approach and the corresponding tool that we will explain in

subsequent sections are based on this meta-model. The meta-model consists of four

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 951

sub-parts including: Feature Modeling, Feature Decisions, Design Alternatives, and

Architecture Design.

The part Feature Modeling de¯nes the metamodel for de¯ning feature models. In

our case we apply feature modeling for depicting the possible techniques for sup-

porting a particular quality (i.e., architectural tactics). In the example case, a feature

model is derived from a domain analysis to fault tolerance and fault-tolerant design,

and as such should de¯ne the common and variant properties for techniques that are

necessary for designing fault tolerant systems. A Family Feature Model represents

the domain of architectural tactics for a given quality concern. A Feature represents

an architectural tactic (a technique or design decision for adapting the architecture

with respect to a quality concern).

The Feature Decisions part includes the concepts for selecting features and

capturing the rationale behind these features. An Application Feature Model

represents the features that are selected for adapting the architecture. Application

Feature Model consists of multiple Feature Decision which are decisions that is made

regarding the selection or deselection of a feature. A Feature Decision Rationale

de¯nes the motivation behind the feature decision. It will for example de¯ne why a

given feature has been selected. Feature Decision Rationale has the attributes

Architecture Design Design Alternatives

Feature DecisionsFeature Modeling

1..*
-name

Feature

Architectural Description

-argument
-assumption

Feature Decision Rationale

-description

Feature Decision Criteria

Architecture

applied to

described
by

-name
-constraints

Family Feature Model

1..*

-name
-cardinality

FeatureGroup

0..*

selects

-description

Design Template Criteria

-id
-name
-type
-state
-category

Feature Decision

-id
-name
-type
-state

Design Template

-argument
-assumption

Design Alternative Rationale

0..*

using

-id
-name
-state

Application Feature Model

provides solution
to

-id
-name

Design Alternative

Fig. 3. Metamodel for design rationale.

952 B. Tekinerdogan, H. Sozer & M. Aksit

argument and assumption. Feature Decision Criteria de¯nes the criteria that are

utilized in the argument for the feature decision rationale. Typically, feature decision

criteria will include quality attributes or other criteria which is important to the

stakeholders of the architecture. For fault tolerant design we will, for example, adopt

the criteria performance and availability in selecting design decisions. In principle, a

Feature Decision Criteria can be used by multiple Feature Decision Rationale

objects. However, this is currently not supported by our tool, in which a set of criteria

can be repeated for di®erent design rationale.

The Design Alternatives part of the metamodel represents the approaches for

realizing the selected feature decisions in the Feature Decision Rationale. A given

Application Feature Model can be realized in many di®erent ways. For this Design

Template represents a generic template, which comprises architectural patterns,

architectural tactics or general design heuristics. The design template for an appli-

cation feature model is de¯ned manually based on the included features. Template

Criteria de¯nes the criteria for selecting a particular design template. These criteria

are separate from the criteria for selecting features and focus on the realization of the

features. Similar to the general idea of patterns and tactics, a design template does

not de¯ne a particular design yet, but must be instantiated for a given context. Each

such instantiation is called a Design Alternative. Typically a design alternative

de¯nes the application of the comprised patterns, tactics or general design rules. In

general, a design template can have zero or more design alternatives. For a template

to be applied, the possible alternatives must be selected. Design Alternative Ratio-

nale de¯nes the motivation for selecting a particular design alternative. The rationale

is de¯ned in the attributes argument and assumption.

The Architecture Design part of the metamodel includes the concept for modeling

architectures.

5. The Approach

In this section we propose the approach for rationale management that is built on the

design rationale management metamodel as de¯ned in the previous section. As

illustrated in Fig. 4 the approach is represented using a work°ow diagram in which

we distinguish between processes and artifacts. The relations represent data °ow

relations. We can distinguish the following steps:

(1) Architecture Design

The approach starts with an architecture design process that results in an archi-

tecture design. In our case study, we have used module and component-and-

connector views of the architecture to de¯ne design templates and the existing

architecture [1]. Other architectural views might also be applied when needed.

(2) Modeling Architectural Tactic Space of Quality

To depict the possible adaptations a family feature model is de¯ned, which organizes

the possible set of architectural tactics for enhancing the quality concern. The

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 953

features, i.e., the architectural tactics, are derived from the corresponding quality

domain through a domain analysis process [17]. The feature model de¯nes as such the

so-called architectural tactics space for a given quality concern.

(3)Capturing Design Rationale

The rationale capturing process has three steps: (i) selecting the features in the

family feature model resulting in the application feature model (ii) de¯ning a design

template that provides a solution to the selected features (iii) selecting design

alternatives for applying the de¯ned design template. In principle, we can thus

capture design rationale for each of these three steps. However, we have focused on

D
es

ig
n

A
lte

rn
at

iv
e

A
pp

lic
at

io
n

C
ap

tu
rin

g
D

es
ig

n
R

at
io

na
le

M
od

el
in

g
A

rc
hi

te
ct

ur
al

Ta
ct

ic

S
pa

ce
 o

f Q
ua

lit
y

A
rc

hi
te

ct
ur

e
D

es
ig

n

Domain Analysis

Software
Architecture

Design

Feature Decision

Family Feature
Model

Conceptual
Architecture

Application
Feature Model

Design TemplateDesign Template
Definition

Select and Apply
Design Alternative

Fault Tolerant
Architecture +

Rationale

KEY
Process Artefact Data

Flow

Design Alternative
Selection

Design
Alternatives

Fig. 4. Process for de¯ning rationale for domain architecture.

954 B. Tekinerdogan, H. Sozer & M. Aksit

the design decisions that are made in the ¯rst and third steps. As depicted in the

work°ow diagram (Fig. 4), these are the steps, which involve a selection from a set of

(feature/design) alternatives. That is why the meta-model (Fig. 3) re°ects two levels

for the speci¯cation of design rationale.

(4) Design Alternative Application

Once the design alternatives have been depicted, the design alternatives are ana-

lyzed, selected and applied to the architecture. The result of the design alternative

application is a fault-tolerant architecture together with the design rationale for

adaptation. The stored design rationale can be used for communication, design

evolution, design maintenance, design veri¯cation, and design reuse.

We assume that the artifacts delivered through the rationale process are stored in a

repository and the necessary information can be queried. Hereby, we can think of the

following related questions:

. What were the possible techniques (features) for adapting the architecture?

. Which techniques (features) have been chosen for adapting the architecture, why?

. What were the possible designs for the selected features? Which have been chosen,

why?

6. ArchiRationale Tool

In this section we present ArchiRationale that provides a set of integrated tools to

implement our rationale management approach. In the following we will describe

how the tool is applied in supporting the design rationale management process.

6.1. Overall tool architecture

The ArchiRationale tool is built in the Eclipse Platform. To implement the rationale

management approach, it customizes and integrates several open-source tools that

are provided as Eclipse plug-ins and all based on the XML technology. ArchStudio is

adopted to describe the architecture. XFeature is adopted and customized to express

the feature models. XQuery is used to e®ectively retrieve, utilize and reuse infor-

mation related to design rationale. Finally we have developed an architecture

analysis tool, so-called Recovery Designer. The common basis of these tools is that

they are all XML-based and provided as plug-in tools for the Eclipse platform. As a

result, the seamless integration comes for free once they are customized for our

purpose, design rationale management. A snapshot of the user interface of the tool is

shown in Fig. 5. This snapshot is presented just to illustrate the general layout of the

tool. The contents of the panes in the snapshot are not meant to be readable.

As it can be seen in Fig. 5, a typical Eclipse plug-in tool provides a user interface

with 4 di®erent panes; (1) Editing Pane (top-right), (2) Outline View Pane (top-

left), (3) Properties Pane (bottom-right), and (4) Navigator Pane (bottom-left). In

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 955

general, the Editing Pane is used for viewing and editing the object of interest (e.g.,

design document, source ¯le, or diagram). The Outline View Pane presents an

outline of the object that is being edited and the Properties Pane lists the properties

related to this object. The Navigator Pane is used for browsing the list of objects and

resources that are part of a project. The exact set of panes, their purpose and layout

(known as perspectives in the Eclipse platform) adapt based on the activated tools.

The perspective (i.e., the user interface) can be changed automatically depending

on the type of object being edited or it can be activated from the toolbar at the top-

right of the Eclipse platform. This part of the user interface is marked in Fig. 5, where

we can switch to the XQuery or ArchStudio perspectives. In the following we will

explain the steps of the approach and the related tools.

6.2. Modeling architecture

To model the architecture, the ArchStudio perspective of the Eclipse platform is

activated. We model the existing architecture design and design alternatives with the

Archipelago tool of ArchStudio.

XQuery
perspective

Properties Pane

Editing Pane
(Fault Tolerance
Family Model)

Navigator (Xfeature Models)

Outline View
(Fault Tolerance
Family Model)

Arch-Studio
perspective

Fig. 5. ArchiRationale tool user interface.

956 B. Tekinerdogan, H. Sozer & M. Aksit

6.3. Modeling feature diagram

The XFeature tool enables the speci¯cation of feature diagrams based on any meta-

model that con¯rms to the XFeature Meta-Meta-Model. To customize the XFeature

tool for design rationale management, we have speci¯ed the Design Rationale Meta-

Model as an extension of the Feature Meta-Meta-Model. This speci¯cation is an

XML schema, which is used by the XFeature tool to con¯gure itself accordingly (e.g.,

visual editor, meta-model conformance checking) [28]. As an instance of the Design

Rationale Meta-Model, we have de¯ned the Fault Tolerance Family Model, which

de¯nes the fault tolerance techniques. The XFeature tool automatically validates the

edited family models with respect to their meta-model. In this case, the Fault

Tolerance Family Model is validated with respect to the Design Rationale Meta-

Model.

Once the feature model for fault tolerance is de¯ned and validated as a family

model, we can de¯ne several application fault tolerance models by selecting features

from the family feature model. For example, Fig. 6 shows a snapshot from the tool,

where a feature diagram is being edited based on the generated Fault Tolerance

Family Model. In Fig. 6, we see that a feature is selected and the properties related to

the corresponding design rationale are speci¯ed. These properties (e.g., Assumption,

Argument, Criteria) are inherited from the Design Rationale Meta-Model and they

can be edited in the Properties Pane of the Eclipse platform as shown at the bottom

Fig. 6. De¯ning rationale for selected features representing architectural tactics.

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 957

of the snapshot in Fig. 6. All the properties related to the design rationale are stored

together with the feature diagram as an XML ¯le, which makes it easier to access and

query the stored rationale information with existing tools.

Each feature diagram that is speci¯ed with respect to the Fault Tolerance

architectural tactic space is a Fault Tolerance View. A fault tolerance view captures

and stores the design rationale related to selections and choices made with respect to

the fault tolerance architectural tactic space and it has certain design alternatives.

These design alternatives are modeled with the tools of ArchStudio, which stores

each of them as a separate XML ¯le. These ¯les are then coupled with the corre-

sponding feature diagrams.

6.4. Adapting architecture

After a design template (i.e., architectural tactic, pattern, style) is selected, the next

step is to adapt the architecture accordingly. Usually, there exist several additional

design alternatives for adapting the architecture. These alternatives are speci¯c to

the selected design template. Here de¯ning the design rationale requires the evalu-

ation of several criteria and dedicated analysis techniques. For instance, [29] lists

analysis techniques for fault-tolerance mechanisms that are based on design diversity

and replication. In the application of such fault-tolerance mechanisms to a system,

there exist choices like the number of replicated units and the parts of the system

that will be replicated. These choices have an impact on the reliability achieved and

the cost, which can be evaluated with the related analysis techniques. The design

rationale at this step is basically formed by the criteria set being evaluated, the

evaluation method (e.g., based on simulation or analytic models), types of formal

models employed, their parameters, assumptions and the analysis results.

In our case study, we have developed analysis techniques for applying local

recovery to architecture. We have automated the analysis process with a tool,

Recovery Designer, which is integrated in the ArchStudio environment as a part of

ArchiRationale.

For achieving local recovery, the architecture needs to be partitioned into a set of

recoverable units [30]. This partitioning can be done in multiple, di®erent ways and

each alternative has an impact on availability and time-performance. Increasing the

number of recoverable units will increase the availability of the system, but will de-

crease the time performance since more modules will be isolated from each other. On

the other hand, keeping themodules together will increase performance, but will result

in a lower availability since the failure of one module will a®ect the others as well. We

have developed the Recovery Designer tool for evaluating the partitioning alter-

natives with respect to the two criteria, availability and performance, automatically.

We refer to [22] for the details of the analysis process and explanation of the tool.

Obviously, the analysis results provide an important input for the design rationale.

One of the decomposition alternatives is selected by evaluating analysis results

and balancing the quality criteria (e.g., performance versus availability). Recovery

958 B. Tekinerdogan, H. Sozer & M. Aksit

Designer also implements optimization algorithms for automatically selecting an

alternative based on analysis results. Hereby, the rationale for selecting a design

alternative is our goal in the optimization. This is de¯ned by the objective function

(e.g., maximize availability, minimize performance overhead).

6.5. Querying feature diagram

In the previous subsections we have explained ArchiRationale with a running

example, where we start from specifying the fault-tolerance architectural tactic

space, followed by feature selections in this space and de¯ning design alternatives for

the resulting feature diagram and ¯nally applying these alternatives to architecture.

In each step, there exist design decisions and justi¯cation behind these decisions (i.e.,

design rationale). The last step mainly involves dedicated analysis, where the

rationale is basically part of the analysis methods, models and parameters as such

can be replayed on-line. In the previous steps, however, the design rationale is

captured as annotations on the feature diagram. E®ective retrieving and reasoning

about this information is essential for its reuse.

We have integrated the XQuery Development Tools in ArchiRationale to provide

support for design rationale retrieval. We have created and validated parameterized

query functions de¯ned to query the captured design rationale, which is stored as an

XML ¯le. Example prede¯ned query functions are getDesignDecisions(), getDe-

signOptions(), getDecisionProperties(), etc. These and new query functions can be

used for searching and retrieving annotations on feature diagrams that con¯rm to

our design rationale meta-model.

7. Characterizing the Approach

In the following we will ¯rst characterize ArchiRationale and then discuss the key

distinctive properties with respect to other rationale management approaches.

7.1. Key properties of archirationale

In di®erent surveys about rationale management systems di®erent characteristics

have been described to distinguish rationale management systems. Table 1 depicts

the characterization of ArchiRationale which is nearly similar to the table that is

used in [31]. The left column shows a list of properties that can be used to charac-

terize rationale management systems [31]. The right column de¯nes the values of

these properties for ArchiRationale.

The Goal of ArchiRationale is to capture the design rationale in the context of

adapting the architecture and as such to provide support for adapting the architecture.

System Type represents whether the rationale system is process-based or feature-

based. As we have explained in Sec. 3 ArchiRationale is feature-based. Further it is

important to note that features are not the properties of the system but rather

techniques for realizing a particular quality concern.

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 959

ArchiRationale provides di®erent Services including Design Documentation,

Constraint Checking, and Design Adaptation. Design Documentation is supported

through storing (Represented Information) the family feature model, application

feature model, design templates and design alternatives. Constraint checking is

de¯ned by validation through the Design Rationale Metamodel and the constraints

de¯ned in the Family Feature Model.

In ArchiRationale besides of the formal descriptions (features and design alter-

natives) also semi-formal decisions are stored, including argumentation and

assumptions.

The design rationale is a methodological by-product after the initial architecture

has been designed. The tool provides means to browse both the design alternatives

and the rationale (selected features, arguments, assumptions, criteria).

Design rationale retrieval can be classi¯ed as user�initiative or system�initiative.

In ArchiRationale the design rationale capture is user-initiated because the architect

needs to explicitly store the design rationale.

The notation that is used to represent design rationale is based on the metamodel

as de¯ned in Sec. 4. ArchiRationale stores all the necessary information as XML

documents.

7.2. Distinctive properties of archirationale

ArchiRationale is in fact complementary to other rationale management or archi-

tecture knowledge management tools as it has been de¯ned in the di®erent survey

papers [4, 9, 35]. In this paper we will not repeat the survey of existing approaches

but rather pinpoint the issues that di®er or are more explicit in ArchiRationale with

respect to other approaches:

. Focus on adaptation of architecture

In general architecture rationale systems tend to focus on supporting the rationale

for the development of an architecture. In ArchiRationale we have deliberately

Table 1. Characterization of ArchiRationale.

Goal Support for Design Adaptation

System Type Feature-Based, Features are techniques to realize quality

Services Design Documentation, Constraint Checking, Design Adaptation
Represented Information Feature Decisions, Design Options, Design Alternatives (three layers)

Representation Method Formal (features) and semi-formal (decisions)

Capture Method Methodological by-product after the initial architecture has been designed

Access Method User-Initiated
Domain Techniques to implement Quality Concerns (Architectural Tactic Space)

Design Type Adaptation

Design Phase Post-Architecture Design, Architectural Maintenance

Number of Designers Any
Notation Feature Modeling; Architecture description, XML-based

960 B. Tekinerdogan, H. Sozer & M. Aksit

narrowed the scope of the rationale by considering only the rationale for an

existing architecture that needs to be adapted. In general this is a useful decision

because it is very hard to maintain the complete rationale of a system, and very

often organizations have to build on existing architecture rather than developing

an architecture from scratch.

. De¯ning rationale based on quality concern

The rationale management system in ArchiRationale is based on the adaptation of

the architecture for a quality concern and does not include other decisions that

could de¯ne the boundaries of the architecture. In this paper we have focused on

adapting the architecture for fault tolerance. Similarly other quality concerns

might be considered in ArchiRationale as well.

. Focus on well-de¯ned domain

ArchiRationale focuses in particular on well-de¯ned domains for adapting the

architecture. In this paper we have illustrated this for fault tolerance, which is a

well-de¯ned and mature domain. Because of the maturity of the fault tolerance

domain we could easily de¯ne this as a space of architectural tactics, represented in

a feature model, and use this to de¯ne the rationale for adapting the architecture.

This is fundamentally di®erent from process oriented approaches which are usually

adopted for domains that are not stable yet.

In fact, the combinations of these three issues together with tool support that is

built on existing architecture design tools makes ArchiRationale a distinctive and

practical architecture rationale management system.

8. Related Work

Design rationale has been studied in di®erent disciplines including engineering design

in AI [6], human computer interaction [5] and software engineering [8]. Various

surveys have been published that compare di®erent systems that capture and use

design rationale [14, 4, 9]. These studies have shown that design rationale is con-

sidered important by practitioners but it is rarely captured in practice.

The discussion around design rationale in general seems not to be di®erent for

software architecture in particular. The discussion on software architecture design

rationale is actually not new and has already been initiated in the early foundations.

An important related topic for architecture design rationale is certainly the work on

architectural description using multiple views approaches [1]. One of the key goals of

representing architectures using di®erent architectural views is in fact the support for

understanding and communication the rationale for the design decisions from the

perspective of multiple concerns. Design rationale can also be considered as a

documentation of the architecture but it di®ers in the sense that it documents more

than just the end-result.

Several architecture design rationale approaches have been proposed in the lit-

erature [9, 10, 12�15, 32, 33]. Most of these apply a metamodel to support the

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 961

approach. In [10] a framework is provided for supporting architectural knowledge

and rationale. In [32] Tyree and Akerman propose a detailed template for capturing

the rationale of design decisions to understand the impact of the choices that are

made by architects. In [16] Kruchten proposes classi¯cations of design decisions and

the relationship between them.

Architectural patterns or tactics describe common architectural strategies and

design decisions [2]. Both provide hints about what kind of design decisions can be

used but they do not provide a complete design decision perspective. In ArchiR-

ationale design templates are linked to the selected features that led to the selected

design template and as such supports design rationale. Further design alternatives

for each design template are also stored in the repository and can be accessed.

In [13, 33] the authors discuss the relation between patterns and decision making

and describe how architects can use patterns to capture certain architectural deci-

sions in practice. In principle we could also use similar approaches to de¯ne and

enhance the design templates in ArchiRationale.

9. Conclusion

Documenting and usage of design rationale is important to support communication,

design evolution, design maintenance, design veri¯cation, and design reuse. In

practice, however, it appears that architecture design rationale is still not being

documented in a consistent manner because of lack of appropriate methodology and

tool support. Design rationale often plays an important role when an existing

software architecture needs to be enhanced to meet quality concerns. In this paper

we have de¯ned an approach and the tool ArchiRationale for capturing and

accessing architecture design rationale for adapting an architecture for quality

concerns. Our approach builds on and is in parts complementary to existing design

rationale systems. Concretely, the contributions of this paper are the following.

First we have provided a meta-model that de¯nes the concepts and the relations

among the architecture and the rationale management system. Second, we have

provided a systematic rationale management approach for documenting and

accessing the rationale for architecture design alternatives. Third, we provide an

integrated tool environment ArchiRationale that supports the capturing and access

of design rationale and the related artifacts. We have illustrated the approach for

adapting the architecture for fault tolerance. However, the approach is general

enough to be used for other quality concerns as well. We consider this as part of our

future work.

Acknowledgments

We thank members of the TRADER project, for their feedback on earlier versions of

this paper and their input about the TV domain knowledge and reliability issues.

962 B. Tekinerdogan, H. Sozer & M. Aksit

References

1. P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, P. Merson, R. Nord
and J. Sta®ord, Documenting Software Architectures: Views and Beyond, 2nd edn.
(Addison-Wesley Professional, 2011).

2. F. Bachmann, L. Bass, and M. Klein, Deriving Architectural Tactics: A Step Toward
Methodical Architectural Design, CMU/SEI-2003-TR-004, ADA413644, Pittsburgh, PA,
March 2003.

3. L. Dobrica and E. Niemela, A survey on software architecture analysis methods, IEEE
Trans. on Software Engineering 28(7) (2002) 638�654.

4. W. C. Regli, X. Hu, M. Atwood and W. Sun, A survey of design rationale systems:
Approaches, representation, capture and retrieval, Engineering with Computers 16
(2000) 209�235.

5. J. Lee and K. Lai, What's in design rationale, Human-Computer Interaction 6(3�4)
(1991) 251�280.

6. J. Lee, Design rationale systems: Understanding the issues, AI in design, IEEE Expert,
May/June 1997, pp. 78�85.

7. M. Babar, T. Dingsøyr, P. Lago and H. V. Vliet, Software Architecture Knowledge
Management: Theory and Practice (Springer, 2009).

8. A. H. Dutoit, R. McCall, I. Mistrik and B. Paech, Rationale management in software
engineering: Concepts and technuques, in A. H. Dutoit, R. McCall, I. Mistrik and
B. Paech (eds.), Rationale Management in Software Engineering (Springer, 2007),
pp. 1�48.

9. A. Tang, M. A. Babar, I. Gorton and J. Han, A survey of architecture design rationale,
Journal of Systems and Software 79 (2006) 1792�1804.

10. R. Capilla, Embedded design rationale in software architecture, in Proc. of Joint Working
IEEE/IFIP Conference on Software Architecture & European Conference on Software
Architecture, 2009, pp. 305�308.

11. M. A. Babar, I. Gorton and B. Kitchenham, A framework for supporting architecture
knowledge and rationale management, in A. H. Dutoit, R. McCall, I. Mistrik and B. Paech
(eds.), Rationale Management in Software Engineering (Springer, 2007), pp. 237�254.

12. L. Bass, P. Clements, R. L. Nord and J. Staford, Capturing and using rationale for
a software architecture, in A. H. Dutoit, R. McCall, I. Mistrik and B. Paech (eds.),
Rationale Management in Software Engineering (Springer, 2007), pp. 237�254.

13. N. B. Harrison, P. Avgeriou and U. Zdun, Using patterns to capture architectural deci-
sions, IEEE Software 24(4) (2007) 38�45.

14. A. G. Jansen and J. Bosch, Software architecture as a set of architectural design decisions,
in Proc. of 4th Working IEEE/IFIP Conf. Software Architecture (IEEE CS Press, 2005),
pp. 109�119.

15. P. Kruchten, P. Lago and H. V. Vliet, Building up and reasoning about architecture
knowledge, in Proc. of the 2nd International Conference on Quality of Software Archi-
tectures, 2006.

16. P. Kruchten, A taxonomy of architectural design decisions in software intensive systems.
in Proc. of the 2nd Groningen Workshop on Software Variability Management, 2004,
pp. 54�61.

17. K. Czarnecki and U. Eisenecker, Generative Programming ��� Methods, Tools and
Application (Addison-Wesley, 2000).

18. F. Bachmann and L. Bas, Introduction to the attribute driven design method, in Proc. of
23rd International Conference on Software Engineering, 2001, pp. 745�746.

19. G. Candea, J. Cutler and A. Fox, Improving availability with recursive microreboots: A
soft-state system case study, Performance Evaluation 56(1�4) (2004) 213�248.

Feature-Based Rationale Management System for Supporting Software Architecture Adaptation 963

20. A. Avizienis, J.-C. Laprie, B. Randell and C. Landwehr, Basic concepts and taxonomy of
dependable and secure computing, IEEE Transactions on Dependable and Secure
Computing 1(1) (2004) 11�33.

21. J. B. Dugan, Software system analysis using fault trees, Chapter 15 in Handbook of
Software Reliability Engineering, ed. M. R. Lyu, (McGraw-Hill, New York, 1996),
pp. 615�659.

22. H. Sozer, Architecting Fault-Tolerant Software Systems, PhD Thesis, University of
Twente, 2008.

23. L. Kean, Feature-Based Design Rationale Capture Method for Requirements Tracing,
Technical report, CMU-SEI, 1997.

24. J. E. Conklin and K. C. Burgess Yakemovic, A process-oriented approach to design
rationale, Human Computer Interaction 6(3&4) (1991) 357�391.

25. W. Kunz and W. Rittel, Issues as elements of information systems, Working paper 131,
Center for Planning and Development Research, University of California, Berkeley, 1970.

26. A. MacLean, R. Young, V. Belloti and T. Moran, Questions, options, and criteria: Ele-
ments of design space analysis, Human Computer Interaction 6(3&4) (1991) 201�250.

27. R. J. McCall, PHI: A conceptual foundation for design hypermedia, Design Studies 12(1)
(1991) 30�41.

28. XFeature o±cial web site, http://www.pnp-software.com/XFeature, accessed 2011.
29. J. B. Dugan and M. R. Lyu, Software fault tolerance, in Dependability Modeling for Fault-

Tolerant Software and Systems, ed. M. R. Lyu (Wiley, New York, 1995), pp. 109�138.
30. H. Sozer and B. Tekinerdogan, Introducing recovery style for modeling and analyzing

system recovery, in Proc. of the WICSA Conference, 2008, pp. 167�176.
31. J. Burge, Design rationale, Technical report, Worcester Polytechnic Institute, Computer

Science Dept., http://www.cs.wpi.edu/Research/aidg/DRRpt98.html (accessed: October
2011), 1998.

32. J. Tyree and A. Akerman, Architecture decisions: Demystifying architecture, IEEE
Software 22(2) (2005) 19�27.

33. W. Wang and J. E. Burge, Using rationale to support pattern-based architectural design,
in Proc. of 2010 ICSE Workshop on Sharing and Reusing Architectural Knowledge, New
York, USA, 2010, pp. 1�8.

34. M. Shahin, P. Liang and M. R. Khayyambashi, Rationale visualization of software
architectural design decision using compendium, in Proc. of 2010 ACM Symposium on
Applied Computing, New York, USA, 2010, pp. 2367�2368.

35. P. Liang and P. Avgeriou, Tools and technologies for architecture knowledge manage-
ment, in Software Architecture Knowledge Management: Theory and Practice (Springer,
2009), pp. 91�111.

964 B. Tekinerdogan, H. Sozer & M. Aksit

	FEATURE-BASED RATIONALE MANAGEMENT SYSTEM FOR SUPPORTING SOFTWARE ARCHITECTURE ADAPTATION∗
	1. Introduction
	2. Motivation and Context
	2.1. Case study — initial architecture sub-headings
	2.2. Adapting architecture for fault tolerance
	2.3. Design alternatives

	3. Rationale Management Systems
	4. Design Rationale Meta-Model
	5. The Approach
	6. ArchiRationale Tool
	6.1. Overall tool architecture
	6.2. Modeling architecture
	6.3. Modeling feature diagram
	6.4. Adapting architecture
	6.5. Querying feature diagram

	7. Characterizing the Approach
	7.1. Key properties of archirationale
	7.2. Distinctive properties of archirationale

	8. Related Work
	9. Conclusion
	Acknowledgments
	References

