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Abstract

In software product line engineering, feature diagrams are a popular means to represent the similar-
ities and differences within a family of related systems. In addition, feature diagrams implicitly model
valuable information that can be used in economic models to estimate the cost savings of a product line.
In particular, this paper reviews existing proposals on computing the total number of products modeled
with a feature diagram and, given a feature, the number of products that implement it. The paper also
reviews the economic information that can be estimated when such numbers are known. Thus, this paper
contributes by bringing together previously-disparate streams of work: the automated analysis of feature
diagrams and economic models for product lines.

1 Introduction

Product Line (PL) engineering enables the transition from handcrafting one-of-a-kind solutions towards
automated manufacturing of complete portfolios of software products. The fundamental idea of the ap-
proach is to undertake the development of a set of products as a single, coherent development task.
Products are built from a core asset base, a collection of artifacts that have been designed specifically for
use across the portfolio [1].

There are well documented examples of cost reduction, shorter development times, and quality im-
provement achieved by introducing the PL paradigm in industry [2]. Nevertheless, the PL approach is not
always the best economic choice for developing a family of related products. For instance, the products
may be prohibitively dissimilar from each other, or the family might contain too few products to recoup
the cost of developing the core assets. Decision makers must be able to estimate the costs and benefits of
building and evolving a PL as compared to traditional development approaches.

There has been a great deal of research on the economics of software reuse, and a large number of
economic models have been proposed. For instance, Mili et al. [3]] references 40 different models and
analyzes 17 of them. However, general models in the context of software reuse can only be applied in
a restricted way, since PL development involves some fundamental assumptions that are not reflected in
these models [4]. To overcome this situation, several economic models oriented specifically to PLs have
been proposed.
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To maximize the payoffs of a PL, its domain must be carefully scoped, identifying the common and
variable features of its products and the interdependencies between features. In ill-scoped domains, rele-
vant features may not be implemented, and implemented features may never be used, causing unnecessary
complexity and both development and maintenance costs [5,/6]. To avoid these serious problems, PL do-
mains are usually modeled by means of Feature Diagrams (FDs) [[7}/8].

A FD is a compact representation of the commonalities and variabilities of the products supported by a
PL, i.e., a FD does not only represent a single product but a family of them. Analyzing FDs is an error-prone
and tedious task, and it is infeasible to do manually with large-scale FDs. As a result, FD analysis is an
active area of research in the PL community [9].

Two essential factors that are implicitly modeled in a FD and used by economic models to estimate
the cost savings of a PL are: the total number of products included in a PL (i.e., #P) and the number of
products that implement a particular feature f (i.e., #P). Unfortunately, existing proposals to infer #P
and #Py from a FD have a high computational cost.

This paper reviews (i) the scoping and economic information that can be inferred whenever #P and #7y
are known, and (ii) the existing proposals to compute #2 and #Py from a FD. An effective review creates a
firm foundation for advancing knowledge. It facilitates theory development, closes areas where a plethora
of research exists, and uncovers areas where research is needed. In order to fulfill such goals, our review
follows a rigorous and auditable methodology proposed by Kitchenham [10] and Webster et al. [11].

Compared to existing literature reviews on (i) economic models for PLs [12H14] and (ii) the automated
analysis of FDs [9], the main contributions of our work are:

1. It relates both research communities. To the best of our knowledge, no paper on PL economics uses
FDs as a source of information (i.e., although economic models require #2 and #P; as input param-
eters, they do not consider the modeling and analysis of FDs as a way to estimate such parameters).
On the other hand, FDs were originally created as a Domain Engineering tool to model software vari-
ability [5]. Later, the use of FDs has been extended to other scenarios of software production, such
as model-driven development [15], feature-oriented programming [16], and software factories [17].
As FDs have become more used, a growing necessity to support their debugging has appeared [18].
So, the literature on the automated analysis of FDs has contributed with a number of operations of
analysis, tools and algorithms to support the analysis process [9]. However, papers about FD anal-
ysis rarely state the economic implications of their computations. This paper points a new area of
application of FD analysis: the accurate estimation of economic model inputs.

2. It is focused on product counting for FDs. It reviews in detail how existing proposals compute #7P
and #Py (i.e., their theoretical basis), characterizes their practical limitations and identifies the main
challenges to be tackled in the future.

The remainder of the paper is structured as follows: Section 2] presents the systematic method we have
used to review the literature. Using an example, Section [3] defines product counting in FDs and introduces
the notation that it will be used throughout the paper. Section 4] summarizes the relevance of product
counting to scope a PL adequately and estimate its cost savings. Section [5] outlines the proposals to
compute #P and #P from a FD, analyzing their limitations. Section [0l discusses the results of the review
and describes fundamental challenges to be faced in the future. Finally, Section[Z presents the conclusions
of the paper.

2 Review method

To perform our review we have followed a systematic and structured method inspired by the guidelines of
Kitchenham [10] and Webster et al. [11], which involves three main phases: planning the review, conducting
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the review, and reporting the results.

2.1 Planning the review

The steps involved in planning a review are: identification of the need for a review, development of a
review protocol and validation of the protocol.

2.1.1 Identification of the need for a review

The development of a PL usually begins by analyzing its domain [19]. The purpose of domain analysis is to
(i) select and define the domain of focus, and (ii) collect relevant domain information and integrate it into a
coherent domain model. A FD is a widespread tool for domain modeling [5]. Unlike traditional information
models, a FD does not only represent a single product but a family of them in the same diagram. So, FDs
tend to be complex and analyzing them is infeasible to do manually with large-scale feature models. Hence,
automated analysis of FDs is an active area of research that is gaining importance in both practitioners
and researchers in the PL community.

Another essential research topic on PL engineering is the estimation of the costs and benefits of build-
ing and evolving a PL compared to traditional development approaches. After studying a number of PL
economic model proposals, we found that #P and #P were key input parameters for such models (i.e., the
accuracy of the economic model estimations seemed to greatly depend on the accuracy of #P and #Py).
So, the reason for conducting this review was identifying the accuracy needs of PL economic models and
how the existing research on FD analysis could help to fulfill such needs.

2.1.2 Development of a review protocol

The second step of planning a review is the development of a review protocol, which specifies the steps and
procedures the researches should follow during the review. The protocol is expected to help researchers
to guarantee that the results are not influenced by researchers’ expectations and desires. The systematic
review protocol we have used is composed of the following elements:

1. Identifying the research questions to be answered. We decided that the aim of our review was to
answer the following Research Questions (RQs):

e RQI: Why PL economic models require to know #P and #Ps?

e RQ2: How are #P and #Py computed from a FD and what are the scalability limitations of such
computation?

e RQ3: What are the challenges to be faced in the future?

2. Identifying the target audience of the review. We decided to focus this review on the following
potential readers:

(a) Domain analysts who are interested in scoping a PL adequately and estimating its payoffs.

(b) Researchers in PL economic models, who are interested in the information that can be retrieved
automatically from a FD to improve their estimations.

(c) Researchers in the field of automated analysis of FDs.
(d) PL tool developers, who are interested in improving their support to decision makers.
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3. Strategy to search for primary studies/papers. The search strings used in this review were con-
structed using the following strategy:

e Determine and include synonyms, related terms, and alternative spelling for major terms.

¢ Check the keywords in any relevant papers researchers already knew and initial searches on the
relevant databases.

e Incorporate alternative spellings and synonyms using boolean v.
¢ Link main terms from population, intervention, and outcome using boolean A.

For instance, Equation[Ilrepresents a search string to find works on PL economic models.

software A
(product A (line v family)) A

(economic model v ((cost V benefits v payoff) A estimation)) (1)

We looked for papers in the following data sources:

o Academic digital libraries: Web of Sciencdl, IEEEXplore@, ACM Digital Librar, Citeseer LibraryE],
and SringerLin.

e The Software Engineering Institute (SEI) websitdd (SEI's serial of technical reports is the main
channel of grey literature in the research area reviewed in this study).

e Proceedings of the Software Product Line Conference (SPLC), which is the main venue for PL
researchers to publish their results. We searched directly into the proceedings because some
early editions of this conference were not included in any of the academic digital libraries listed.

2.1.3 Validation of the review protocol

As an indication of inclusiveness, the search results were checked for four known relevant papers on PL
economics (i.e., [4120H22]), and three known relevant papers on FD automated analysis (i.e., [9[18}23]).
All the relevant papers were found during the search. For further assessment of the review protocol, we
contacted an independent expert on systematic reviews in software engineering and requested feedback
on our review protocol. The expert provided us with useful comments, which helped us to improve the
protocol.

2.2 Conducting the review
2.2.1 Identification of primary studies

The papers found in all data sources were downloaded and imported into an Mendele;ﬂ library. Each
downloaded paper had an entry containing the publication title, abstract, author(s), source and date stored.
Then, each paper was assessed for inclusion as primary study based on the following criteria:

Thttp://apps.webofknowTedge.com/
2http://ieeexplore.ieee.org/
3http://d].acm.org/
4http://citeseer.ist.psu.edu/
Shttp://www.springerlink.com/
Shttp://www.sei.cmu.edu/
http://www.mendeTey.com/
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1. A paper on PL economics was included if it satisfied all the following points:
e It was oriented specifically to PLs (i.e., papers that just dealt with the economics of software
reuse were discarded).
o It presented an approach where #P or #P; were required.

2. A paper on automated FD analysis was included if it satisfied some of the following points:

o It proposed an approach to compute #P or #Py from a FD.
e It included a performance study of any technique to get #2 or #P, from a FD.

Firstly, 68 potential primary studies were selected based on careful reading of the abstracts (and conclu-
sions where necessary) of the papers identified through all searches after removing the duplicates. Then,
a second phase of filtering was performed by reading the papers completely. After this filtering, there
were 45 papers left in the process. Table 1 classifies the selected primary studies per year and type of
publication.

| Year | Journals | Conferences and Workshops | Technical reports | Others [ #Papers |

1996 24 1
1997 | [21] I
2000 31250 2
2002 261 ]
2003 221271 23] 3
2004 [20)29731] G233l | 6
2005 [18)3438] El 7
2006 | 139] [40] 2] 3
2007 (L3041 2] 3
2008 | [10] 3,441 3
2009 (4357471 3
2010 | ] [43] [@9] 3
2011 | 1501 G154 5
2012 | 55,561 7 3

| | | | | [ 45 ]

Table 1: Classification of papers per year and type of publication.

2.2.2 Dealing with the heterogenous notation of economic models

Available economic models for PLs are heterogenous in terms of their main characteristics and goals
[14]. The methodology we adopted to deal with the diversity of the model notations follows the guideline
proposed in [58]:

e Equations of all models were translated to a common lexicon. Table 2 summarizes the components
of the common lexicon used in this paper, indicating their acronym, meaning and the section on this
paper where they are defined.

e Concepts that were originally formulated in an informal way (i.e., just in natural language) were
formalized using our common lexicon (e.g., see Section [4.3).
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| Acronym | Description | Section |
#S number of elements in set S 3l
AA Assessment and Assimilation factor 4.27]
AAM Adaptation Adjustment Modifier
AFRAC(p) proportion of p that is composed of whitebox reused assets
CNPL(P) Cost of building 7 under a Non-PL approach, i.e., each product 4.2]
individually
CPL(P) Cost of building 2 under a PL approach
CSAV(P) Cost SAVings of building 2 under a PL approach versus making 4.2]
the products individually
DOR Degree Of Reuse 4.3l
F set of all features; a particular feature is denoted by f 3l
P set of all products; a particular product is denoted by p R]
Py subset of P composed of the products that include the feature f 3
PFRAC(p), proportion of p that is unique
PMCOCOMO T (35) ' COCOMO 1I estimation of the effort measured 4.2]
in Person-Months that it will take to develop product p
RCR Relative Cost of Reuse 4.1
RCWR Relative Cost of Writing for Reuse 41
RFRAC(p) proportion of p that is composed of black-box reused assets

Table 2: Common lexicon for PL economic models.

3 Products modeled with a FD

Since the first FD language was proposed by the FODA methodology in 1990 [7], a number of extensions
and alternative languages have been devised to model variability in PLs:

1. As part of the following methods: FORM [59], FeatureRSEB [60l, Generative Programming [5], PLUSS
[61].

2. In the work of the following authors: Riebisch et al. [62], van Gurp et al. [63], van Deursen et al. [64],
Gomaa [65], Pohl [19].

3. As part of the following tools: gears@ and pure:variantgJ.

Fortunately, the equivalence among most variability notations has been demonstrated in [66].

In this paper, we will use the FD notation proposed by Czarnecki et al. [67]. In addition, this section
introduces the notation for product counting that will be used throughout the paper. The notation is
presented using a simplified version of a PL example proposed in [5]. The aim of the example is to develop
a portfolio of list containers. The PL scope is modeled with the FD in Figure[Il

A FD is a hierarchically arranged set of features, i.e., a tree T that represents the commonalities and
variabilities of the products supported by a PL. Figure [Tl includes three kinds of feature relations: manda-
tory (pointed by simple edges ending with a filled circle; i.e., all Lists in the portfolio have a Ownership
feature), optional (pointed by simple edges ending with an empty circle; i.e., a List may have the Tracing

8BigLever Software: http://www.bigTever.com/
9Pure Systems: |http://www.pure-systems.com/
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feature) and cardinality group (pointed by edges connected by an arc annotated with a <low-high> label,
i.e., External reference, Owned reference and Copy are the mutually exclusive values for Ownership). The
cardinality group label indicates that every product has to implement at least low and at most high of the
Ownership child features. In fact, standard FODA cardinalities are special cases of the group cardinality
relation. Table 3 outlines the equivalences between standard FODA cardinalities and group cardinality. In

this particular example, the meanings of the features are:

1. Ownership specifies how a list stores its elements:

(a) External reference: the list keeps references to the original elements and is not responsible for
element deallocation.

(b) Owned reference: the list keeps references and is responsible for element deallocation.

(c) Copy: the list keeps copies of the original elements and is responsible for their allocation and

deallocation.

2. Tracing indicates if a list traces its operation by logging function calls to the console.

List

«

Ownership Tracing
<1-1>
External Owned Copy
reference reference

‘ Mandatory éOptionaI

<low-high> }<[>\ Group cardinality

Figure 1: FD for a family of list containers

| FODA cardinality | Group cardinality equivalence |

Mandatory <1-1>
Optional <0-1>
And <n-n>

Or <1l-n>

Xor <1-1>

Table 3: Equivalences between standard FODA cardinalities and group cardinality.

In addition, the scope of a FD can be narrowed by adding textual constraints [L written in propositional
logic. For instance, let us suppose features Copy and Tracing are incompatible. Products implementing
both features Copy and Tracing can be excluded from the scope by adding the following constraint:

—(Copy A Tracing)
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Schobbens et al. [66] distinguish between primitive and compound features. Primitive features are
“features” that are of interest per se, and that will influence the final product. On the contrary, compound
features are just intermediate nodes used for decomposition purposes. In T, primitive and compound
features are depicted by leaves and intermediate nodes, respectively. In our example:

1. External reference, Owned reference, Copy and Tracing are primitive features.
2. List and Ownership are compound features.

For the sake of clarity, we will keep the notation for equations as concise as possible by just representing
primitive features. Hence, the set F of features is given by equation[2]

F = {External reference, Owned reference, Copy, Tracing} (2)

A product p is denoted by the set of features that it implements (e.g., the product p = {External reference, Tracing}
includes the features External reference and Tracing).

P denotes the set of products included in the portfolio. In the example, P is given by equation[3] which
excludes:

1. Products specified by invalid feature combinations; e.g., {External reference, Copy} ¢ P because Ex-
ternal reference and Copy are alternative features and consequently cannot be part of the same
product.

2. Products that violate L; e.g., {Copy, Tracing} ¢ P because it violates the textual constraint —(Copy A
Tracing).

P = { {External reference}, {Owned reference},
{Copy}, {External reference, Tracing},
{Owned reference, Tracing} } 3)

Py is the subset of ? composed of the products that implement the feature f. For instance, Equation 4]
expresses Prracing-

Prracing = { {External reference, Tracing},
{Owned reference, Tracing} } 4)

We denote the cardinality of a set S by #S (e.g., #PTracing = 2 because Prracing has 2 products). This
paper is focused on the importance and approaches to count the total number of products in a PL (i.e., #P)
and the number of products that implement a feature f (i.e., #Py).

4 Product counting usage in economic models

This section answers the first research question of our review, i.e., Why PL economic models require to know
#P and #Py?. Table 4 outlines the dependencies between (i) the measures that will be presented in this
section and (ii) #P and #Py (e.g., the calculation of Payoff Threshold of a Feature requires to know #Py,
but not #7P).

Results from the summarization process will be presented along with some contributions towards the
formalization of models that were presented in textual form in their original research work.
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| | #P | #P; |
Payoff Threshold of a Feature [21}/34}[35,/50] - v
Cost Savings of a PL [4}[121[20}24]31}33}39,[40,43}51}52,55H57] v -
Degree of Reuse throughout a PL [22}28] - v
Homogeneity of a PL [4] v v
Variability Factor of a PL [36] v -

Table 4: Economic measure dependencies on #2 and #Py.

4.1 Payoff threshold of a feature

Economic models proposed in [12,[20}211[34,[43] use two abstractions, called the Relative Cost of Reuse
(RCR) and the Relative Cost of Writing for Reuse (RCWR). RCR represents the proportion of the effort that
it takes to reuse software compared to the cost normally incurred to develop it for one-time use. For
instance, a feature has RCR = 0.2 if it can be reused for only 20% of the cost of implementing it. On
the other hand, RCWR represents the proportion of the effort that it takes to develop reusable software
compared to the cost of writing it for one-time use. For instance, if it costs an additional 50% effort to
create a feature for reuse (i.e., it is necessary a more generic design, additional documentation...) then
RCWR = 1.5.

Poulin [21] defines a metric called payoff threshold, which is also used in [34}35,/50]. Payoff threshold
shows how many times a feature has to be reused before the investment made to develop the feature is
recovered. The payoff threshold of a feature f is calculated by equation[5]

RCWRy
1 -RCRy

Product counting for FDs helps to detect scope flaws in the early stages of development, since a feature
f causes a scope problem whenever Equation [6] holds. Note that, although all products modeled by a FD
are not usually of commercial interest, #P is an upper bound of its real reusability (i.e., real reusability s
< #Py). Equation [0 is violated whenever #Pf is so small that f cannot be reused enough to recover
the investment to develop it and make it easy to reuse throughout the product line. Therefore, its real
reusability neither will reach the payoff threshold (i.e., as #P; < payoff threshold, then real reusabilityy <
payoff thresholdy).

Payoff Threshold, = (5)

#Py < Payoff Threshold r (6)

4.2 Cost savings of a PL

Economic models SIMPLE [4)31)33], COPLIMO [20)3951}55,56] and others [5257] estimate with Equation]
[ the cost savings (CSAV) for building a family of products as a PL (CPL) versus building them as stand-
alone products (CNPL).

CSAV(P) = CNPL(P) — CPL(P) (7)

SIMPLE is agnostic with respect to the implementation of the cost functions CPL and CNPL. In con-
trast, COPLIMO approximates CSAV by assuming that all products have similar size. Hence, Equation [7]is

10This subsection presents SIMPLE and COPLIMO equations formulated in our common lexicon. The translation from their
original formulation to the common lexicon is described in[8] (Sections [8.1] and[8.2).
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simplified by Equation 8l
CSAV(P) = CSAV(#P) = CNPL(#P) — CPL(#P) (8)

COPLIMO computes CNPL and CPL with equations [9] and

1. CNPL(#7P) is calculated by estimating the costs of developing a single product and multiplying such
costs by #P. PMCOCOMOIl(4) stands for the COCOMO II [68] estimation of the effort, measured in
Person-Months (PM), necessary to develop a product p. In COCOMO II, as happen in many other
methods, the estimation of software development effort relies on the previous estimation of software
size [69].

CNPL(#P) = #P x PMCOCOMO IT(4;) 9)

2. CPL(#7P) is calculated by estimating the costs of developing a single product, making its common
features reusable throughout the PL and reusing them to build the rest of the products (i.e., #7 — 1
times). RCR is decomposed in PFRAC, RFRAC and AFRAC, which represent the proportions of a
product that are unique, composed of black-box reused assets and composed of white-box reused
assetdl], respectively. Black-box reuse cost is set by the Assessment and Assimilation (AA) factor.
White-box reuse cost is set by the Adaptation Adjustment Modifier (AAM). COPLIMO assumes that all
products have the same PFRAC, RFRAC and AFRAC.

CNPL(1) x (PFRAC(p) + RCWR(p)x
x (RERAC(p) + AFRAC(p)) ) if #P =1
CPL(#P) = (10)
CPL(1) + (#P — 1) x CNPL(1) x (PFRAC(p)+
+ RFRAC(p) x 28 + AFRAC(p) x AAM) i #P > 1

Other authors [12][24]/40}/43] base their proposals on SIMPLE/COPLIMO and compute PL costs savings
by using #P.

4.3 Degree of reuse throughout a PL

In order to maximize the PL payoffs, the assets that implement the common features of the products
should be reused as much as possible. Regarding this issue, Cohen [28]] proposes the measure Degree of
Reuse (DOR) as the portion of a complete product that is made by common assets; e.g., a DOR of 0.25
means that given a typical PL member, 25% of it implements common features, and 75% of it implements
unique features. Since Cohen “just expresses DOR in English”, we have formalized such concept with
Equation [TT] where:

1. Size(f) is the size of the software that implements the feature f (a number of techniques to estimate
software size are presented in [70]).

2. The dividend is the size of all the software encompassed by the PL, i.e., the size of all the products.
Such size is calculated indirectly multiplying the size of the software that implements every feature
(i.e., Size(f)) by the number of times that software is reused (i.e., #P).

L An asset is black-box reused if it is not necessary to understand the asset implementation to reuse it. Otherwise, the asset is
white-box reused.

10
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3. The numerator is the size of the all software encompassed by the PL that implements common
features (a feature f is common if it is implemented by more than one product, i.e., #Py > 1).

2 reripr>1 (Size(f) X #Py)
> rer (Size(f) x #Py)

In addition, to estimate the PL cost savings Peterson [22] defines the commonality parameter w, which
is equivalent to DORZ.

DOR(P) =

(11)

4.4 Homogeneity of a PL

SIMPLE defines a measure, named homogeneity, that characterizes how homogeneous the products are.
Homogeneity is calculated by Equation [I2] and varies from O to 1, where 0 indicates that the products are
all totally unique and 1 indicates that there is only one product. According to Clements et al. [4], the higher
the similarity between the products, the higher the degree of reuse and the shorter the time to market for
the PL.

#Py

Homogeneity(P) = Z"i%#_? (12)

4.5 Variability factor of a FD

The variability factor of a FD is a value between 0 and 1 that is computed by Equation[I3] The smaller the
ratio the more restrictive is the FD and vice-versa. The relevance of computing the variability factor has
been related to decision-making strategies for adopting the PL approach [36].

#P

Variability(P) = SHT

(13)

5 Computing the number of products modeled with a FD

This section answers the second research question of our review, i.e., How are #P and #Py computed from
a FD and what are the scalability limitations of such computation?.
There are two main approaches to perform the automated analysis of FDs:

1. In the purely logic approach, the whole model is translated to propositional logic and then some
standard procedure is applied [18}26}32,36H38//424471]. In particular, #2 and #P; can be computed
using #SAT technology [25/129[30]. Section summarizes how FDs are translated to propositional
logic. Afterwards, section 5.2 reviews the theoretical basis of #SAT technology.

2. In the hybrid approach, L is firstly processed and then some ad-hoc treatment is run for T [45]47].

Table 5 sums up the main features supported by each approach.

12The equivalence is described in[8](Section [83).

11
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#SAT technology Hybrid approaches
(25112911301 [47] | 1451
#P V V V
#Py Just theoretically - Vv
Group cardinality v - v
Large-scale FDs Just for standard Just for standard -
FODA cardinality FODA cardinality

Table 5: Features supported by approaches to analyze FDs.

5.1 Translating T to propositional logic

This section sketches the translation of the FD tree structure T into a logic formula following the direc-
tions in [72]. The resulting formula will be in Conjunctive Normal Form (CNF), that is, a conjunction of
disjunctions of literals (a literal is a proposition or its negation). Such disjunctions are called clauses, so a
CNF formula is a conjunction of clauses.

Suppose the FD in Figure[2l There is a root node n (i.e., A), with s children (i.e., B, C, D, E) and cardinality
<low-high> (i.e., <2-3>). The relations between features are dealt with s + 1 clauses: there is a clause to
express that node n is true. Also, each child implies the parent node n. Figure [2lis encoded with equation

14l
AANAB-AANC—-AAD-A) AE-—-A) =

AANA(BVA)A(RCVA)A(DVA)A(mEVA)
(14)

Figure 2: A very simple FD

For the cardinality restriction, we treat the low and high restrictions separately. Saying that at least low
children have to be present in a product is equivalent to say that at most s — low children can be excluded
(i.e., in the logical formula no more than s — low can be false). Which means that as soon as s — low + 1
literals are selected, at least one of them must be true (this constraint is a clause). So, the low restriction
is equivalent to the conjunction of all possible clauses obtained by choosing s — low + 1 children of n. For
instance, in figure[2] the low limit is encoded by equation [15]

BVCVD)ABVCVEYA(BVDVE)A(CVDVE) (15)

The high restriction is somewhat easier. Since in a set of high + 1 children at least one of them has to
be false, we just compute all the sets of children of size high + 1 and add a clause with all the set members

negated. See equation[16]
“(BACADAE)=-Bv~-CvV-DV~-E (16)
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To sum up, figure [2is encoded by formula[I7l

AAN(BVA)A(-CVA)A (D V A)A
(mFEVA)ABVCVD)ABVCVE)A

(BVDVE)A(CVDVE)A

(mBv -Cv DV —E) (17)

As shown in this example, the number of clauses to encode the diagram grows quickly with s. In
particular, the codification of the low restriction produces a combinatorial explosion, i.e., the number of
clauses is ( s low +1). Therefore, the #SAT technology described in the following section does not scale for
FDs with any kind of group cardinality. Fortunately, standard FODA cardinalities (i.e., and, or, alternative,
mandatory and optional) can be translated to propositional logic more efficiently [18] and, consequently,
#SAT technology scales for such subset of FDs.

5.2 Model counting for propositional logic

In propositional logic, a SAT-solver is a program that tries to determine if a formula is satisfiable (i.e., if
there is an assignment for the variables in the formula that make the formula true). This problem is known
to be NP-complete [73].

A model counter is a program that tries to determine how many models a formulas has (i.e., how many
satisfying assignments). Therefore, a model counter calculates #2 if it receives as input the formula that
encodes a FD.

Model counters are usually built on top of SAT-solvers (i.e., they are #SAT-solvers). This section de-
scribes the main features of two state-of-the-art model counters: relsat [25] and cachet [29}30].

Let us review the way these model counters work for a particular formula ¢. We will assume (without
loss of generality) that formula ¢ in CNF. Both relsat and cachet exploit two techniques named component
decomposition and DPLL [74] to perform model counting.

Let us denote the number of satisfying assignments or models for formula ¢ as #¢. The rationale
for component decomposition is that if a formula ¢ can be decomposed into independent connected
components representing subformulas (i.e., each component comprises one or more clauses) ¢1, ¢po,... Py,
then #¢ = #¢p, - #¢o - ... - #¢y. Therefore, the problem can be recursively reduced into simpler ones. Of
course, when connected components have been identified, something else is needed to keep on simplifying.
This something else is DPLL, which helps breaking a connected component ¢; into several ones by means
of a backtracking search in which a variable x is assigned truth values and substituted for in the original
formula. The resulting formulas in each branch, ¢ |x-faise and ¢ |x=tue are called residual formulas. This
process goes on until the residual formula is either satisfied or a conflict is discovered. A conflict occurs
when the partial assignment of variables in this search state renders the residual formula unsatisfiable (at
least one of the clauses evaluates to false, or as it is often said, the formula contains an empty clause).
Anyhow, unsatisfiable formulas are assigned zero models, and satisfied ones are assigned one model.
Backtracking is then performed to continue the search. This process is outlined in Algorithm NED

It is worth noting that DPLL alone is powerful enough to do some primitive model counting, but it is
not very efficient. To overcome DPLL limitations, both relsat and cachet put into play different heuristics,
but what makes cachet stand out is its use of component caching. Once the models of a component have
been counted, this information is stored in a cache, so that if the same component appears later on during
the DPLL search, the result is retrieved from the cache, instead of being recomputed. Component caching

13Note that the algorithm output is model probability. Thus, the total number of models will be: model
probability- onumber of variables of ¢
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Algorithm 1: Basic DPLL for model counting

#DPLL(¢p): model probability
Data: ¢ is a propositional logic formula in CNF

. ity _ _ number of models of ¢
Result: model probability = (znumber of variables of &)
begin

apply UP to ¢;
if Conflict Identified then
| return O
else if ¢ is Satisfied then
| returnl
else
L select an unassigned variable x in ¢;

return %(#DPLL@ |x=false) + #DPLL(¢p \x:tme))

not only saves time by avoiding repeated calculations; component caching actually prunes the DPLL search
tree, since the next variable to branch on is never chosen from the cached components.

Relsat does not cache components, instead, it jumps from one component to another to try to solve
unsatisfiable components first. If it finds such a conflict, there is no need to solve the other components
at that level of the search, since the product would be zero anyway, and it is correct to backtrack and keep
searching elsewhere.

Relsat and cachet compute efficiently #7. Nevertheless they do not calculate #Pf, which to the extent
of our knowledge is a common limitation of all #SAT solvers!d.

Although #SAT solvers do not compute #Py directly, they can be used to calculate it indirectly. For
instance, Ktibler et al. [48] propose to compute #P by calling a #SAT solver #F + 1 times, once to get #P
(i.e., #SAT(¢p)), and #F times to get #P for each feature f (i.e., #SAT(¢p A f)). Unfortunately, such approach
is computationally very expensive and does not scale except for the smallest FDs.

5.3 Hybrid approaches

This section reviews hybrid approaches for FD model counting in which T and L are treated separately.
These systems rely on the tree structure of a FD for good performance, so they are not usually designed to
gracefully handle the textual constraints, although some preprocessing may help. For instance, Czarnecki
et al. [41] propose to integrate the textual constraints into the tree. The algorithm is not always able
to integrate all the constraints, but a partial result may be of help to a hybrid system in some cases.
Complementarily, [49] proves that all textual constraints can be eliminated at the price of building a new
set of features. Unfortunately, the approach is theoretical since the basis for an implementation are laid
out.

The analysis tool in the SPLOT website [47] uses Reduced Ordered Binary Decision Diagrams (ROBDDs)
[75] to compute #P. ROBDDs are just a special case of Binary Decision Diagrams (BDDs), so we will refer
to them simply as BDDs. The time complexity to compute #2 from a BDD with #u nodes is O (#u).
Unfortunately, BDDs hinge on a fixed order in which the boolean variables are inspected. In general, the
chosen variable ordering makes a significant difference to the size of the BDD representing a given boolean
formula [76]. Although finding an ordering that produces an optimal BDD (i.e., a BDD with the minimal
#u) is an NP-complete problem [77], there are heuristics which usually produce a fairly good ordering. For
instance, the SPLOT tool represents L as a BDD and uses a heuristic that takes into account the whole
model (i.e.,, T and L) to determine the order of the variables.

141n [29], the authors of cachet sketch a pseudocode to compute the marginal probabilities of the variables of a boolean formula
. - . . . . . . . #Py
(i.e., the probability that a certain variable f is present in a random product), which, in our notation would correspond to .
Unfortunately, the implementation provided by the authors does not allow this computation.
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Mendonca [78], the author of SPLOT, makes a big selling point of the space gains of the BDD vs. DPLL,
however, DPLL being a backtracking search, it only keeps in memory the current stack of search nodes.
Even if the BDD graph is more compact than the corresponding DPLL search tree (although the latter is
never explicitly constructed) the BDD graph has to be traversed, which is not unlike performing a DPLL
search. The main difference is that only textual constraints are represented in the BDD, so the boolean
formula is much simpler than in purely logic systems, which have to bear with the diagram translation as
well. Regarding the input, although standard FODA is extended in Mendonca’s metamodel [46] to support
group cardinality, the SPLOT tool only supports standard mandatory/optional, or and xor cardinalities.

Pohl et al. [53] have carried out a performance comparison of algorithmic approaches for automated
analysis operations on FDs. In particular, the capability of SAT and BDD solvers to compute #2 is com-
pared, and it seems that BDD technology performs better than SAT for large models. Nevertheless, since
Pohl does not include #SAT solvers in the comparison, and SAT solvers are tuned to find just a satis-
fying variable assignment, not to compute the number of all satisfying assignments, Pohl’s study is not
conclusive.

In a similar way that happens with #SAT technology: (i) there are BDD tools that efficiently compute
#7P, but (ii) to the extent of our knowledge, there is no approach to calculate #2 using BDD technology. In
contrast, Fernandez-Amoros et al. [45] propose an algorithm specifically oriented to FDs that calculates #2
and #Py. It is noteworthy that although the algorithm has polynomial time complexity for T, it is always
exponential in the number of clauses of the textual constraints. So, although the algorithm scales for FDs
with any size of T, when L is big the algorithm is useless.

6 Future challenges

This section answers the third research question of our review, i.e., What are the challenges to be faced in
the future?

6.1 Selecting the approach that fits better for a given FD

As far as the strengths and weaknesses of the product counting approaches are concerned, component-
based model counters such as cachet and relsat are expected to be very efficient when the textual con-
straints present independent clauses (clauses with no variables in common) since DPLL can efficiently cut
the translated formula into many different connected components, and very inefficient when the diagram
heavily exploits group cardinality other than standard FODA, since the translation to boolean logic suffers
from a combinatorial explosion. The concept of branch-width [27] accurately explains this behavior.

Comparatively, the hybrid approaches are expected to perform poorly when textual constraints are
mostly independent (formulas with a low branch-width). For SPLOT, the problem is that traversing the
BDD is similar to traversing a binary search tree, except for the fact that the BDD is traversed backwards
starting from the true vertex, so conflicts are never traversed (they finish in the false vertex which is not
traversed). This way, the number of nodes to traverse will be exponential. In addition, SPLOT does not
support the the general group cardinality construction.

The worst case for cachet, as far as textual constraints are concerned, would be a diagram with only
one textual clause involving all the features. In this case, if N is the number of features, time complexity
would be at least O(2V), while for the hybrid approach we proposed in [45], it would be just O (N?).

The bottom line is that there are no silver bullets for this problem. Algorithms perform better for some
instances and worse for others. Therefore, a precise criteria should be defined to automatically select the
approach that fits better for a given FD.
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6.2 Towards a scalable approach to compute #P¢

As shown in Table 5, the only implemented algorithm that supports the computation of #P is [45]. Un-
fortunately, the algorithm is always exponential in the number of clauses of the textual constraints, not
just in the worst case. A more scalable algorithm should be implemented for real FDs.

6.3 Improving economic estimates by means of #27;

Economic models often make simplifying assumptions when #%; is unknown. Such assumptions may
produce high distortions in the estimates.

For instance, in section [4.4] we presented equation to calculate the homogeneity of a PL. However,
for the cases where #P, is unavailable but the number of unique features #UF is known (i.e., features
implemented by only one product), SIMPLE [4] proposes the alternative equation I8l

. #UF
Homogeneity(?) = 1 T (18)

Unfortunately, this measure may produce erroneous results in some scenarios. For example, consider
a PL with 100 features, where every feature is included in 2 products and every product implements 10
features; although the PL is quite heterogeneous, equation [I8] says that the PL is completely homogeneous
(i.e., homogeneity = 1 — % =1).

In the future, economic models could be reformulated for the cases where #Py is available. In particular,
COPLIMO estimates PL cost savings ignoring #Py and assuming that all the products have similar size (see
section [4.2). Clearly, such assumption only works for domains extremely homogeneous. In [55] a more
realistic estimate is computed taking into account #2y.

6.4 Interacting with other software engineering communities

Other software engineering communities also use model counting to tackle variability issues. For instance,
automated configurators have been used to support product mass customization for more than thirty
years [79]. They let customers select and validate a configuration on the basis of available product assets
and predefined constraints for asset composition. The configuration of all but trivial systems involves
considerable effort because it requires making a large number of decisions regarding which assets are
going to be included/excluded in/from the system. Some approaches (e.g., [54,/80,/81] use #P and #Pf
to alleviate such effort speeding up the process to reach a valid configuration by reducing the number of
decisions to be made. That is, taking advantage of the fact that, due to the asset composition constraints,
some decisions may be automatically derived from other decisions previously made. So the order in which
decisions are made has a strong influence on the number of decisions required to complete a configuration.

The jointly usage of economic models and automated configurators could help users to reach not only
valid products, but economically efficient ones.

7 Conclusions

In this paper, we have revised the state of the art on product counting for FDs and its applicability to
economic models for PLs by running a structured literature review that encompasses 45 primary studies
and outlines the main advances made to date.

It has been shown that #P and #P are essential factors to accurately estimate the payoffs of a PL
and to scope its domain. Unfortunately, product counting has an high computational cost. There is no
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optimal approach for the general problem (i.e., taking into account textual constraints, group cardinality...).
Reviewed approaches perform better for some diagrams and worse for others. Therefore, a fundamental
challenge to be tackled in the future is the automated selection of the approach that fits better for each
FD.
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8 Translation of economic model equations to the common lexicon

This appendix describes how the equations presented in Section 4 have been translated from their original
notation to the common lexicon used in this paper.

8.1 SIMPLE

Table 6 summarizes the notational equivalences between SIMPLE parameters and our proposed common
lexicon.

| SIMPLE | Common lexicon |
Cost savings of building a PL vs. stand-alone products CSAV(P)
Cost of building n standalone products CNPL(P)
Cost of building a PL CPL(P)
NP #P
Number of products satisfying R; #Py
IRl #F

Table 6: Equivalences between SIMPLE parameters and our proposed common lexicon.

1. The original formulation of Equation [8lis Equation[191

Cost savings of building a PL vs. stand-alone products =
= Cost of building n standalone products —
— Cost of building a PL (19)

2. The original formulation of Equation[12]is Equation [20] where:

e NP is the number of products in the product line
e R;is a functional requirement of a product
e ||Rr] is the total number of different requirements

T  Number of products satisfying R;

Homogeneity = ==1 T ﬂlp (20)
T
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8.2 COPLIMO

Table 7 summarizes the notational equivalences between COPLIMO parameters and our proposed common
lexicon.

| COPLIMO | Common lexicon |
PLS(N) CSAV (#P)
PMNR(N) CNPL(#P)
PMNR(N) CPL(#P)
N #P
A x SizeP x [[;EM; | PMCOCOMO T ()

Table 7: Equivalences between COPLIMO parameters and our proposed common lexicon.

1. The original formulation of Equation[@is Equation 21} where PMR(N) and PMNR (N) stand for the PM
effort to develop N products with reuse and without it (i.e., PL vs individual development).

PLS(N) = PMNR(N) — PMR(N) (21)
2. The original formulation of Equation[Qlis Equation [22] where:

e Ais an organization-dependent constant that approximates the organization productivity.
e Size is an estimation of the software size. COCOMO uses 3 metrics to measure the size: (thou-
sands of) Source Lines Of Code (KSLOC), Function Points and Object Points.

e B is an aggregation of scale factors that account for the relative economies or diseconomies of
scale. If B < 1, there are economies of scale (i.e., the productivity increases as the product size
is increased). On the other hand, if B > 1, there are diseconomies of scale (two main factors
for diseconomies are the growth of interpersonal communications overhead and the growth of
large-system integration overhead).

e EM; are effort multipliers used to adjust the PM effort to reflect the product under develop-
ment. An example of EM; is SCED, which stands for required development schedule and adjusts
the PM effort according to a percentage of schedule stretch-out or acceleration; i.e., accelerated
schedules tend to require more effort in the earlier phases of product development (to elimi-
nate risks and refine the architecture) and in the later phases (to accomplish more testing and
documentation in parallel).

PMNR(N) = N x A x Size® x [ [EM; (22)

1

3. The original formulation of Equation[I0is Equation[23]

PMNR(1)x
X (PFRAC+RCWR X (RFRAC+AFRAC)> if N=1
PMR(N) = (23)
PMR(1)+(N-1) x PMNR(1)x

x (PFRAC + RFRAC x 22 + AFRAC x AAM) if N > 1
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8.3 Peterson’s model

Peterson [22] characterizes the PL savings estimating the redundant efforts needed to develop indepen-
dently the products compared to the efforts consumed by the PL approach. According to Peterson’s nota-
tion, R represents the set of requirements for the PL. In the example presented in section 3] R is given by
Equation [24]

R = {External reference, Owned reference, Copy, Tracing} (24)

Each one of the N products of the PL is associated with an ordinal number k. Ry represents the set of
requirements associated with product k. In the example, N = 5 and the ordinal numbers k will follow the
order in which products appear in Equation 3] (e.g., R; = {External reference}, R, = {Owned reference}, ...,
Rs = {Owned reference, Tracing}).

R is partitioned into disjoint subsets in such a way that all requirements in a given subset apply to the
same set of products. Let {7t} denote the set of N-dimensional vectors that satisfy: |7r| > 0; 7, = 0 or 1.
Then a partitio, R S R, is defined by Equation[25] where the complement is relative to R.

xnz( N xk)ﬂ< U xk)c (25)

{klme=1} {klm =0}

A ‘1’ appearing in the k™ position of a vector ™ means the k™ product is a member of the parti-
tion, whereas a value of ‘O’ indicates the product is not a member of the partition. For instance, if
= (0,0,0,1,1), R represents the set of requirements shared by products 4 and 5, but not shared
by products 1, 2 and 3 (i.e., Rx = {Tracing}). If ™ = (1,0, 0,0), R represents the requirements unique to
product 1 (i.e.,, R = @ since the feature External reference is common to products 1 and 4). Thus, although
[{rr}| = 2N — 1, most partitions are empty. Table 8 shows the non-empty partitions in the example.
Peterson defines the following parameters for partitions:

e weight n: it is the number of products that are members of the partition (i.e., n(7r) is the number of
‘l’s in the 1 vector). For instance, n(0,0,0,1,1) = 2.

e size: it is calculated by the demand function D;, which estimates the size of the assets that will
implement the requirements of R. The demand placed on a given product is given by Equation 26
where k is the unit vector whose components are all ‘0’ except for the k™ component which is equal
to ‘1’ (e.g., 2 = (0,1,0,0,0)).

Dy= > kx1xDg (26)
{rr}

In the independent scenario, each product group must develop, enhance, and maintain its own code
base to meet the set of requirements, even though other products may share many of those requirements.
Thus, the total effective demand across all products in the independent scenario is calculated by Equation
In the example, D = 2 - Size(External reference) + 2 - Size(Owned reference) + 1 - Size(Copy) + 2 -
Size(Tracing).

N N
D=>Dk=> (D (kxmxDg))=> (n(m) x Dy) (27)
k=1 k=1 {m} {mr}

15we follow Peterson’s notation here, but R, (if not empty) is not really a partition of X but rather a subset of the partition. The
set of all the nonempty R, is really a partition, in the equivalence relation sense.
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To estimate the PL cost savings, Peterson defines the commonality parameter 1w, which is calculated
by Equation 28] and represents the fraction of demand in the independent case that is shared by multiple
products. In the equation, {1r}¢ represents the set of partitions which apply to two or more products.

- Z{TI’}E (n("T) XDTT)
w = =
D
The formulation of Peterson’s model becomes clearer in our lexicon, since the r-partition formalism is

avoided. Thus, Equation[27]is translated to its equivalent Equation[29] Note that Peterson’s only takes into
account software size to estimate cost of making software (i.e., Dy = Size(f)).

(28)

D= > (Size(f) x #Py) (29)
fer

Finally, Equation [28lis translated to Equation[30] i.e., w is what was defined as DOR in Equation [IT}
Simpe (M(1) xDy)  Zpegipr 1 (Size(f) X #Py)

U = = = DOR
WS Gize(f) < EP) S ey (Size(f) X #P)) OR(P) (30)
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