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Combinatorial testing is a well-recognized testing method, and has been widely applied16

in practice. To facilitate analysis, a common approach is to assume that all test cases17

in a combinatorial test suite have the same fault detection capability. However, when18

testing resources are limited, the order of executing the test cases is critical. To improve19

testing cost-effectiveness, prioritization of combinatorial test cases is employed. The most20

popular approach is based on interaction coverage, which prioritizes combinatorial test21

cases by repeatedly choosing an unexecuted test case that covers the largest number of22

uncovered parameter value combinations of a given strength (level of interaction among23

parameters). However, this approach suffers from some drawbacks. Based on previous24

observations that the majority of faults in practical systems can usually be triggered with25

parameter interactions of small strengths, we propose a new strategy of prioritizing com-26

binatorial test cases by incrementally adjusting the strength values. Experimental results27

show that our method performs better than the random prioritization technique and the28

technique of prioritizing combinatorial test suites according to test case generation or-29

der, and has better performance than the interaction-coverage-based test prioritization30

technique in most cases.31

Keywords: Software testing; combinatorial testing; test case prioritization; interaction32

coverage; incremental interaction coverage; algorithm.33

1. Introduction34

Suppose that a system under test (SUT) is affected by its k parameters (or factors),35

and each of these parameters may have many possible values (or levels). Ideally, to36

ensure system quality, we should test all combinations of parameter values. However,37

it is practically infeasible to do this due to the large amount of resources and effort38
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required, especially for complex systems with a large number of parameters and1

values.2

Combinatorial testing (or combinatorial interaction testing), a black-box test-3

ing technique, aims at generating an effective test suite in order to detect failures4

triggered by the interactions among parameters of the SUT. It is widely applied in5

various applications, especially for highly-configurable systems [1–5]. Combinatorial6

testing provides a tradeoff between testing effectiveness and efficiency, as it uses a7

smaller test suite that covers certain key combinations of parameter values for sam-8

pling the entire combination space. For example, 2-wise combinatorial testing (or9

pairwise testing where the level of interaction among parameters, the strength, is10

2) only requires the generated test suite to cover all possible 2-tuples of parameter11

values (referred to as 2-wise parameter value combinations).12

In the fault model of combinatorial testing, it is assumed that failures are caused13

by parameter interactions. Previous studies have shown that faults can normally14

be identified by testing interactions among a small number of parameters [1, 6, 7].15

A failure-causing interaction is called a faulty interaction, and the size of a faulty16

interaction (that is, the number of parameters required to detect a failure) is referred17

to as the failure-triggering fault interaction (or FTFI) number [1, 6].18

Traditionally, combinatorial testing treats all test cases equally in a test suite.19

However, the order of executing the test cases may be critical in practice, for example20

in regression testing with limited test resources. Therefore, the potentially failure-21

revealing test cases should be executed as early as possible. In other words, a well-22

designed test case execution order may be able to identify failures earlier, and thus23

enable earlier fault characterization, diagnosis and revision [7]. To improve testing24

efficiency, test case prioritization [8], which means to prioritize test cases according25

to some strategy, has been introduced. In test case prioritization, a prioritized test26

suite is generally referred to as a test sequence.27

Test case prioritization of combinatorial test suites has also been well stud-28

ied [4, 9–15]. Many techniques have been proposed to guide the prioritization of29

combinatorial test cases, such as random prioritization [9] and branch-coverage-30

based prioritization [13]. The most well-studied approach of prioritizing combina-31

torial test suite is based on interaction coverage (called interaction-coverage-based32

prioritization), which prioritizes test cases by repeatedly selecting an unexecuted33

element such that it covers the largest number of uncovered parameter value com-34

binations of a given strength [4, 9–15].35

However, the interaction-coverage-based prioritization technique has two chal-36

lenges. Firstly, given a combinatorial test suite T of strength t, the prioritization37

method by interaction coverage only takes account of parameter value combinations38

of strength t for ordering T , which means that a test sequence prioritized by inter-39

action coverage may only favor parameter value combinations of strength t. In other40

words, this test sequence may not be effective for τ -wise (1 ≤ τ < t) combinations41

of parametric values. A second challenge is that testers need to specify the strength.42

Kuhn and his colleagues [1, 6] investigated interaction failures by analyzing the43
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fault reports of several software projects. They concluded that over 50% of faults can1

be triggered by one-wise interactions; more than 70% of faults can be detected by2

testing two-wise interactions; and approximately 90% of the faults can be discovered3

with three-wise interactions. In other words, the majority of faults in the SUT4

are generally caused by interactions of small strengths. Therefore, it is reasonable5

and practical to prioritize combinatorial test cases by covering all parameter value6

combinations at small strengths as early as possible. /*** Dave’s comment [1]:7

perhaps delete the next sentence ***/ We would like to emphasize this category of8

failures in this paper.9

Motivated by these facts, we propose a novel technique of prioritizing combina-10

torial test cases based on incremental interaction coverage, which orders combina-11

torial test cases by reusing already selected test cases and incrementally adjusting12

the strength values. Given a combinatorial test suite T of strength t, our strategy13

aims to prioritize T into a test sequence such that all possible parameter value14

combinations of each strength lower than t would be covered as early as possible.15

Therefore, our method has at least two advantages over the interaction-coverage-16

based prioritization technique: (1) no selection of strength is required in advance;17

and (2) different strengths are considered. Compared with the interaction-coverage-18

based prioritization technique, our method provides a priority of strengths lower19

than t over the strength t. In other words, our prioritized test suites cover all t-20

wise combinations of parameter values with lower priorities – not just all parameter21

value combinations at strengths lower than t. In terms of covering parameter value22

combinations and fault detection, experimental results show that our method has23

better performance than the random prioritization approach and the method of pri-24

oritizing combinatorial test suite according to the test case generation order, and25

also performs better than the interaction-coverage-based prioritization technique in26

most cases.27

This paper is organized as follows. Section 2 introduces some preliminaries about28

combinatorial testing, and test case prioritization. Section 3 introduces a new prior-29

itization strategy based on incremental interaction coverage, and analyzes its time30

complexity. Section 4 presents results of the simulations and empirical studies. Sec-31

tion 5 summarizes some related work, and Section 6 describes the conclusions and32

potential future work.33

2. Preliminaries34

In this section, some preliminaries of combinatorial testing and test case prioritiza-35

tion are presented.36

2.1. Combinatorial testing37

Combinatorial testing is widely used in the combinatorial test space to generate an38

effective test suite for detecting interaction faults that are triggered by interactions39

among parameters in the SUT.40
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Suppose that the SUT has k parameters P1, P2, · · · , Pk, which may represent1

user inputs or configuration parameters, and each parameter Pi has discrete valid2

values from the finite set Vi. Let C be the set of constraints on parameter value3

combinations, and R be the set of interaction relations among parameters. In the4

remainder of this paper, we will refer to a combination of parameters as a parameter5

combination, and a combination of parameter values or a parameter value combina-6

tion as a value combination.7

Definition 1. A test profile, denoted as TP (k, |V1||V2| · · · |Vk|, C), is about the8

information on a combinatorial test space of the SUT, including k parameters,9

|Vi|(i = 1, 2, · · · , k) values for the i-th parameter, and constraints C on value com-10

binations.11

For example, Table 1 gives the configurations of a component-based system,12

in which there are four configuration parameters, each of which has three values.13

Therefore, its test profile can be written as TP (4, 34, ∅).14

Definition 2. Given a test profile denoted by TP (k, |V1||V2| · · · |Vk|, C), a k-tuple15

(v1, v2, · · · , vk) is a test case for SUT, where vi ∈ Vi(i = 1, 2, · · · , k).16

For example, a 4-tuple tc = (Windows, IE,LAN,Access) is a test case for the17

SUT shown in Table 1.18

Definition 3. Given a TP (k, |V1||V2| · · · |Vk|, C), an N × k matrix is a t-wise (1 ≤19

t ≤ k) covering array denoted as CA(N ; t, k, |V1||V2| · · · |Vk|), which satisfies the20

following properties: (1) each column i(i = 1, 2, · · · , k) contains only elements from21

the set Vi; and (2) the rows of each N×t sub-matrix cover all t-tuples of parametric22

values from the t columns at least once.23

When |V1| = |V2| = · · · = |Vk| = v, the covering array can also be written as24

Table 1. Configurations of a component-based system.

Operating system Browser Network connection Database

Windows IE LAN DB/2
Linux Firefox VPN Access

Solaris Netscape ISND Oracle

Table 2. A combinatorial test suite for pairwise testing.

Test No. Operating system Browser Network connection Database

1 Windows IE LAN DB/2

2 Windows Firefox VPN Oracle
3 Windows Netscape ISND Access

4 Linux IE ISND Oracle
5 Linux Firefox LAN Access

6 Linux Netscape VPN DB/2
7 Solaris IE VPN Access
8 Solaris Firefox ISND DB/2

9 Solaris Netscape LAN Oracle
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CA(N ; t, k, v). Obviously, the interaction relation set R has elements of the same1

size for CA(N ; t, k, |V1||V2| · · · |Vk|), that is, R = {{Pj1 , Pj2 , · · · , Pjt}|1 ≤ j1 < j2 <2

· · · < jt ≤ k, t is fixed} and |R| = Ctk.3

On the other hand, a covering array T denoted as CA(N ; t, k, |V1||V2| · · · |Vk|) is4

also a covering array of strength τ(1 ≤ τ < t). In other words, T can also be written5

as CA(N ; τ, k, |V1||V2| · · · |Vk|) where 1 ≤ τ < t. Thus, there exists a subset T ′ ⊆ T6

such that T ′ is a covering array of strength τ , that is, CA(|T ′|, τ, k, |V1||V2| · · · |Vk|).7

For example, to achieve exhaustive testing of all possible value combinations8

for the system shown in Table 1, we should require 34 = 81 test cases. However,9

as shown in Table 2, 2-wise combinatorial testing requires only a set of 9 test10

cases (denoted as CA(9; 2, 4, 34) or CA(9; 2, 4, 3)) for covering all pairs of parameter11

values.12

Definition 4. Given a TP (k, |V1||V2| · · · |Vk|, C), a variable-strength covering array,13

denoted as V CA(N ; t, k, |V1||V2| · · · |Vk|, Q), is an N × k covering array of strength14

t containing Q, which is a set of CAs, every element of which is of strength > t and15

is defined on a subset of k parameters.16

Intuitively speaking, a V CA(N ; t, k, |V1||V2| · · · |Vk|, R) can also be considered a17

CA(N ; t, k, |V1||V2| · · · |Vk|), with the interaction relation set R of the VCA contain-18

ing elements of different sizes, that is, the VCA contains other CAs.19

Each row of a covering array or variable-strength covering array stands for a20

test case while each column represents a parameter of the SUT. Testing with a21

t-wise covering array is called t-wise combinatorial testing, while testing with a22

variable-strength covering array is called variable-strength combinatorial testing.23

In combinatorial testing, the uncovered t-wise value combinations distance24

(UVCD) is a distance measure often used to evaluate test cases when constructing25

a covering array or variable-strength covering array [16].26

Definition 5. Given a combinatorial test suite T , strength t, and a test case tc,27

uncovered t-wise value combinations distance (UVCD) of tc is defined as:28

UV CDt(tc, T ) = |CombSett(tc) \ CombSett(T )|, (1)

where CombSett(tc) is defined as the set of t-wise value combinations covered by29

test case tc, while CombSett(T ) is the set of t-wise value combinations covered by30

test suite T . More specifically, let tc = (v1, v2, · · · , vk) where vi ∈ Vi(i = 1, 2, · · · , k),31

CombSett(tc) and CombSett(T ) can be respectively written as follows:32

CombSett(tc) = {(vj1 , vj2 , · · · , vjt)|vj1 ∈ Vj1 , vj2 ∈ Vj2 , · · · , vjt ∈ Vjt ,
1 ≤ j1 < j2 < · · · < jt ≤ k}, (2)

CombSett(T ) =
⋃
tc∈T

CombSett(tc). (3)
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To reduce the cost of combinatorial testing, many researchers have focused on al-1

gorithms to generate the optimal combinatorial test suite with the minimal number2

of test cases. Unfortunately, it has been proven that the problem of constructing cov-3

ering arrays or variable-strength covering arrays is NP-Complete [17]. Nevertheless,4

many strategies and tools for building combinatorial test suites have been developed5

in recent years. Some major approaches to combinatorial test suite construction6

involve greedy algorithms, heuristic search algorithms, recursive algorithms, and7

algebraic methods (see [7] for more details).8

2.2. Test case prioritization9

To illustrate our work clearly, let us initially define a few terms. /*** Dave’s10

comment [2]: Earlier, we used tc to refer to test cases, should we continue that11

here? ***/ Suppose T = {t1, t2, · · · , tN} is a test suite of size N , and S =12

〈s1, s2, · · · , sN 〉 is an ordered set suite (we call it a test sequence) where si ∈ T13

and si 6= sj(i, j = 1, 2, · · · , N ; i 6= j). If two test sequences are S1 = 〈s1, s2, · · · , sm〉14

and S2 = 〈q1, q2, · · · , qn〉, we define S1ZS2 as 〈s1, s2, · · · , sm, q1, q2, · · · , qn〉. By15

definition, T \ S is the maximal subset of T whose elements are not in S.16

Test case prioritization is done to obtain a schedule of test cases, so that, accord-17

ing to some criteria (such as the cost of test case execution or statement coverage),18

test cases with higher priority are executed earlier in testing. A well-prioritized test19

sequence may improve the likelihood of detecting faults early. The problem of test20

case prioritization is defined as follows, from [8].21

Definition 5. Given (T,Ω, f), where T is a test suite, Ω is the set of all possible22

test sequences obtained by ordering test cases of T, and f is a function from Ω to23

the set of real numbers, the problem of test case prioritization is to find an S ∈ Ω24

such that:25

(∀S′) (S′ ∈ Ω) (S′ 6= S) [f(S) ≥ f(S′)]. (4)

In Equation 4, f is a function which evaluates a test sequence S by returning26

an award value. /*** Dave’s comment [3]: please confirm the following sentence is27

correct ***/ The most well-known function is a weighted average of the percentage28

of faults detected (APFD) [18], which is a measure of how quickly a test sequence29

can detect faults during the execution. Let T be a test suite of size n, and let F be30

a set of m faults revealed by T . Let SFi be the first test case in test sequence S31

of T which detects fault i. The APFD for test sequence S is given by the following32

equation from [18]:33

APFD = 1− SF1 + SF2 + · · ·+ SFm
n×m

+
1

2n
. (5)

To date, many techniques of test case prioritization have been proposed ac-34

cording to different criteria, such as time-aware prioritization [19], search-based35
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prioritization [20], risk-exposure-based prioritization [21], source-code-based priori-1

tization [8,22], fault-severity-based prioritization [23], and history-based prioritiza-2

tion [24]. Most test case prioritization strategies can be categorized into two classes:3

greedy methods and meta-heuristic search methods [15].4

3. Incremental-Interaction-Coverage-Based Test Prioritization5

In this section, we present a method of prioritizing combinatorial test cases based6

on incremental interaction coverage (denoted IICBP), a heuristic algorithm imple-7

menting this method, and a complexity analysis of the algorithm.8

3.1. Method9

The IICBP technique divides a CA(N ; t, k|V1||V2| · · · |Vk|) into t independent sub-10

sets (A1, A2, · · · , At) such that:11

Ai
⋂
Aj = ∅, i, j = 1, 2, · · · , t, i 6= j; (6)

j⋃
i=1

Ai = CA(

j∑
i=1

|Ai|; j, k, |V1||V2| · · · |Vk|), j = 1, 2, · · · , t, (7)

where Ai(i = 1, 2, · · · , t) is a test sequence prioritized by interaction-coverage-based12

strategy [4, 11–13, 15] of strength i. Each subset Aj (j = 2, 3, · · · , t) is prioritized13

by ICBP using the seeding set
⋃j−1
l=1 Al. However, the processes of covering array14

partition and prioritization for each sub-partition are inter-related in such a way15

that once a subpartition is completed, test case prioritization of this sub-partition16

is also completed. In other words, each test case in Ai(i = 1, 2, · · · , t) is selected17

by using strength i and previously chosen test cases as seeds. Once all i-wise value18

combinations are covered by the selected test cases (that is, Ai has been successfully19

constructed), strength i is incremented by 1. The criterion is to choose the element20

e′ from test suite T as the next test element in test sequence S such that:21

(∀e) (e ∈ T ) (e 6= e′) [UV CDi(e
′, S) ≥ UV CDi(e, S)]. (8)

A1 A2 ... At

t-wise

2-wise

1-wise

(t-1)-wise

Fig. 1. Illustration of prioritizing combinatorial test cases by incremental-interaction-coverage.
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Algorithm 1 Select the best test element (BTES)

Input: Already prioritized test set S, candidate test suite T , and strength t

Output: Best test element best data ∈ T
1: Set best distance = −1;

2: for (each element e ∈ T )

3: Calculate UVCD of e, that is, UV CDt(e, S);

4: if (UV CDt(e, S) ≥ best distance)
5: best distance = UV CDt(e, S);

6: best data = e;

7: end if

8: end for

9: return best data.

Algorithm 2 Interaction-coverage-based prioritization of combinatorial test cases

(ICBP)

Input: Covering array CA(N ; t, k, |V1||V2| · · · |Vk|), denoted as T

Output: Test sequence S

1: Initialize S = 〈〉;
2: while (|S| 6= N)

3: best data = BTES(S, T, t); //Generate the best test element.

4: T = T \ {best data};
5: S = SZ〈best data〉;
6: end while

7: return S.

Algorithm 3 Incremental-interaction-coverage-based prioritization of combinato-

rial test cases (IICBP)

Input: Covering array CA(N ; t, k, |V1||V2| · · · |Vk|), denoted as T

Output: Test sequence S

1: Initialize S = 〈〉, τ = 1, T ′ = T ;

2: while (|S| 6= N)

3: if (|CombSetτ (S)| == |CombSetτ (T )|)
4: τ = τ + 1;

5: end if

6: best data = BTES(S, T ′, τ); //Generate the best test element.

7: T ′ = T ′ \ {best data};
8: S = SZ〈best data〉;
9: end while

10: return S.
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The process is repeated until all Ai(i = 1, 2, · · · , t) are prioritized according to1

i-wise interaction coverage. Fig. 1 gives a schematic diagram for the relationship2

between Ai and the relevant i-wise interaction coverage.3

Since the element selection criterion (see Equation 8) is widely used in the4

prioritization of combinatorial test cases, we present the algorithm implementing5

this criterion (Algorithm 1). However, there may exist more than one best test6

element, indicating that they have the same maximal UVCD value. In such a tie7

case, we randomly select one best element. The test case prioritization technique8

by interaction coverage (denoted as ICBP) [4, 11–13, 15] is also given in Algorithm9

2, and Algorithm 3 presents the detailed IICBP processes.10

In this paper, we assume that a combinatorial test suite is equivalent to a11

covering array, and that all parameters are independent. In other words, the12

variable-strength covering array is not considered in this paper. Also, constraints13

on value combinations are ignored. Therefore, the test profile can be abbreviated14

as TP (k, |V1||V2| · · · |Vk|).15

3.2. Complexity analysis16

In this subsection, we briefly analyze the time complexity for the IICBP algorithm17

(Algorithm 3). Given a CA(N ; t, k, |V1||V2| · · · |Vk|), denoted as T , we define a =18

max1≤i≤k{|Vi|}. /*** Dave’s comment [4]: is there any reason for choosing ‘a‘?19

Can we give an explanation? ***/20

We first analyze the time complexity of selecting the i-th (i = 1, 2, · · · , N) test21

case, which depends on two factors: (1) the number of candidates required for the22

calculation of UVCD; and (2) the time complexity of calculating UCVD of strength23

l (1 ≤ l ≤ t) for each candidate during the process of constructing Al.24

For (1), it requires (N−i)+1 test cases to compute UVCD. For (2), according to

Clk l-wise parameter combinations, we divide all possible l-wise value combinations

that are derived from a TP (k, |V1||V2| · · · |Vk|) into Clk sets that form

Πl = {πl|πl = {(vi1 , vi2 , · · · , vil)|vij ∈ Vij , j = 1, 2, · · · , l},
1 ≤ i1 < i2 < · · · < il ≤ k}. (9)

As a consequence, when using a binary search, the order of time complexity of25

(2) is O(
∑
πl∈Πl

log(|πl \ CombSetl(T )|)), which equals O(
∑
πl∈Πl

log(|πl|)). Let us26

define the following function:27

fl =


0, if l = 0;
l∑
i=1

|Al|, if 1 ≤ l ≤ t. (10)

From Equation 10, we have ft =
∑t
l=1 |Al| = N .28

According to Al(1 ≤ l ≤ t), the order of time complexity of constructing Al
is O((

∑fl
i=fl−1+1 (N − i+ 1))× (

∑
πl∈Πl

log(|πl|))). Since t subparts A1, A2, · · · , At
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are included in the algorithm IICBP execution, the order of time complexity can

be described as follows:

O(IICBP ) = O(

t∑
l=1

((

fl∑
i=fl−1+1

(N − i+ 1))× (
∑
πl∈Πl

log(|πl|))))

< O(

t∑
l=1

((

fl∑
i=fl−1+1

(N − i+ 1))× (Clk × log(al))))(1 ≤ l ≤ t). (11)

There exists an integer µ(1 ≤ µ ≤ t) such that:1

(∀l) (1 ≤ l ≤ t) (µ 6= l) [(Cµk × log(aµ)) ≥ (Clk × log(al))]. (12)

As a consequence,

O(IICBP ) < O(

t∑
l=1

((

fl∑
i=fl−1+1

(N − i+ 1))× (Cµk × log(aµ))))

= O((

N∑
i=1

(N − i+ 1))× (Cµk × log(aµ)))

= O(Cµk × log(aµ)× (N2 +N)/2). (13)

Therefore, we can conclude that the order of time complexity of algorithm IICBP2

is O(N2 × Cµk × log(aµ))(1 ≤ µ ≤ t).a3

As discussed in [15], the order of time complexity of algorithm ICBP (Algorithm4

2) is O(N2 × Ctk × log(at)). /*** Dave’s comment [5]: please confirm the next5

sentence ***/ According to Appendix A, if 1 ≤ t < dk2 e, µ = t, or if dk2 e ≤ t ≤ k,6

µ = dk2 e, then the order of time complexity of algorithm IICBP is the same as that7

of algorithm ICBP.8

4. Experimental Results9

In this section, some experimental results from simulations and experiments with10

real programs are presented to analyze the effectiveness of the prioritization of com-11

binatorial test cases by incremental interaction coverage. We evaluate test sequences12

prioritized by algorithm IICBP (denoted IICBP) by comparing with those ordered13

by three other strategies: (1) test sequence according to covering array generation14

sequence (denoted Original); (2) random test sequence whose ordering is randomly15

prioritized (denoted Random); and (3) test sequence prioritized by algorithm ICBP16

(denoted ICBP).17

aIf 1 ≤ t < d k
2
e, µ = t; if d k

2
e ≤ t ≤ k, µ = d k

2
e, see Appendix A for more details.
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Table 3. Sizes of covering arrays for four test profiles.

Test profile
ACTS PICT

2 3 4 5 6 2 3 4 5 6

TP (6, 56) 25 199 1058 4149 15625 37 215 1072 4295 15625
TP (10, 23334351) 23 103 426 1560 3590 23 109 411 1363 3934

TP (8, 2691101) 90 180 632 1080 2520 90 192 592 1237 2370

TP (7, 243161161) 96 289 578 1728 2304 96 293 744 1658 2655

4.1. Simulations1

We initially designed some typical test profiles to construct covering arrays, then2

applied different test case prioritization techniques to prioritize them, evaluating3

each prioritization strategy Three simulations were involved. The first simulation4

was to evaluate the rate of value combinations covered by the different prioriti-5

zation techniques. The second and third simulations aimed at assessing rates of6

fault detection for different test sequences when executing all, or some test cases,7

respectively.8

4.1.1. Simulation instrumentation9

We designed four test profiles as four system models with details shown in Table10

3. The first two test profiles were TP (6, 56) and TP (10, 23334351), both of which11

have been used in previous studies [15]. The third and fourth test profiles (that12

is, TP (8, 2691101) and TP (7, 243161161)) were from real-world applications: a real13

configuration model of GNUzip (gzip); and a module of a lexical analyzer system14

(flex).15

The original covering arrays were generated by two different tools: Advanced16

Combinatorial Testing System (ACTS) [25, 26] and Pairwise Independent Combi-17

natorial Testing (PICT) [27]. Both of these are supported by greedy algorithms,18

and implemented, respectively, by the In-Parameter-Order (IPO) method [25] and19

the one-test-at-a-time approach (generating one test case each time) [28]. We fo-20

cused on covering arrays with strength t = 2, 3, 4, 5, 6; and the sizes of the covering21

arrays generated by ACTS or PICT are given in Table 3. Since randomization is22

used in some test case prioritization techniques, we ran each test profile 100 times23

and report the average of the results.24

4.1.2. Simulation One: Rate of covering value combinations25

In this simulation, we measured how quickly a test sequence could cover value com-26

binations of different strengths. We only considered strength t = 2, 3, 4. Algorithm27

ICBP requires that the strength t be initialized in advance. However, because we28

sometimes may not know the strength of a covering array in practical testing ap-29

plications, we also take account of test sequences ordered by algorithm ICBP when30

selecting lower strength τ(1 < τ < t), that is, ICBPτ .31
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1. Metrics: Average percentage of combinatorial coverage (APCC) [15] is used as the1

metric to evaluate the rate of value combinations covered by a test sequence. The2

APCC values range from 0% to 100%; higher APCC values mean better rates3

of covering value combinations. Let a test sequence be S = 〈s1, s2, · · · , sN 〉,4

obtained by prioritizing a CA(N ; t, k, |V1||V2| · · · |Vk|), the formula for APCC at5

strength τ is given as follows:6

APCCτ (S) =

∑N−1
i=1 |

⋃i
j=1 CombSetτ (sj)|

N × |CombSetτ (Tall)|
, (14)

where Tall is the set of all test cases from TP (k, |V1||V2| · · · |Vk|).7

2. Results and analysis: For covering arrays of strength t(2 ≤ t ≤ 4) on individual8

Table 4. APCCτ metric (%) for different prioritization techniques for TP (6, 56).

Method
t = 2 t = 3 t = 4

τ=1 τ=2 τ=1 τ=2 τ=3 τ=1 τ=2 τ=3 τ=4

Original 82.67 48.00 93.80 85.11 63.47 94.93 89.61 82.68 63.59

A Random 82.75 48.00 97.54 80.63 58.62 99.53 97.69 89.20 59.99

C ICBPt 82.96 48.00 97.71 89.94 64.31 99.54 97.88 91.36 65.39
T ICBPt-1 NA NA 98.16 92.17 59.40 99.57 98.40 92.63 60.80

S ICBPt-2 NA NA NA NA NA 99.66 98.62 89.43 59.98

IICBP 85.87 48.00 98.45 92.03 63.61 99.71 98.60 92.49 64.90

Original 90.63 60.27 98.16 92.11 64.40 99.59 97.83 91.41 64.56

P Random 87.52 56.35 97.70 89.39 60.26 99.53 97.73 89.37 60.32
I ICBPt 89.95 60.27 97.91 91.79 64.58 99.55 97.90 91.53 65.28

C ICBPt-1 NA NA 98.30 92.81 60.93 99.59 98.39 92.76 61.32

T ICBPt-2 NA NA NA NA NA 99.67 98.64 89.65 60.34
IICBP 91.19 60.00 98.58 92.70 64.23 99.72 98.62 92.63 64.86

Table 5. APCCτ metric (%) for different prioritization techniques for TP (10, 23334351).

Method
t = 2 t = 3 t = 4

τ=1 τ=2 τ=1 τ=2 τ=3 τ=1 τ=2 τ=3 τ=4

Original 86.14 66.55 92.72 85.33 72.17 97.06 88.66 82.99 73.82
A Random 86.15 62.75 96.69 89.52 70.98 99.19 97.28 91.45 76.11
C ICBPt 88.60 67.32 97.56 91.85 74.99 99.36 98.03 93.51 79.98
T ICBPt-1 NA NA 97.67 92.23 72.48 99.42 98.09 93.80 77.97

S ICBPt-2 NA NA NA NA NA 99.45 98.18 92.14 76.35
IICBP 89.31 66.90 97.73 92.06 74.15 99.47 98.15 93.61 79.38

Original 88.18 66.51 97.56 92.21 76.23 99.08 97.44 92.55 78.56
P Random 86.16 63.23 96.90 90.05 72.10 99.15 97.18 91.22 75.45

I ICBPt 88.64 66.82 97.90 92.36 76.10 99.34 97.95 93.26 79.17
C ICBPt-1 NA NA 97.80 92.67 73.70 99.40 98.02 93.56 77.24
T ICBPt-2 NA NA NA NA NA 99.43 98.11 91.89 75.71

IICBP 89.12 66.43 97.80 92.51 75.51 99.45 98.08 93.37 78.52
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Table 6. APCCτ metric (%) for different prioritization techniques for TP (8, 2691101).

Method
t = 2 t = 3 t = 4

τ=1 τ=2 τ=1 τ=2 τ=3 τ=1 τ=2 τ=3 τ=4

Original 82.87 69.62 83.53 71.77 62.21 90.80 84.17 79.60 72.11
A Random 93.26 76.03 96.38 85.75 64.66 98.96 95.14 86.82 71.32

C ICBPt 95.58 79.94 97.32 84.49 69.40 99.26 96.50 90.60 76.65

T ICBPt-1 NA NA 97.63 89.79 65.85 99.36 97.06 91.14 74.47
S ICBPt-2 NA NA NA NA NA 99.39 97.14 88.37 71.98

IICBP 95.73 79.79 97.89 89.58 66.49 99.40 97.12 90.55 75.33

Original 93.94 78.62 97.08 88.32 71.00 98.91 95.37 88.47 74.28

P Random 93.17 75.82 96.71 86.45 66.87 98.90 94.84 86.18 70.87

I ICBPt 95.51 79.94 97.58 88.88 72.20 99.21 96.40 89.94 75.43
C ICBPt-1 NA NA 97.93 89.99 70.06 99.33 96.89 90.53 73.62

T ICBPt-2 NA NA NA NA NA 99.35 96.97 87.69 71.50

IICBP 95.76 79.59 98.02 89.85 70.74 99.36 96.94 89.95 74.50

Table 7. APCCτ metric (%) for different prioritization techniques for TP (7, 243161161).

Method
t = 2 t = 3 t = 4

τ=1 τ=2 τ=1 τ=2 τ=3 τ=1 τ=2 τ=3 τ=4

Original 75.54 63.40 76.46 65.40 58.65 76.65 65.68 59.50 55.18

A Random 91.07 69.82 96.85 87.64 68.32 98.38 93.26 81.98 61.31
C ICBPt 93.98 75.77 97.79 90.91 73.82 98.66 94.52 84.12 64.78

T ICBPt-1 NA NA 98.08 92.11 70.08 98.96 95.73 86.39 62.70

S ICBPt-2 NA NA NA NA NA 99.04 96.11 83.45 61.67
IICBP 94.47 75.01 98.16 91.86 72.42 99.08 96.02 85.63 62.62

Original 92.58 74.52 97.25 88.47 72.28 98.70 94.74 86.57 70.84
P Random 91.12 71.04 96.89 87.81 69.80 98.72 94.62 85.05 67.62

I ICBPt 94.17 76.27 97.90 91.36 75.02 99.05 96.24 88.87 72.79

C ICBPt-1 NA NA 98.14 92.19 71.59 99.19 96.80 89.89 70.36
T ICBPt-2 NA NA NA NA NA 99.27 97.00 86.33 68.02

IICBP 94.47 75.66 98.18 91.87 73.74 99.28 96.87 89.12 71.22

test profiles, we have the following observations based on the results reported in1

Tables 4–6. Each table corresponds to a particular test profile.2

(a) Combinatorial test sequences prioritized by IICBP strategy have greater3

APCCτ (1 ≤ τ ≤ t) values than Original test sequences and Random test se-4

quences. Therefore, the IICBP technique outperforms Original and Random.5

(b) Given a covering array of strength t, the ICBPτ has the highest APCCτ when6

1 < τ ≤ t; but the IICBP has the highest APCCτ ′ when 1 ≤ τ ′ 6= τ ≤ t.7

(c) The ACTS Original test sequences often have lower APCC values than8

Random test sequences; the PICT Original test sequences always outperform9

Random test sequences, and occasionally outperform ICBPt-1 and ICBPt-2 test10

sequences.11
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Observation (a) is easily explained, hence, we just explain the second and the1

third observations here. For observation (b), since ICBP prioritizes combinatorial2

test cases by using strength τ , therefore its APCC value is the highest at strength3

τ . However, IICBP comprehensively considers different strengths for prioritizing test4

cases, and hence it has the highest APCC values at other strength values.5

For observation (c), the difference in performance is due to the different mecha-6

nisms involved in implementing ACTS and PICT. For example, without loss of gen-7

erality, suppose we have a TP (k, |V1||V2| · · · |Vk|) with |V1| ≥ |V2| ≥ · · · ≥ |Vk|. The8

ACTS algorithm first uses horizontal growth [25,26] to build a t-wise (2 ≤ t ≤ k) test9

set for the first t parameters. This implies that it needs at least 1+(|V1|−1)
∏t
i=2 |Vi|10

test cases to cover all 1-wise value combinations. On the other hand, PICT selects11

a next test case such that it covers the largest number of t-wise value combinations12

that have not been covered – a mechanism similar to that of ICBP.13

In summary, given a covering array of strength t, IICBP strategy performs better14

than Original and Random strategies with respect to APCCτ (1 ≤ τ ≤ t), and15

performs better than ICBP technique of strength τ in for strengths that are not16

equal to τ .17

4.1.3. Simulation Two: Rate of fault detection when executing all test cases18

In the second simulation, we modeled four systems with a number of failures by19

using the same four test profiles as in Section 4.1.1 to analyze the fault detection20

rate of each prioritization technique when executing all test cases in a covering21

array.22

With regard to the distribution of failures, we assigned some failures at lower23

strengths according to results reported in [1,6]. For example, in [1], several software24

projects were studied and the interaction faults were reported to have 29% to 82%25

faults as 1-wise faults (that is, the FTFI number is 1); 6% to 47% of faults as26

2-wise faults; 2% to 19% as 3-wise; 1% to 7% of faults as 4-wise; and even fewer27

faults beyond 4-wise interactions. Therefore, in our simulation we only considered28

simulated interaction faults of the FTFI number = 1, 2, 3, 4. As a result, the fault29

distribution simulated for each test profile was designed as following: thirty 1-wise30

interaction faults; forty 2-wise interaction faults; twenty 3-wise interaction faults;31

and five 4-wise interaction faults. Each injected fault was randomly generated with32

replacement in individual test profiles. Since the simulated interaction fault was33

randomly chosen and some prioritization strategies involved some randomization,34

we ran each algorithm 100 times for each test profile, and report the average of the35

results.36

1. Metrics: The APFD metric [18] is often used to evaluate fault detection rates of37

different prioritization techniques. However, this metric does have a requirement38

that all faults should be detected by a given test sequence. In other words, if a39

fault cannot be detected, the APFD metric fails. The normalized APFD metric40



September 15, 2013 2:36 WSPC/INSTRUCTION FILE ws-ijseke

Prioritization of Combinatorial Test Cases by Incremental Interaction Coverage 15

(NAPFD) [13] has been proposed as an enhancement of APFD. It includes infor-1

mation about both fault finding and time of detection. The higher the NAPFD2

value, the higher the fault detection rate. Similar to the definition of APFD3

given in Equation 5, the formula for NAPFD is presented as follows:4

NAPFD = p− SF1 + SF2 + · · ·+ SFm
n×m

+
p

2n
, (15)

where m, n, and SFi(i = 1, 2, · · · ,m) have the same interpretations as in APFD,5

and p represents the ratio of the number of faults identified by selected test cases6

relative to the number of faults detected by the full test suite. If a fault, fi, is7

never found, we set SFi = 0. Obviously, if all faults can be detected, NAPFD8

and APFD are identical due to p = 1.0.9

2. Results and analysis: Fig. 2 presents the simulation results in terms of the10

NAPFD metric values for different prioritization techniques, based on which11

we have the following observations.12

(a) The IICBP technique has significantly better fault detection rates than the13

ACTS Original method, but only slightly better performance than the14

PICT Original method.15

(b) The IICBP test sequences have higher NAPFD values than the Random test16

sequences.17

(c) Compared to ICBP, IICBP has similar NAPFD values. More specifically,18

when prioritizing the covering arrays of strength t = 2, the IICBP failure-19

detection rate is sometimes slightly less than that of ICBP; when ordering20

the covering arrays of strength t > 2, IICBP performs slightly better than21

ICBP.22

The first and second observations are consistent with those reported for Simula-23

tion One. For Observation (c), we take a covering array of strength t = 5 generated24

by PICT on TP (10, 23334351) as an example. Table 8 shows the average number25

of test cases required to find all faults at different FTFI numbers. We can observe26

that for any FTFI number, IICBP performs better than other methods. However,27

since the size of the original test suite (1363) is much larger than any value shown28

in Table 8, the difference among NAPFD values obtained by different methods is29

Table 8. The average number of test cases in
different sequences required to detect all faults
for different FTFI numbers.

Method
FTFI number

1 2 3 4

Original 8.97 49.02 120.78 235.43
Random 10.39 52.75 155.64 278.14
ICBP 8.33 33.62 104.09 216.60

IICBP 4.65 22.81 81.89 201.50
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(b) TP (10, 23334351)
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(c) TP (8, 2691101)
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Fig. 2. NAPFD metric for different prioritization techniques when executing all test cases.
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smaller. Therefore, IICBP may have similar NAPFD values to ICBP, and sometimes1

is similar to Random and Original, when executing all test cases. /*** Dave’s2

comment [6]: Please check the last paragraph ***/3

4.1.4. Simulation Three: Rate of fault detection when executing part of the4

test suite5

Since resources are limited, in practice it is often the case that not all test cases in6

a test suite (or test sequence) are executed. In this simulation, we focused on the7

fault detection rates of different test case prioritization techniques when running8

only part of a given test sequence.9

The simulation design was consistent with that of Simulation Two, as explained10

in Section 4.1.3, including fault distribution and fault generation. With regard to11

the portion of the test sequence to be executed, we followed the practice adopted in12

previous prioritization studies [13] of fixing the number of test cases that would be13

executed to be the size of a covering array at strength t = 2. For instance, consider14

TP (6, 56) in Table 3: for any strength, the 25 ACTS test cases and 37 PICT test15

cases were chosen to be executed in each test sequence generated by each method.16

1. Metrics: Similar to Simulation Two, the NAPFD metric (Equation 15) was also17

used to evaluate fault detection rates of different prioritization strategies when18

executing part of test suite. Here, it is should be noted that n in Equation 15 is19

the number of executed test cases rather than the number of all test cases in a20

given test sequence.21

2. Results and analysis: The NAPFD values for the different prioritization methods22

are summarized in Fig. 3, from which the following observations can be made.23

(a) The NAPFD values for the Random test sequences were higher than those24

for ACTS Original, but lower than those for the PICT Original test se-25

quences. This observation is consistent with those reported for the other26

simulations.27

(b) IICBP outperforms Original, Random, and ICBP in most cases.28

(c) With the increase of strength, the improvement of IICBP over Original,29

Random, and ICBP increases significantly. In other words, when the strength30

is larger, IICBP is more suitable for prioritizing combinatorial test suites31

than Original, Random, or ICBP.32

In summary, according to the APCC and NAPFD metrics, the IICBP technique33

performs better than the Original and Random techniques. Compared with ICBP,34

IICBP performs better at low strengths in terms of APCC metric values. However,35

IICBP may produce test sequences with similar NAPFD metric values to those of36

ICBP when executing all test cases, but with better NAPFD metric values when37

running only part of the test suite.38

Obviously, two faults with the same faulty interaction may have different prop-39

erties. For example, given a TP (k, |V1||V2| · · · |Vk|), faults f1 and f2 can be both40
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(a) TP (6, 56)
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(b) TP (10, 23334351)
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(c) TP (8, 2691101)
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(d) TP (7, 243161161)

Fig. 3. NAPFD metric for different prioritization techniques when executing only part of the test

suite.
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identified by a 2-wise faulty interaction {P1, P2}. Fault f1 may be triggered when1

“(P1 = v1)&&(P2 = v2)” where v1 ∈ V1 and v2 ∈ V2; while fault f2 may be trig-2

gered by “(P1 6= v1)&&(P2 6= v2)”. Consider a test case, its probability of revealing3

fault f1 (or the failure rate of f1 – the number of failure-causing test cases revealing4

f1 as a proportion of all possible tests) is 1
|V1|×|V2| , and the probability of revealing5

fault f2 is (|V1|−1)×(|V2|−1)
|V1|×|V2| . When parameters P1 and P2 both have a large number6

of possible values, the probabilities of detecting f1 and f2 could be very different.7

In Simulation Two and Simulation Three, the faulty interaction of each simulated8

fault was consistent with that of fault f1, that is, each fault could only be detected9

by a special value combination rather than different value combinations. /***10

Dave’s comment [7]: please confirm the next sentence ***/ As for faults that differ11

from fault f1, the effectiveness of our method will be investigated later by studying12

some real-life programs.13

4.2. An empirical study14

4.2.1. Experiment instrumentation15

/*** Dave’s comment [8]: should we remove all mention of cmdline? ***/16

We used six C programs (count, series, tokens, ntree, nametbl and cmdline),17

downloaded from http://www.maultech.com/chrislott/work/exp/, as subject18

programs [29]. These programs were originally created to support research on com-19

parison of defect revealing mechanisms [29], evaluation of different combination20

strategies for test case selection [30], and fault diagnosis [31, 32]. Each program21

contains some faults. To determine the correctness of an executing test case, i.e. an22

oracle, we created a fault-free version of each program by analyzing the correspond-23

ing fault description.24

Table 9 describes these subject programs. The third column (LOC) stands for25

the number of lines of executable code in these programs; while the fifth column26

(No. of detectable faults) represents the number of faults detected by some test27

cases derived from the accompanying test profiles, which are not guaranteed to be28

able to detect all faults. By analyzing the detectable faults, as shown in Table 9, we29

summarize them according to the FTFI number of each fault. Similar to [30], due30

to the incomplete specifications of cmdline, it was not included in this study.31

Table 9. Subject programs.

Subject Test profile LOC
No. of No. of dete- FTFI number

faults ctable faults 0 1 2 3 4

count TP (6, 2135) 42 15 12 0 4 4 4 0

series TP (3, 5271) 288 23 22 1 3 4 14 NA
tokens TP (8, 2434) 192 15 11 1 4 5 1 0
ntree TP (4, 44) 307 32 24 0 5 11 7 1

nametbl TP (5, 213252) 329 51 44 1 17 24 2 0
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Table 10. Sizes of original test sequences for each subject program.

Subject program
ACTS PICT

2 3 4 5 6 2 3 4 5 6

count 15 41 108 243 486 14 43 116 259 486
series 35 175 NA NA NA 39 175 NA NA NA

tokens 12 37 93 212 486 12 39 103 228 482

ntree 20 64 256 NA NA 19 75 256 NA NA
nametbl 25 82 225 450 NA 25 78 226 450 NA

Similar to the simulations described above, we also used ACTS and PICT to1

generate original test sequences for each subject program. Moreover, we focused on2

covering arrays with strength t = 2, 3, 4, 5, 6. Table 10 shows the sizes of the original3

test sequences obtained by ACTS and PICT. For the effectiveness metrics, we used4

NAPFD for respectively executing all test cases and a subset of the entire test suite5

such that the size of the subset was equal to each covering array of strength t = 2.6

Due to randomization in some prioritization techniques, we ran the experiment 1007

times for each subject program and report the average.8

4.2.2. Results and analysis9

The experimental results from running all prioritization techniques to test count,10

series, tokens, ntree, and nametbl, are summarized in Figs. 4 and 5.11

1. When executing all test cases in the test suite, as shown in Figs. 4(a)–4(e), we12

have the following observations: (a) for all test suites at strength t = 3, 4, 5, 6,13

IICBP performs significantly better than Original using ACTS, and has slightly14

better performance than Random and ICBP, regardless of whether using ACTS15

or PICT; and (b) for strength t = 2 test suites, no conclusive observations could16

be obtained.17

2. When executing part of the test suite, as illustrated in Figs. 5(a)–5(e), it can18

be observed that for four programs (count, series, ntree, and nametbl), the19

performance of the various prioritization strategies was very similar: (1) in most20

cases, IICBP had higher NAPFD metric values than Original, Random, and ICBP;21

(2) with the increase of strength, the improvement of IICBP over Original,22

Random, or ICBP generally increased; (3) the Original ACTS test sequences23

performed worst in terms of fault detection rate, while the Original PICT test24

sequences sometimes have the largest NAPFD values, such as for 2-wise series25

and 3-wise ntree; (4) for covering arrays of strength t = 2 on nametbl, ICBP has26

the best performance in terms of the rate of fault detection. These observations27

are basically consistent with those for the simulations.28

For the remaining program (tokens), no conclusive remarks could be drawn.29

As observed, each prioritization method may sometimes perform best, and may30

sometimes perform worst.31
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(d) Program ntree

Fig. 4. NAPFD metric for different prioritization techniques for five real programs when executing

all test cases
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Fig. 4. (Continued).

In summary, the experimental study using real programs shows similar results1

to the simulations in terms of the rate of fault detection, that is, when executing2

all test cases in the combinatorial test suite, IICBP had similar performance to3

Original, Random, and ICBP generally; while IICBP performed better than others4

in most cases when executing only part of the test suite.5

4.3. Threats to validity6

Despite our best efforts, our experiments may face some threats to validity. In this7

section, we present the most significant of these, which are classified into three8

categories: (1) threats to external validity; (2) threats to internal validity; and (3)9

threats to construct validity.10

External validity refers specifically to what extent our experimental results can11

be generalized. We mainly outline three threats to external validity: (1) Test profile12

representativeness – in our study, four widely used, but limited test profiles were13

employed; (2) Subject program representativeness – we have examined only five14

subject programs, written in the C language, all of which are of relatively small15

size; and (3) Covering array generation representativeness – in our experiment, we16

used ACTS and PICT for generating different covering arrays, however, both of17

these belong to the category of greedy algorithm [7]. To address these potential18

threats, additional studies using a greater range of test profiles, a greater number19

of subject programs, and different algorithms for covering array construction will20

be conducted in the future.21

Internal validity refers to whether or not there were mistakes in the experiments.22

We have tried to manually cross-validate our analyzed programs on small examples,23

and we are confident of the correctness of the experimental and simulation setups.24

Finally, construct validity refers to whether or not we have conducted the studies25

fairly. In this article, we focus on the rate of covered value combinations and the26

rate of fault detection, measured with the APCC and NAPFD (or APFD) metrics,27

respectively. The NAPFD and APFD metrics are commonly used in the study of28
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Fig. 5. NAPFD metric for different prioritization techniques for five real programs when executing

only part of the test suite.
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Fig. 5. (Continued).

Table 11. State of the art in combinatorial test case prioritization.

Strategies Interaction coverage Incremental interaction coverage

Pure prioritization [4], [11], [12], [13], [15] [33], Focus of this paper

Re-generation prioritization [4], [9], [10], [13], [14] [3], [5]

test case prioritization.1

5. Related Work2

Techniques for prioritizing combinatorial test cases have been well-researched in re-3

cent years, and can generally be divided into two categories: (1) pure prioritization:4

re-prioritizing test cases in the combinatorial test suite; and (2) re-generation pri-5

oritization: taking account of prioritization in the process of combinatorial test case6

generation [13]. The method proposed in this paper belongs to the first category.7

From the perspective of interaction coverage, there are a large number of strate-8

gies supporting prioritization of combinatorial test cases. For example, Bryce and9

Colbourn [9, 10] proposed generating prioritized combinatorial test suites by as-10

signing weights to each pairwise interaction of parameters, a technique in the re-11

generation prioritization category. Bryce and her colleagues [11, 12] introduced a12

technique of re-prioritizing combinatorial test cases based on interaction coverage,13

and applied this technique to event-driven software. Qu et al. [13] presented how to14

assign parameter combination weights that evaluate their importance, and also ap-15

plied interaction-coverage-based prioritization strategies to configurable systems [4].16

Chen et al. [14] used a re-generation prioritization strategy to construct combina-17

torial test sequences by applying the ant colony algorithm. Furthermore, Wang et18

al. [15] proposed a series of metrics for evaluating combinatorial test sequences by19

considering different factors such as test case cost and weight, and also introduced20

two heuristic algorithms in the pure prioritization category.21
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On the other hand, fewer studies have been conducted on the prioritization of1

combinatorial test cases from the perspective of incremental interaction coverage.2

Fouché et al. [3, 5] have recently proposed a technique named incremental cover-3

ing array failure characterization (ICAFC), where incremental interaction cover-4

age is used to generate incremental adaptive covering arrays. ICAFC starts at a5

low strength for constructing a covering array, and gradually increases strength by6

reusing previous test cases until some conditions are satisfied. However, an incre-7

mental adaptive covering array of strength t generated by ICAFC may be considered8

a prioritized combinatorial test suite only from the viewpoint of strength. We will9

discuss this issue further in the next section. Furthermore, Wang [33] has developed10

the technique of inCTPri to generate the prioritized combinatorial test cases. How-11

ever, his inCTPri assumes covering arrays as inputs, while our method is applicable12

on any combinatorial test suite including covering arrays. Additionally, our method13

begins at strength t = 1 while inCTPri starts at a small strength value greater than14

1.15

The state of the art in combinatorial test case prioritization is summarized in16

Table 11, from which it can be seen that the topic has been extensively researched17

from the perspective of interaction coverage, but has received far less attention from18

the perspective of incremental interaction coverage. Our investigation (highlighted19

in the table) attempts to fill this gap in the research.20

6. Discussion and Conclusion21

Combinatorial testing has been widely used in practice, and test case prioritization22

has also been well studied. Prioritization of combinatorial test cases is a popular23

research area. This paper proposes a new strategy of prioritizing combinatorial test24

cases based on the intuition of incremental interaction coverage, which is a balanced25

strategy compared with traditional interaction-coverage-based test prioritization.26

Experimental results show that our method outperforms the random prioritization27

approach and the technique of prioritizing combinatorial test suites according to28

test case generation order, and has better performance than the ICBP technique in29

most scenarios, with respect to the APCC and NAPFD metrics.30

/*** Dave’s comment [9]: can you clarify/rephrase the next sentence? ***/31

There have been some studies of the application of information on incremental inter-32

action coverage. As illustrated in Section 5, for example, ICAFC [3,5] has recently33

been proposed to generate incremental adaptive covering arrays based on incremen-34

tal interaction coverage. Although both their and our studies share the same goal –35

identifying failures caused by a small number of parameters, as early as possible –36

there are some fundamental differences between them. Firstly, ICAFC aims mainly37

at constructing each covering array schedule from the others; /*** Dave’s comment38

[10]: what do you mean by “others”? ***/ IICBP, on the other hand, aims to pri-39

oritize combinatorial test cases. Secondly, IICBP belongs to the category of pure40

prioritization, whereas ICAFC is a re-generation prioritization strategy. Thirdly,41
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IICBP begins at strength t = 1 for ordering test cases, while ICAFC starts at a low1

strength t, which is not necessarily 1 (usually t = 2 [3, 5]). Even if ICAFC starts2

at t = 1, its generated covering arrays are only partially prioritized. For example,3

suppose that an ICAFC-generated covering array T includes t independent parts4

A1, A2, · · · , At having the same meaning as in Fig. 1, T is a prioritized combina-5

torial test suite from the perspective of strength (that is, A1 → A2 → · · · ,→ At),6

however, the order of test cases in each subset Ai(i = 1, 2, · · · , t) is not considered.7

Finally, ICAFC performs better than traditional methods of constructing covering8

arrays when multiple covering arrays must be used, the reason being that it can9

reduce duplication of testing, which means that when a single covering array is10

used, covering arrays generated by ICAFC may not be comparable in size to those11

generated by traditional methods [5]. However, IICBP can use good covering arrays12

with smaller sizes generated by some effective algorithms.13

Similar to the ICBP technique, our technique is not limited to conventional14

software. For example, event-driven software is a widely used category of software15

that takes sequences of events as input, alters state, and outputs new event se-16

quences [11, 12]. Further studies should be focused on applying our strategy of17

prioritizing test cases in different software for which information about interaction18

coverage is available. Furthermore, some factors, such as test case cost and weight,19

were not considered in guiding test case prioritization in this paper. In future, it20

will be desirable to apply these factors to IICBP for prioritizing combinatorial test21

cases. In addition, the APCC metric is a well-known effectiveness measure of the22

rate of value combinations covered by a test sequence, however, it can only assess a23

given test sequence at a single strength. Given a combinatorial test sequence T of24

strength t, the APCCτ (1 ≤ τ ≤ t) metric value of T gives the rate of value combina-25

tions covered by T at strength τ . In other words, the rate of value combinations of26

T at strength τ ′(1 ≤ τ ′ ≤ t, τ ′ 6= τ) is neglected. It would be useful, but challenging,27

to develop a new metric to evaluate the rate of value combinations covered by a28

test sequence by comprehensively taking into consideration all strengths from 1 to29

t.30

Appendix A. Calculation of µ Illustrated in Section 3.231

The question is formalized as follows. Given an integer variable l, three constant32

parameters a(a > 1), k(k > 1), and t(1 ≤ t ≤ k), and a function f(l) = Clk× log(al)33

where 1 ≤ l ≤ t, find an integer µ ∈ [1, t] such that f(µ) = max
1≤l≤t

f(l). Obviously,34

f(l) = Clk × log (al) = Clk × l × log (a) = k!× log (a)× 1

(l − 1)!× (k − l)!
. (A.1)

Since k! × log (a) is a constant, the problem converts to finding the minimum of35

(l − 1)! × (k − l)!(1 ≤ l ≤ t) (denoted as g(l)), that is, finding an integer µ ∈ [1, t]36

such that g(µ) = min
1≤l≤t

g(l).37
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We first analyze the minimum of g(l) when l ∈ [1, k]. As we know, since l is a1

discrete variable, that is, l = 1, 2, · · · , k, the minimal value of g(l) certainly exists.2

On the other hand, g(1) = g(k) = (k − 1)! > g(2) = g(k − 1) = (k − 2)!, therefore,3

µ ∈ [2, k − 1]. Suppose that when l = µ, g(µ) is the minimum value of g(l), so two4

inequalities can be easily obtained as follows:5

{
g(µ) ≤ g(µ− 1)

g(µ) ≤ g(µ+ 1)

⇒
{

(µ− 1)!× (k − µ)! ≤ (µ− 2)!× (k − µ+ 1)!

(µ− 1)!× (k − µ)! ≤ µ!× (k − µ− 1)!

⇒
{

(µ− 2)!× (k − µ)!× (2µ− k − 2) ≤ 0

(µ− 1)!× (k − µ− 1)!× (k − 2µ) ≤ 0

⇒
{

2µ− k − 2 ≤ 0

k − 2µ ≤ 0

(
because (µ− 2)! > 0, (k − µ)! > 0,

(µ− 1)! > 0, and (k − µ− 1)! > 0

)
⇒ k

2
≤ µ ≤ k

2
+ 1.

Intuitively speaking, when k is an even number, µ is equal to k
2 or k

2 + 1 to achieve6

the minimum of g(h) because g(k2 ) = g(k2 + 1) = (k2 )!× (k2 − 1)!; when k is an odd7

number, µ equals k+1
2 as it is a unique integer among [k2 ,

k
2 + 1]. Overall, for any k,8

µ = dk2 e such that g(µ) = min
1≤l≤k

g(l).9

As a result, if dk2 e ≤ t ≤ k, µ = dk2 e such that g(µ) = min
1≤l≤t

g(l).10

Next, we investigate the value of µ in the case of 1 ≤ t < dk2 e. Suppose two11

arbitrary integers m and n, such that 1 ≤ m < n ≤ t < dk2 e, we can obtain:12

g(m)− g(n) = (m− 1)!× (k −m)!− (n− 1)!× (k − n)!

= (m− 1)!× (k − n)!× (

n−1∏
i=m

(k − i)−
n−m∏
j=1

(n− j))

= (m− 1)!× (k − n)!× (

k−m∏
i=k−n+1

i−
n−1∏
j=m

j). (A.2)

Due to 1 ≤ m < n ≤ t < dk2 e, m+n < 2×dk2 e. If k is an even number, 2×dk2 e = k;13

if k is an odd number, 2 × dk2 e = k + 1. On the whole, m + n < k + 1, that is,14

k−n+1 > m. Therefore,
∏k−m
i=k−n+1 i >

∏n−1
j=m j. Thus, g(m) > g(n). Consequently,15

g(1) > g(2) > · · · > g(t − 1) > g(t). In other words, when µ = t, g(µ) = min
1≤l≤t

g(l)16

for the case of 1 ≤ t < dk2 e.17

As discussed above, we can conclude that if 1 ≤ t < dk2 e, µ = t; if dk2 e ≤ t ≤ k,18

µ = dk2 e, such that g(µ) = min
1≤l≤t

g(l), so that f(µ) = max
1≤l≤t

f(l).19
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