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Abstract

Depth images, in particular depth maps estimated from stereo vision, may have a substantial amount
of outliers and result in inaccurate 3D modelling and reconstruction. To address this challenging issue, in
this paper, a graph-cut based multiple depth maps integration approach is proposed to obtain smooth and
watertight surfaces. First, confidence maps for the depth images are estimated to suppress noise, based
on which reliable patches covering the object surface are determined. These patches are then exploited to
estimate the path weight for 3D geodesic distance computation, where an adaptive regional term is
introduced to deal with the “shorter-cuts” problem caused by the effect of the minimal surface bias.
Finally, the adaptive regional term and the boundary term constructed using patches are combined in the
graph-cut framework for more accurate and smoother 3D modelling. We demonstrate the superior
performance of our algorithm on the well-known Middlebury multi-view database and additionally on
real-world multiple depth images captured by Kinect. The experimental results have shown that our
method is able to preserve the object protrusions and details while maintaining surface smoothness.
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1. Introduction

With increasing availability of consumer depth cameras that enable 2.5D measurements of real-world
surfaces, quite a few approaches were developed to reconstruct full 3D models from such 2.5D range data,
especially using multi-view stereo (MVS) reconstruction [1-3]. Due to a substantial amount of outliers
contained in the acquired depth images, in particular depth maps estimated from stereo vision, this may have, as
a challenging issue, severely affected the quality of the 3D models reconstructed from multiple depth images.
As a result, a certain level of regularization is required to obtain smoother surfaces, where a number of
techniques have been proposed as discussed below.

The fundamental of robust depth image fusion in the context of laser scanned data was proposed by
Curless and Levoy [4]. Using an intermediate volumetric representation allows the generation of models with
arbitrary genus and avoids the numerical difficulties encountered with polygonal techniques [5]. As pointed out
in [6], simple averaging without further regularization causes inconsistent surfaces due to frequent sign changes
of the mean distance field. Therefore, an additional regularization force is required to favor smooth geometry.
The smoothness of the obtained surface is enforced implicitly in minimal surface based energy function.
Graph-cut algorithms [7-9] and variational techniques [10,11] are exploited to determine the optimal surface
under a given energy function. Moreover, Zach et al. [6] proposed an efficient numerical scheme to incorporate
a total variation regularization term with a L1 data fidelity term for energy minimization.

Range images integration can also be performed using general surface-from-point-clouds reconstruction
techniques [12]. In [13], the back-projected 3D point clouds are down-sampled and filtered to get clean and
evenly scattered points. The points can be furthered refined using photo-consistency constraints if
corresponding color images are available. For example, in [14] the position and normal for initial 3D points are



adjusted according to photo-consistency in multiple color images using bundle optimization. Finally, the mesh
model is generated using Delaunay or Poisson meshing methods [15]. However, this kind of approach is not
appropriate for integration of depth maps obtained from quite sparse viewpoints.

For 3D MVS reconstruction, one commonly used approach is to embed a graph into a volume containing
the surface and estimate the surface as a cut separating free-space (exterior) from the interior of the object or
objects [1-2], and the cut cost corresponds to the energy of minimal weighted surface. After the early work by
Vogiatzis et al. [1], graph cuts based 3D reconstruction has been exploited in several recent works [2,3,18].
However, conventional graph-cuts based MVS reconstruction approaches suffer from an inherent and
well-known bias towards shorter cuts, which is caused by a summation over the surface of the reconstructing
object contained in the minimized energy function. As a result, thin or protrusive parts of the reconstructed
object surface were cut off, as shown in Fig. 1(b). Previous works related to reducing such bias include
introducing additional silhouette constraints [19], constant or data-aware ballooning term [20], and iterative
graph-cut over narrow bands combined with an accurate surface normal estimation [21].

In this paper, we exploit the graph-cut based energy minimization method for depth maps fusion which has
shown its success in multi-view reconstruction. By integrating a defined 3D geodesic-distance to the energy
function, an adaptive regional term or ballooning term is obtained. The inspiration of our approach comes from
the fact that geodesic segmentation [22], a widespread seed-expansion method for 2D image segmentation, can
robustly segment long, thin structures without regard to boundary length. As shown in Fig. 1(c), our proposed
algorithm can significantly reduce overcarving problems and preserves protrusions of the surface. Also, to be
different from the traditional graph-cut based MVS method, an extra initial bounding volume or visual hull is no
longer needed in our approach. Detailed discussions of the proposed method and experimental results are
presented in the next several sections. It is shown that we are able to get 3D watertight models from even sparse
and noise contaminated depth maps obtained with both passive and active methods.

(a) (b)

Figure 1. Shorter-cuts problems. (a) shows the color image captured using Kinect. (b) is the reconstruction result using
standard graph-cuts methods. (c) gives the mesh model reconstructed using the proposed approach. The experimental
details are demonstrated in the experimental part.

In addition, patch-based representation is exploited in this paper with patches embedded into the evenly
divided voxels so as to generate the patches more efficiently and get them stored in a more compact way while
taking advantages of patches in photo-consistency computation. The patch-based representation has gained its
big success in multi-view reconstruction [16,17]. Compared with the voxels often used in volumetric graph cuts,
the patches have shown to be more flexible and robust for photo-consistency computation considering the
distortion of surface projection in multiple images, especially in object areas with high curvature. Also, the
patches can be naturally integrated to the graph structure as pointed out in [16].

2. Overview of the Proposed Approach

First, patch-based 3D shape representation is developed, where patches are generated from the given
multiple depth images and can be further refined using available color images. As the patches that should give a
good approximation of the reconstructing surface actually divide 3D space into inside or outside part of the
object, we use these reliable patches to define 3D geodesic-distance. For every point inside the object, its
background geodesic distance is larger than its foreground geodesic distance, simply because it has to cross the



patches before reaching the background space (outside). Finally, the geodesic distance based regional term and
the photo-consistency based boundary term are combined in the graph cut framework, as shown in Eq. (1),

E(S)= HS P(xX)dA+ A j ﬂy o(x)dV (1)

Eq(1) gives the energy function where the first term is the boundary term and the second term is our
proposed adaptive regional term. The boundary term is affected by photo-consistency of corresponding color
images and it is supposed that the reconstructed surface has overall minimized photo-consistency cost. The over
smoothing problem arises because of the summation over the surface of the reconstructing object. The adaptive
regional term is constructed by patches covering the underlying surface and forces the voxels inside surface to
be labeled as strong inside so as to decline over carving affect.

To illustrate how the proposed approach works, a diagram of the framework is given in Fig. 2. First, the
depth maps are estimated from multiple color images using stereo method, followed by confidence maps
computed for each depth image, which can be integrated into the fusion procedure to suppress depth noise.
These are discussed in detail in Section 3. Second, patches covering the surface are generated and optionally
refined using photo-consistency as presented in Section 4. Third, we compute 3D geodesic distance for every
voxels in the space according to the reliable patches, as given in Section 5, which is defined as an adaptive
regional term to be fused to the graph-cut minimization framework. Finally, 3D points derived from graph-cut
energy minimization are further processed to construct mesh model using Poisson Surface Reconstruction
method, as detailed in Section 6. To verify the effectiveness of the proposed approach, experimental results are
presented in Section 7 with some concluding remarks drawn in Section 8.

Depth maps
estimation

Confidence maps
computation

Patche_s
generation
Patches refinement _| Geodesic-distance N Graph-cuts
(optional) “ computation “ minimization

Poisson surface
reconstruction

Figure 2.The framework of our reconstruction algorithm.

3. Depth Image Estimation with Associated Confidence Maps



Each depth image demonstrates the reconstruction results for an object from one particular viewpoint.
According to the capturing device, the existing depth acquisition approaches can be divided into two categories,
i.e. passive methods based on stereo matching of multiple color images and active methods based on structured
light or time-of-flight, respectively.

3.1 Depth image estimation

In our approach, given multiple color images, we obtain the multi-view depth maps using the depth
estimation approach proposed by Campbell et al [3], which stores multiple depth hypotheses and use a spatial
consistency constraint to extract the true depth. This approach is adopted as it can demonstrate robustness to
spurious matches caused by repeated texture and matching failure due to occlusion, distortion and lack of
texture [23].

In addition, our depth integration method is also verified on multiple depth images captured using Kinect.
There exists non-negligible noise in the acquired depth image due to inherent problems of consumer cameras:
optical noise, loss of depth information on the shiny surfaces and occlusion areas, and also flickering artifacts
[24]. As a result, the originally captured depth images are smoothed using our refined weight mode filtering
method as proposed in paper [25] before being used in the integration procedure.

As what can be seen from the depth images estimated using passive stereo or captured with active depth
cameras (e.g. Kinect), the depth maps generated from different viewpoints give various accuracy for particular
part of the reconstructing object, as shown in Figure 3(a-d). To be more concrete, the depth image is of the
highest accuracy when the spindle of the corresponding camera is nearly parallel to the particular part of the
object surface. In addition, the depth value for pixels around the boundary of the object contains much noise,
which is caused by occlusion in that area. Taking these issues into consideration, it is necessary to define
confidence maps for depth images, which can be used to integrate multiple depth images to obtain a watertight
3D model. With the confidence map, we can suppress the influence of the error existed in the depth image on
the final model.

(e) () (8 (h)
Figure 3.Confidence maps for depth images: (a) and (c) are images from different viewpoints, and (b)(d) displays the
estimated depth images rendered in 3D; The particular object parts (highlighted with red boxes) exhibition quite
different accuracy for depth images generated from different viewpoints; (e) and (g) gives the confidence maps
generated using normal and boundary constraints for depth image(b), respectively; and (h) shows the confidence maps
computed with these two kinds of constraints.

3.2 Confidence maps computation

Given the above analysis, we propose to define the depth confidence maps based on surface normal



constraints and object boundary constraints, which are constructed using the angle between the viewpoint
direction and surface normal, and the distance from the object boundary, respectively.

(1) Surface normal constraints

First, we need to determine the surface normal normal(p,) for every pixel p, in the depth image. As the
actual surface is unknown, the surface normal is estimated using its neighboring pixels N(p,). To be more
specific, the neighboring pixels satisfying the following constraints (Eq. (2)) are back projected to the camera
coordinate using the camera parameters. Afterwards, Principal Component Analysis (PCA) is performed on the
covariance of these 3D points. Three Eigenvalues (4, > 4, 2 4,), representing the weights of the corresponding
directions of the Eigenvectors (v,,v,,v;), are obtained by decomposition of the covariance matrix. The
Eigenvector V, corresponding to the smallest Eigenvalue is selected as the estimated surface normal.

N(py) ={q € N(p,)||D(p,) - D(q)| < Thres} 2)

Then, the normal confidence for the pixel p, is computed as the inner product of the surface normal
normal(p,) and its viewpoint direction view(p,) .

conf _normal(p,) = view(p, )l %) 3)

(2) Object boundary constraints

First, given the silhouette of the object, the canny edge detector [26] is utilized to extract the boundary of
the object. As shown in Fig. 3(f), the pixels on the edge have value 1, denoted as edge set. For every particular
pixel p, in the image, the nearest distance from p, to pixels in the edge set is computed as:

Po—d 4)

d, = min
geedge

To get reasonable confidence map with the distance, we exploit the sigmoid function to convert the
distance to confidence value ranging 0~1:

conf _edge(p,) = (m—O.S) *2 (5)

Finally, the normal and edge confidence maps are combined in a straightforward way below, as
corresponding results shown in Fig. 3(h).

conf (p,) =conf _normal(p,)*conf _edge(p,) (6)

4. Patch Generation

A patch Pa,, is a rectangle in 3D with center X and unit normal vector n oriented towards the cameras
observing it. A set of supporting images among which Pa_, is visible are attached to the patch. The projection of

the patch covers approximately 5*5 pixel’ areas in its supporting images. Considering the excellent

characteristic of the patch based methods shown in 3D reconstruction [17], the patch representation model is
proposed to combine with volumetric graph cuts so as to achieve more accurate photo-consistency score for the
boundary term as given in Eq. (1). The patches are embedded into voxels naturally given the following
generation procedure. In this paper, the patches also play an important role in region term constructing as
described in section 5.
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Figure 4. Position constraint.
The input for our patches generation approach is multiple depth images and their associated confidence

maps, denoted as D,,...,D,, and C,,...,C,, , respectively. First, the 3D space is discretized as voxels and for every

voxel we need to determine whether there is a surface patch attached to it. Consequently, we consider patches
whose center and orientation are restricted to regular voxels and all six unit directional vectors pointing to its

neighboring voxels. Let us assume that a patch Pa, , with its center position X and orientation€, ,k =1,...,6 . The

patch is examined whether or not it is consistent with the depth images and should be accepted as a validate
patch candidate. The patch is projected to every depth image D, and checked with the following constraints:

(1) Position constraint. While projecting the patch to camera viewi, we have x, =(x',x’,x’) and p
respectively representing the camera coordinate and the pixel coordinate for the patch’s center position X .
As shown in Fig. 4, x’and D (p)represent the real depth between the principle plane and the position X
and the estimated depth from D, , respectively. The position constraint is satisfied if the difference between
the two depth values is sufficiently small (|x’ —D,(p)| < &)and J is set to be the distance between two
neighboring voxels in our experiments.

(2) Visibility constraint. The constraint is exploited using orientation of patch Pa, ,and the camera view

direction. LetVbe the viewing direction of camerai given by external camera parameters, the patch is
visible to camera i if v "), where @ is set to be /3 in our experiments.

(3) Confidence constraint. The confidence constraint is exploited using depth confidence maps, which can be
used to filter unreliable depth. Let p be the pixel coordinate while the patch center is projected to depth
image D, , the depth gives validate vote to the patch only if C (p) >y, whereyis set to be 0.4 in all
experiments.

Finally, for the current patch Pa,,, if there are more than one depth images that satisfy these three
conditions, Pa,is then accepted as a reliable patch and those corresponding color images are registered as
supporting images of the patch.

Next, we need to compute the photo-consistency score for the patches. As the above patches with regular
center position and only six candidate orientations cannot sufficiently represent the object surface and the
photo-consistency computation is inaccurate when back projecting the patch to its supporting color images. As a
result, it is necessary to enforce refinement to the patches. As suggested in [17], conjugate gradient method is
used to determine optimal patches by maximizing the following NCC score,

2
C= G, (x',n') (7
| S(Pa)[(| S(Pa)|-1) ,-,A,-;m '
where S(Pa) are the supporting images for the initial patch Pa, ,, x"and n' are the center position and orientation
for the current patch, and C; refers to the NCC score when the current patch is back projected to images, j
belonging to the supporting set.
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Figure 5. Computed patches for sparse temple set: (a) and (b) shows the rendered patches from different viewpoints,

and the number of the computed patches is 208303. The patches are not dense enough in the stair areas due to the
occlusion problem and limited viewpoints.

The patch refinement method can find delicate patches as described in [17]. However, the optimization
approach is quite time-consuming. In this paper, we utilize the confidence maps as guidance to determine the
delicate patches in a quite simple way. For a particular patch Pa,,, the image which achieves maximum
confidence score among its supporting images is selected as the reference image, denoted as D, . The estimated
depth value and surface normal for the corresponding pixel of Pa, , in the reference image are denoted as
D, (p) and N, (p), respectively. The center position and orientation for the patch are calculated by
transforming these two vectors to the global coordinate. Finally, Eq. (4) is used to compute the consistency
score for the current patch. Without considering the computation time, we can further exploit iterative
refinement to obtain more accurate photo-consistency score with our computed patches as good initials. The
patches extracted from the sparse temple dataset are given in Fig. 5.

5. Geodesic Distance for Regional Term

Although geodesic segmentation can robustly segment long, thin structures, the lack of an explicit
edge-finding component may cause geodesic segmentation to come close to but bot precisely localize object
boundaries. In [27], Brian L. Price proposed to combine geodesic-distance region information with explicit edge
information in a graph-cut optimization framework, which achieves much better foreground/background
segmentation results. The explicit edge detection term corresponds to the boundary term in 3D reconstruction
function, which is constructed using the photo-consistency score. In this paper, an adaptive regional term based
on 3D geodesic distance is defined using the above generated patches in Section 4. This regional term is then
combined with boundary term satisfying minimization of the weighted surface function in Eq. (1), so that the
reconstructed surface can obtain smoothness while preserving protrusions of the object.

First of all, appropriate seeds are needed to compute the geodesic distance for voxels in 3D space, which
correspond to the user marks or “scribbles” on parts of the desired foreground and background regions for 2D
image segmentation. The seeds inside or outside the object are denoted as €2, and QQ, , respectively.

{QF ={v € bounding box | v is definitely inside the object} ®

Q, ={v € bounding box | v is definitely outside the object}

In this paper, we give two simple methods for obtaining voxel set €2, and Q, from multiple color or depth
images: 1) visual hull based method - Volumetric visual hull of the object should be reconstructed using
multi-view silhouettes segmented from color images. The voxels outside the visual hull is defined as Q, , while
the voxels which are left after several erosions are defined as €. . In this method, an appropriate visual hull
which shows a good approximation of the object is needed; 2) Given the multiple depth images, a volumetric
depth image integration method [4] which employs an averaging scheme of 3D distance fields is conducted. The
distance from the object surface is assigned to each voxel with the sign of the real number indicating it to be
inside (positive) or outside (negative) of the object. For one particular voxel with distance d , the voxel belongs
to Q. if (d > Thres) or belongs to Q, given (d < —Thres). In our approach, the second strategy is adopted to



obtain the voxel set €. and €); with Thres chosen to be as 8~10 times as the voxel size, which is robust even for
objects with big concavities.
For every voxel v, its geodesic distance from nearest foreground or background voxels is computed by

D,(v) = grlld(s, V) ©)

where (), is the set of seeds with label/ € {F, B} .
The geodesic distance from any voxel v, to the other v, according to the estimated patches is given by

Lot o |
d,(vp,%) = min | ‘W(L ) |dp (10)

where Ly, (p)is a path parameterized by p =[0,1] connecting v, to v, respectively, and W, (L, , (p)) represents

Y0-V1
the geodesic weight defined by patches computed in Section 4. For one particular voxel which is inside the
object, the weight for background distance ¥, is assigned a high value when passing through the object surface.

For one particular voxel which is outside the object, W, is also assigned a high value when passing through the

surface. Since the refined patches are supposed to give a good approximation of the surface, the geodesic weight
is defined by Eq. (11) and Eq. (12), where v'and v"are two neighboring voxels linked by path L, , .andn is the
orientation of the patch passed by. The patches covering the surface are assumed to have orientations pointing
outward the object.

(L )= 1 (v"-v"H (an
Y20 otherwise
1 "-v"H
W.(L...= 12
P (L) {0 otherwise (12)

As defined in Eq. (10-12), the background and foreground geodesic distance for the voxels inside the
object is assigned a positive value and 0, respectively. On the contrary, for voxels outside the object, the above
distances should be 0 and a positive number, respectively. The regional term can be defined in the following and
the computed value is displayed in Fig. 6(b). The figure gives a clear explanation of the regional term. As you
can see, voxels inside the surface near the protrusions are labeled as strong inside value to prevent shorter-cut.

o(v) =Dy (v) =Dy (v) (13)

(b) (©

Figure 6. Computed regional and boundary terms: (a) one particular slice in 3D space, (b) the regional term estimated
using Eq. (13) where the brighter color and darkest color refer to voxel lying inside and outside of the visual hull,
respectively; the voxels inside (outside) the surface are assigned with positive (negative) value. (c) shows estimated
patches on the given slice, which corresponds to the boundary term and points out the exact location where the surface
should pass through.



Next, we weight the adaptive regional term and the boundary term based on the local confidence of the
geodesic components using Eq. (14). The spatially varying weighting is introduced to decreases the potential for
shortcutting in object interiors while transferring greater control to the boundary term for better localization near
object surface. To be more specific, the value of D, (v) and D,(v) for voxels near the surface tend to be
similar and therefore the boundary term should play a more important role. Finally, we redefine the energy
function of Eq. (1) as follows.

_[Dr»-D,m[
A= b, )+ D, o
E®)=]] P)dA+ l(v)”jV o(v)dV (15)

where empirically we have found y =2 to 2.5to work well.

The approach proposed in [28] is often used for 2D geodesic distance computation, while it is still a
challenging issue for computing geodesic distance in 3D space. To address this issue, in this paper, we proposed
to use a simple searching approach: For a given voxelv, the searching direction is restricted to the six
directional lines pointing to its six-neighboring directions, and the pseudo-code for computing its foreground
geodesic distance for a given voxel vis given in Algorithm 1.

Input: current voxel v ,voxel set Q. and Q, , set of patches P
Output: 3D foreground geodesic distance D,. (V)
d, : 6*1 vector, with initial value 0 // recording the geodesic distance along six directions
v'=y
for all six directions dir of v do
while(1)
v': current voxel
v": next voxel along the direction // the next voxel along the current direction dir
if patch (x, n) exists betweenv' > v" && (v"—v") then // weight(Eq. (12))
d, (dir)=d, (dir)+1
end if
if v"eQ. | v"is on the boundary of bounding box then
break
end if
v'=v" //update the current voxel
end while
end for
D,.(v)=mind,.(v) //Eq.(9)

Algorithm 1. 3D geodesic distance computation

6. Graph construction

First, the 3D space is decomposed into voxels which correspond to the graph nodes. In this paper, those
nodes are connected with a regular 6-neighbourhood grid and those links are called n-links in the graph. Letv,
and v, be two neighboring voxels and ¢; the linking vector. If a patch Pa,, lying between the centers of these two
voxels and also the linking vector is consistent with the patch’s orientation (expressed as e; (] ") with &
chosen to be z/4), the weight attached to the link is set according to the photo-consistency of the patch
computed using Eq. (7), as shown in Fig. 7. It should be noted that the computed patches are not dense enough
given sparse images. When there are no corresponding patches for the link, the linking weight is estimated using
the average consistency score of neighboring points around the linking center.



#(C), if corresponding paich exists between v, v,

Wy = ;)C(p)”N(VO)L otherwise (16)
HC)=1— exp(—tan(% (C=1))/ a?) (17)

where C is an average photo-consistency cost in Eq. (4) of the corresponding patch and ¢ is a transfer function
that maps the NCC score to a non-negative interval [0,1]; v, denotes the linking center and N(v,)is the
neighboring points; and @ is the fidelity parameter and set to be 0.05 in our experiments. Fig. 6(c) shows the
computed patches for one slice.

source

sink

Figure 7. Graph construction.

In addition, in the constructed graph model each node has a link with the source node and the sink node
which represent the probability of being inside or outside the object. The weight is assigned using regional term
defined in Section 5. Table 1 gives a clear illumination for the weight assigned to these two kinds of links.

Finally, the minimum cut cost for the above weighted graph corresponds to the minimal energy of the
energy function in Eq. (15). The s/t cut separates graph nodes into source or sink set. Letv, and v, denote two
neighboring voxels, while v, belongs to source set and v, belongs to sink set. Then v, refers to a point lying on the
object surface. In other words, the estimated surface is located by inconsistent labeling of neighboring voxels.
Using the Poisson Surface Reconstruction method in [15], the 3D points estimated above can be further refined
to generate a triangular mesh model and give a good approximation of the object surface as demonstrated in the
next section. The octree depth of the PSR used in our experiment is 8 or 10 which are accurate enough.

Table 1. Weight assignment for all links of the graph

link Weights for
{Viavj} Wij {VO’VI}EN
. velV,veQ, uQ),
{V,S} 100 Ve QF
0 ve),
velV,veQ, uQ,
{V, t} 0 ve QF

veQ),

+00




7. Experiments and results

In this section, experimental results on the well-known data set from the multi-view sterco evaluation [29]
and also real-world data sets captured from four Kinect cameras are reported. Both visual and quantitative
analysis are used to verify the efficacy of the proposed approach as detailed below.

7.1 Evaluation on benchmark data sets

We apply our reconstruction approach on two sparse data sets, templeSparse and dinoSparse, which
consists of 16 images respectively, and results of reconstructed mesh models are shown in Fig. 8. As can be seen,
our proposed method can generate very satisfying results for both the templeSparse and the dinoSparse data sets.
In comparison to the approach proposed in [16], as highlighted in red boxes on the corresponding images in Fig.
8, the additional constraint using the adaptive regional term has greatly improved the results in generating
smoother surface while preserving the protrusions.

The proposed method is also quantitatively evaluated on the benchmark data sets, and the evaluation
results in terms of accuracy and completeness are given in Table 2 and we make a comparison with another two
relevant methods. The compared methods are all based on Graph-cut optimization and Chang[16] and our
method achieve relatively high accuracy since we all adopt the patches-based representation. Our method has
obvious superior result in completeness.

To be more specifically, the accuracy metric denotes how close the reconstructed surface is to the ground
truth model and the completeness metric denotes how much of the object is modeled by our reconstructed
surface. The accuracy threshold 90% and completeness threshold 1.25mm are used for all evaluations, which
means ninety percent of the reconstructed surface points are near the ground truth with most 0.88mm distance;
and the number of the points with 1.25mm to the ground truth is up to 96.8% (for our method). The proposed
method shows middle performance for the accuracy comparison and middle-high for completeness comparison.
More comparison details are available on the website [29].

Table 2. Quantitative results of our model.

templeSparse

dinoSparse

Accuracy (mm)

Completeness (%)

Accuracy (mm)

Completeness (%)

Tran[19] 1.53 85.4 1.26 89.3
Chang[16] 0.73 94.5 0.66 89.9
Geodesic-GC-ours 0.88 94.7 0.71 96.8




Figure 8. Reconstruction results on benchmark data sets. The first row displays the color images used in our
reconstruction approach. The second row gives the results obtained with original graph cuts method using surfel
representation [16]. The third row gives the models reconstructed using our proposed approach. Red boxes are used to
highlight the differences between the two group of results.

7.2 Evaluation on real-world data sets

Our approach is further evaluated on depth images captured using multiple Kinects. As it is non-trivial
issue for obtaining camera parameters of the depth sensor, the depth image is directly mapped into color sensor
view. Fig. 9 shows the color images captured using four Kinects and their corresponding depth images after
denoising. The RGB cameras are calibrated using Zhang’s method and further registration [30] are applied to
these depth images. The depth images are quite sparse compared with the data used in KinectFusion [31].

Figure 9. Images captured using four Kinects.

The reconstructed models for the above toy are displayed in Fig. 10. As shown in Fig. 10(a), the surface
reconstructed using the state-of-art method for range images integration [4] is not smooth enough as there is no
regularization term evolved in the reconstruction process. Fig. 10(b) illustrates the reconstruction result using
standard graph-cuts (without additional regional term) [1], where the protrusions of the toy are overcaved as
highlighted with a red box. When the additional regional term is used, as seen in Fig. 10(c), more accurate mesh
model is constructed using the proposed approach. Finally, the textured model of our constructed result is given



in Fig. 10(d).

(b) (d)

Figure 10. Reconstructed model using different methods: (a) is the result generated using state-of-art range images
integration [4], (b) is the result using graph-cut [1], (c) gives the reconstructed model from graph-cut yet with our
proposed adaptive regional term, respectively; (d) is the rendered results of (c).

8. Conclusion

In this paper, an adaptive 3D geodesic-distance based regional term is proposed and combined into the
graph-cut framework to solve the shorter-cuts problem. The patch-based representation is exploited to achieve
more accurate photo-consistency computation for the boundary term in the energy function and the computed
patches are used to define the 3D geodesic distance for each voxel. Finally, these two terms are combined into
the graph-cut framework and the surface is extracted using graph-cut based energy minimization. The
experimental results on both well-known datasets and real-world datasets have shown the validity of our
proposed approach.
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