
Research Notes on the Architectural Evolution

of a Software Product Line

Marcelo Schmitt Laser*, Elder Macedo Rodrigues†,
Anderson Domingues‡, Flavio Oliveira§ and Avelino F. Zorzo¶

School of Computer Science

Ponti¯cal Catholic University of Rio Grande do Sul

Porto Alegre, RS 91330-630, Brazil
*marcelo.laser@acad.pucrs.br
†elder.rodrigues@pucrs.br

‡anderson.domingues@acad.pucrs.br
§flavio.oliveira@pucrs.br
¶avelino.zorzo@pucrs.br

This work presents an experience report on the architectural decisions taken in the evolution of

a Software Product Line (SPL) of Model-based Testing tools (PLeTs). This SPL was partially

designed and developed with the intention of minimizing e®ort and time-to-market during the

development of a family of performance testing tools. With the evolution of our research and the
addition of new features to the SPL, we identi¯ed limitations in the initial architectural design

of PLeTs' components, which led us to redesign its Software Product Line Architecture (SPLA).

In this paper, we discuss the main issues that led to changes in our SPLA, as well as present the

design decisions that facilitate its evolution in the context of an industrial environment. We will
also report our experiences on architecture modi¯cations in the evolution of our SPL with the

intention of allowing easier maintenance in a volatile development environment.

Keywords: Software product lines; factory method; architecture evolution.

1. Introduction

Over a few decades, more and more software development companies have been

using some software engineering strategies, such as reuse-based software engineering,

to develop software with less cost, faster delivery and increased quality. Reuse-based

software engineering is a strategy in which the development process is focused on the

reuse of assets and on a core architecture, reducing the development e®ort and

improving the software quality. In recent years, many techniques have been proposed

to support software reuse, such as Component-based development and Software

Product Lines (SPL) [8]. Component-based development is centered on developing a

International Journal of Software Engineering

and Knowledge Engineering

Vol. 25, Nos. 9 & 10 (2015) 1753–1758

#.c World Scienti¯c Publishing Company
DOI: 10.1142/S0218194015710126

1753

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. 2
01

5.
25

:1
75

3-
17

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

06
/0

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.

http://dx.doi.org/10.1142/S0218194015710126


software system by integrating components, where each component can be de¯ned as

an independent software unit that can be used with other components to create a

system module or even a whole software system. In another way, Software Product

Lines are focused on developing a family of applications based on a common archi-

tecture and a shared set of software assets, where each application is generated, in

accordance with the requirements imposed by di®erent customers, from these assets

and shares a common architecture [8]. One of the main SPL development sub-pro-

cesses is to use the domain requirements and the product line variability model to

de¯ne the Software Product Line Architecture (SPLA). The SPLA is a common,

high level and generic structure that will be used for all the products derived from the

SPL. In order to take advantage of this approach, we have adopted the SPL concept

to support the development of our applications [1]. We have found that, although

this enabled the reuse of artifacts, thus reducing the time and cost of development, it

incurred in a cost related to the evolution of each artifact, as well as that of the SPLA

used to manage this evolution.

In this work we report and discuss our experience in implementing and evolving

the architecture of a component-based SPL to derive Model-based Testing (MBT)

tools.a In particular, we describe how we applied software design patterns [4] to map

and to instantiate components, these having their variability managed by another

component. Finally, we describe two methods of implementing the variable com-

ponents (features).

This paper is organized as follows. Section 2 describes the context where PLeTs

SPL was designed and developed, as well as brie°y presenting its Product Line

Architecture (PLA). In Sec. 3 we discuss the main PLA limitations identi¯ed along

the SPL evolution. In Sec. 3.1 we present and discuss our approach to mitigate these

limitations, as well as describe our PLA in accordance with that approach and in

Sec. 4 we discuss the related work. Section 5 presents the lessons learned along the

PLA evolution and also the conclusion and future work.

2. Context

Our research group on Software Testing has been working to design and develop

several testing tools for the past years. Our research focus is to investigate innovative

ways to mitigate the e®ort of repeatedly creating custom solutions to apply perfor-

mance, functional and structural testing.b After developing several testing tools,

either from scratch or using a limited opportunistic reuse, but which had several

features in common, we started a collaborative study with the Technology Devel-

opment Lab (TDL) of our partner company to investigate the use of SPL concepts to

generate these testing tools. This TDL often created custom components to enable

the testing of non-trivial applications. To eliminate the e®ort of repeatedly creating

aA more complete description can be found in [6].
bStudy ¯nanced by Dell Computers of Brazil Ltd. with resources of Law 8.248/91.

1754 M. S. Laser et al.

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. 2
01

5.
25

:1
75

3-
17

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

06
/0

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



custom infrastructure, the TDL started considering the adoption of SPL concepts.

As a result, we consolidated our SPL called PLeTs [1, 7, 6].

PLeTs was initially designed to support the derivation of a particular testing tool

from a set of shared software components, which are then glued together with

minimal changes. We de¯ned the use of a replacement mechanism to develop each

concrete feature [9] of the PLeTs feature model [1]. In this way, an MBT tool derived

from PLeTs is assembled by selecting a set of components and a common software

base. We chose this approach to generate PLeTs products because it presents some

advantages, such as high-level of modularity and a simple 1:1 feature to code map-

ping. Since we are using a component replacement mechanism, each provided in-

terface represents a variation point and each variable component implementation

represents a variant.

3. PLeTs Architecture

In the early versions of PLeTs [1, 3, 7], we have attempted to solve the problem of

SPLA volatility with two di®erent approaches: Component Interfaces to map the

access between components and, compile-time de¯nitions to isolate statements that

instantiate variability [2].

Neither the use of Component Interfaces, nor the use of compile-time de¯nitions

fully addressed the di±culties we found in evolving our SPLA. Due to our research

center environment being volatile (team members regularly moving from one project

to another), we found it necessary to establish certain guidelines and mechanisms for

the maintenance and extension of the SPLA.

3.1. PLeTs architecture evolution

In order to tackle the issues raised by our previous development paradigms, we have

adopted a mixed approach that is largely based on the use of the Factory Method

design pattern [4] to externalize variability points from the implementation of con-

crete features [9]. We kept the component-based approach. The di®erence is that our

SPL now has a well-de¯ned core that centralizes the variability management, as well

as serving as a starting point to the execution of any derived product. The core of our

SPL, which is depicted in Fig. 1 (a more detailed version can be found in [6]), is

composed by four components:

(1) Control Unit: The Control Unit component is responsible for orchestrating the

execution of the system, providing access to the functions of those components that

implement features and organizing the data structures necessary for the proper ex-

ecution of the system. It is designed and implemented without any dependencies on

components external to the SPL core, which protects it from modi¯cations in them.

(2) Factory Interfaces: In order to access the components that are external to the

core, that is, all features, the Control Unit makes use of the Factory Interfaces

component, which is an abstract representation of the variability points of the SPLA.

Architectural Evolution of a Software Product Line: An Experience Report 1755

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. 2
01

5.
25

:1
75

3-
17

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

06
/0

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



F
ig
.
1.

P
L
eT

s
im

p
ro
v
ed

-
U
M
L
co
m
p
on

en
t
d
ia
gr
am

.

1756 M. S. Laser et al.

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. 2
01

5.
25

:1
75

3-
17

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

06
/0

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



It contains interface de¯nitions for each variability point, each serving as a con-

nection point for a variable component. Each variability point in the SPL Archi-

tecture is represented here by one interface.

(3) Control Structures: To access the data structures held by the components

external to the core, the Control Unit makes use of the Control Structures compo-

nent, containing any representations that are common to two or more data struc-

tures of the system.

(4) Conversion Unit: The Conversion Unit is responsible for parsing structures

that are equivalent, i.e. any parsing process that does not change the content of a

structure, such as the refactoring of a structure to execute di®erent functions or the

updating of a structure to a newer version. For every abstract structure de¯ned in

the Control Structures component, the Conversion Unit has a factory capable of

reading its type, as well as the return type desired, and forwarding it to the appro-

priate concrete structure converter. If a new structure component is developed for

the system, speci¯c converters will have to be implemented for that structure in order

to convert both to and from it. All of these converters are contained within the

Conversion Unit component itself, and are therefore accessible by the SPL Core.

(5) Variable Components: To allow each feature component to be developed

autonomously, an intermediate entry point is represented in the SPLA in the form of

Factory components. More about the Factory Method design pattern can be found

in [4].

4. Related Work

The authors of [10] speak extensively on techniques for Variability Management and

present the case study of the Mercure PL, in which the Abstract Factory design

pattern is used as a decision model, with each of its concrete factories being related to

one product. Our approach has similarities with the one presented in this particular

work, but diverges from it in that our use of the Factory Method design pattern is

extended to deal with each of the variability points of the SPL. This is because, while

in Mercure PL the authors were deriving whole products, we are applying the Fac-

tories to each variation point, requiring a lower level of abstraction.

In [5], this topic is also discussed. A two-dimensional model is proposed for the

representation of the issues in variation management, with \¯les", \components"

and \products" in one axis and \sequential time", \parallel time" and \domain

space" in the other. The author argues that the nine smaller issues de¯ned by this

model can be tackled using a divide-and-conquer strategy.

5. Conclusion and Lessons Learned

In this paper we report our a summary of our experience on the design, development

and evolution of a Software Product Line of Model-based Testing tools - PLeTs [6].

Architectural Evolution of a Software Product Line: An Experience Report 1757

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. 2
01

5.
25

:1
75

3-
17

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

06
/0

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



We have focused on techniques to simplify the process of managing the evolution of

components by use of a software design pattern.

The lessons learned from the development and evolution of PLeTs and the sub-

sequent evolution of its SPLA are: (1) to mitigate the problem of chain modi¯cations

and maintenance in components, we have proposed an SPL core that contains all the

basic operations supported by the SPL; (2) in using the Factory Method, we were

able to isolate the code referent to the majority of variability decisions into small

sections that are easy to maintain; (3) connecting a new component to the SPL

through one of the pre-existing factory interfaces is a simple process, requiring only

the packaging of input and output in accordance to the Control Structures compo-

nent of the core; (4) if changes in requirements result in new variability points in the

SPLA, thus the SPL core requires modi¯cations; (5) as a future work, we plan to

conduct a study on the evaluation of the e®ectiveness of this proposal in an industrial

environment.

References

1. L. T. Costa, R. Czekster, F. M. Oliveira, E. M. Rodrigues, M. B. Silveira and A. F. Zorzo,
Generating performance test scripts and scenarios based on abstract intermediate models,
in 24th SEKE, 2012, pp. 112–117.

2. K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods, Tools, and
Applications (ACM Press/Addison-Wesley, 2000).

3. E. de Macedo Rodrigues, L. Passos, F. Teixeira, A. F. Zorzo and R. S. Saad, On the
requirements and design decisions of an in-house component-based SPL automated
environment, in 26th SEKE, 2014, pp. 483–488.

4. E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software (Addison-Wesley–Longman, 1995).

5. C. W. Krueger, Variation management for software production lines, in Software Product
Lines, 2002, pp. 37–48.

6. M. S. Laser, E. M. Rodrigues, A. R. P. Domingues, F. M. Oliveira and A. F. Zorzo,
Architectural evolution of a software product line: An experience report, in 27th SEKE,
2015, pp. 1–6.

7. M. B. Silveira, E. M. Rodrigues, A. F. Zorzo, H. Vieira and F. Oliveira, Model-based
automatic generation of performance test scripts, in 23rd SEKE, 2011, pp. 1–6.

8. I. Sommerville, Software Engineering (Pearson/Addison–Wesley, 2011).
9. T. Thum, C. Kastner, S. Erdweg and N. Siegmund, Abstract features in feature modeling,

in 15th Int. Soft. Product Line Conference, 2011, pp. 191–200.
10. T. Ziadi, J.-M. J�ez�equel, F. Fondement et al., Product line derivation with UML, in

Software Variability Management Workshop, Univ. of Groningen Department of
Mathematics and Computing Science, 2003.

1758 M. S. Laser et al.

In
t. 

J.
 S

of
t. 

E
ng

. K
no

w
l. 

E
ng

. 2
01

5.
25

:1
75

3-
17

58
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

O
N

T
IF

IC
IA

 U
N

IV
E

R
SI

D
A

D
E

 C
A

T
O

L
IC

A
 D

O
 R

IO
 G

R
A

N
D

E
 D

O
 S

U
L

 o
n 

06
/0

8/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.


	Research Notes on the Architectural Evolution of a Software Product Line
	1. Introduction
	2. Context
	3. PLeTs Architecture
	3.1. PLeTs architecture evolution

	4. Related Work
	5. Conclusion and Lessons Learned
	References


