World Scientific

International Journal of Software Engineering and Knowledge Engineering \‘
R~ wwwoworldscientific.com

© World Scientific Publishing Company

PARAMETERIZATION AND EVALUATION OF INTERMEDIATE LEVEL
OBFUSCATOR

DMITRIY DUNAEV

Department of Automation and Applied Informatics, Budapest University of Technology and Economics
H-1117, Magyar tudésok krt. 2., Budapest, Hungary
dunaev@aut.bme.hu

LASZLO LENGYEL

Department of Automation and Applied Informatics, Budapest University of Technology and Economics
H-1117, Magyar tudésok krt. 2., Budapest, Hungary
lengyel @aut.bme.hu

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Obfuscation is a technology that secures software artifacts from reverse engineering by making its
cost prohibitively high. Intermediate level obfuscator implements the defensive mechanisms inside
the software, and owing to high potency and resilience, can successfully secure the sensitive
software components. This paper provides an analysis and parameterization of the obfuscator, as
well as a method of fine-tuning and evaluating obfuscating transformations in terms of potency,
resilience and cost.

Keywords: Intermediate level obfuscation; software control flow; parameterization; complexity
metrics; potency; resilience; infocommunications.

1. Introduction

Fast developments in infocommunications, ICT systems, computer networks and Internet
technologies have created the necessity for researching in the areas of securing data.

ICT devices of the future, i.e. Internet of Things, are expected to perform a large
variety of sensing and inference tasks, and to interpret and transform information rather
than merely transmitting raw, uninterpreted data. They will be forming an increasingly
integrated and global ecosystem for processing, storing, transporting information and
managing content [1]. The appearance of large amounts of data sets (Big Data), which
reflects the habits, thoughts, emotions and physiology of users, is creating an increasing
urgency to the protection of sensitive code.

The objective of obfuscation techniques is to prevent, or at least to complicate, the
interpretation, decoding, analysis, or reverse engineer of software. Such techniques relate
to methods and apparatus for increasing the structural complexity of a program code.
They are implemented by inserting, deleting, or permutating the identifiable information
structures in the software. As a result, the difficulty of decompilation and reverse
engineering highly increases [2].

mailto:dunaev@aut.bme.hu
mailto:lengyel@aut.bme.hu

2 Dunaev, D., Lengyel, L.

Obfuscation can be also used to address privacy concerns. Paper [3] discusses an
obfuscation-based approach that enables users to follow privacy-sensitive channels,
while, at the same time, making it difficult for the microblogging service to find out their
actual interests. Paper [4] presents a general-purpose obfuscator for polynomial-size
circuits applying homomorphic encryption, and paper [5] describes the construction and
usage of obfuscators for probabilistic programs. An example how adding obfuscation to
programs can protect users from various privacy threats is described in [6].

The advantage of obfuscation is that it resides on implementing the defensive
mechanisms inside the application software. An obfuscated application usually does not
suffer from delays due to network limitations and does not require any hardware dongles.

Merits and demerits of different obfuscation techniques, and introduction to our
obfuscation method can be found in [7]. We do obfuscating transformations using a target
platform independent intermediate code. Such code is usually a description of the high-
level statements with some simpler instructions that accurately represent the operations of
the source code statements. This is important that the code is not executed in a real
processor; it is only an internal representation of a program.

The advantage of intermediate level obfuscation is that we can create a target-
independent infrastructure. This means that for each platform that needs to be supported
we only have to write the “machine code to intermediate code” and “intermediate code to
machine code” translators, and the obfuscator logic does not change. If we need to port
our obfuscator to another platform, we only need to write another translator for a new
processor.

The rest of this paper is organized as follows. In Section 2, we discuss the related
work and justify the intermediate level obfuscation. In Section 3, we present the
obfuscator designed and developed by us. We describe fine-tuning parameters of
obfuscator and the used complexity metrics. We then show and justify the selection of
obfuscator parameters, and provide qualitative evaluation of potency, resilience and cost
of obfuscating transformations. Finally, in Section 4, we draw conclusions.

2. Related Work

The essence of obfuscation is to entangle the code and eliminate the majority of logical
links in it or, in other words, to transform the code so that it becomes complex enough for
analysis and unauthorized modification. A general method for obfuscating programs
would solve many open problems in cryptography. However, Boaz Barak has presented
families of functions that cannot be obfuscated, since there exists a predicate that cannot
be computed from black-box access to a random function in the family, but can be
computed from a non-black-box access to a circuit implementing any function in the
family [8, 9]. A later paper of Goldwasser and Kalai [10] shows the impossibility and
improbability of obfuscating more natural functionalities.

In our approach, obfuscation is understood as a program transformation technique,
which attempts to convolute the low-level semantics of routines, and aims to counteract
the reverse engineering. We have shown in [7] that by restricting ourselves to automatic

Parameterization and Evaluation of Intermediate Level Obfuscator 3

generation of additional fake operations, we cannot guarantee the absence of effectively
optimized deobfuscation algorithm.

The solution lies in a global fake context. With respect to a routine, we define two
contexts: local and global. Local context is private to a particular routine and expires
(disappears) when the routine execution is finished. An example of such context is local
variables stored on the local stack. Global context may be shared across routines and does
not expire immediately after a routine execution. It can be composed from different
global parameters, such as pointers to memory buffers, control flow graph parameters,
and initializing values, provided as input to a routine. The presence of fake global context
has direct influence on the obfuscator complexity.

A general approach to intermediate level obfuscation and a bird-eye view of an
obfuscation algorithm is presented in [11]; a technique of machine code translation to
intermediate representation is discussed in [12]. In this paper, we are to present an
implemented prototype with one module, which supports x86 platform executables.

3. Contribution

Intermediate level obfuscation method, being platform-independent, offers important
advantages with respect to cost, configurability and portability. For intermediate
representation, we use a three-address code (TAC), since TAC is not specific to a
language being implemented (unlike P-code for Pascal and Bytecode for Java). In
addition, the TAC instruction set is sufficient in translation of assembly code [13].

Fig. 1 shows the high-scale structure of obfuscator. During the development phase,
we have separated platform-specific and platform-independent components to obtain the
module structure. Data exchange between TAC component and platform-specific
modules is standardized (XML). In this case, the platform-specific modules turn out to be
just plug-ins for the TAC component. During the last 12 months, x32 and x64 modules
have been developed and tested. Consequently, one can introduce new additional
platform-specific models if needed.

Platform-independent component

TAC
P
x86 x64

Platform-specific modules
Fig. 1. General structure of IL Obfuscator.

The task of a platform-specific module is a translation of low-level representation
(machine code or assembler code) to TAC, and backwards — generation of low-level
representation from TAC. The platform-specific modules should incorporate appropriate
platform-specific obfuscation techniques, e.g. polymorphic code generation. Polymorphic

4 Dunaev, D., Lengyel, L.

code generator can be implemented as a part of a platform-specific module, or as a
standalone application.

3.1. Description of fine-tuning parameters

Since the obfuscation logic does not change between supported platforms and software
types, we have to provide the acceptable level of adjustment and parameterization to a
specific need.

To provide the most possible user control and tunability of the obfuscation process,
we have developed an IL Obfuscator tool [7,11]. The choice of parameters was driven by
theoretical research and empirical evidence obtained during development of IL
Obfuscator. Some of the parameters define the code transformation process, and others
adjust the specific steps, providing the best possible result regarding potency and
resilience. Now we present the parameters, which define the obfuscating process and give
their brief description.

Multiple Obfuscation enables running the obfuscation process for multiple times, and
the user can define which steps should be performed in each run. This option is intended
to increase the deobfuscation resistance by multiple running of different code
transformations, and by that, increasing the complexity of the obfuscated code. Applying
multiple obfuscation results in excessive need for resources, yet the complexity increases
greatly. Therefore, we can recommend using multiple obfuscation only when there is a
need of high-level deobfuscation resistance.

Global maximum/minimum values define the most and least reasonable values in the
code context. These values are used during generation of fake input parameters, fake
conditional jumps, fake instructions, and provide the conformity of obfuscated code with
the original one.

The IL Obfuscator also provides a number of parameters for fine-tuning the
obfuscation quality. We should note, however, that the better quality of obfuscation we
want to achieve, the greater is the requirement for additional resources.

Percentage of fake local variables specifies the ratio of fake local variables to be
created compared to original ones. The number of original variables is taken as 100%.

Number of fake input parameters specifies the number of fake input parameters to be
created during the obfuscation process.

Unconditional meshing probability specifies the probability of substituting an
unconditional jump by a sequence of conditions that verify the fake input parameters.

Conditional meshing probability specifies the probability of substituting a conditional
jump by a series of consequent conditions equivalent to the original one.

Double meshing specifies whether conditional meshing should be applied to fake
conditional jumps.

Fake conditional jump probability specifies the probability of creating a conditional
jump that verifies whether valid fake input parameters were provided. Turning this option
on will expand the control flow graph and make it irreducible.

Parameterization and Evaluation of Intermediate Level Obfuscator 5

Minimum number of instructions per basic block specifies the least possible number
of instructions in a single basic block. This option can conceal the vulnerable code
structures.

Random number generator is used at all steps for setting probabilities, defining
constants, selecting relational operators, setting up intervals, etc. By that we assure
different output at each run of IL Obfuscator, and therefore the analysis of several
obfuscated programs will give no unilateral advantage to a reverse engineer.

3.2. Complexity metrics

To guide the process of evaluation of obfuscating transformations, we need to
characterize the obfuscation process. For that we use complexity metrics that cover both
control flow and data flow complexities.

Cyclomatic complexity (McCabe metric) [14] is an indication of the number of paths
through a function. A path is a legal sequence of statements from the start of a function to
its end. The lower the number, the less complex the code is. We calculate cyclomatic
complexity with the following formula: V(G)=e-n+p, where G stands for the given
control flow graph, e and n denote the number of edges and notes respectively, and p
stands for the number of connected components.

Language complexity (Halstead metric) [15] is a quantitative measure based on the
number of operators and operands present in the code. From it, we can derive several
submetrics, such as:

e Program length, which is the sum of occurrences of operators and
occurrences of operands. Calculation: N=N;+N,, where N; stands for the
number of occurrences of operators, and N, is the number of occurrences of
operands.

e Program vocabulary, which is the sum of the number of distinct operators
and the number of distinct operands. Calculation: n=n;+n,, where n; and n,
stand for the number of distinct operators and operands, respectively.

e Volume, which can be interpreted as “the number of comparisons needed to
write the program” or “the number of bits required to code the program”
[16]. We calculate it by the formula V=N*log,n, where N denotes the
program length, and n denotes the vocabulary.

o Difficulty, which is an indicative measure of code readability. Calculation:
D=(ny/2)*(Ny/n,), where n; denotes the number of distinct operators, N,
denotes the number of occurrences of operands, and n, denotes the number
of distinct operands.

e Effort, which is a measure of “the number of elementary mental
discriminations” [16]. Following that definition, we calculate effort as the
product of the difficulty and the volume, that is E=D*V.

Data flow complexity (Elshoff metric) [17] is based on the number of variables
referenced but not defined in a basic block. The Elshoff’s metric in terms of the routine
can be achieved by adding the data flow complexities regarding each basic block of the

6 Dunaev, D., Lengyel, L.

routine. The latter can be calculated by the following formula: C=R-D, where R stands
for the number of referenced variables, and D stands for the number of defined variables.

Oviedo complexity metric [18] provides an overall code complexity based on both
control flow complexity and data flow complexity. Considering that, we calculate Oviedo
complexity metric by the following formula: C=a*CF+b*DF, where CF is the control
flow complexity; DF is the data flow complexity; a, b are weighting factors. We assume
a and b to be equal 1, since we do not weight up either of them.

Decisional complexity (McClure metric) [19] is the sum of the number of
comparisons and the number of control variables referenced in the routine code. The used
formula just reflects the definition: D=C+V, where C denotes the number of comparisons
in the code, and V denotes the number of control variables referenced in the code.

Data complexity (Chapin metric) [20] is a quantitative measure of information being
used in a method. The claim is that the more variables we have, the harder it is to
understand, modify, etc. For quantitative determination of data complexity, we have used
the following formula: D=P+2M+3C+T/2, where P denotes the number of inputs and
global variables; M denotes the number of modified and new (declared) variables in the
code; C denotes the number of variables that were used in determining control flow
direction; T denotes the number of unused variables.

3.3. Parameterization of obfuscating transformations

Let us use a well-known least common multiple (LCM) algorithm, since it features the
majority of programming techniques in the list below, that is: integer data types;
arithmetic operations, such as basic assignment, modulo division, multiplication,
division; relational operations; repetition structures; multiple functions; external function
calls.

The original C code listing for the LCM algorithm is shown in Fig. 2. The algorithm
determines the least common multiple of two integer numbers, both of which are to be
provided by the user. There is no input validation and we suppose that both numbers are
non-negative integers.

int LCM(int numl, int num2) {
int x,y,r;
x = numl;

y = num?2;

do {
r=x%y;
X = y;
y = &7

while (r > 0);

return (numl * num2) / x;

Parameterization and Evaluation of Intermediate Level Obfuscator 7

int main() {

int numl,num2, lcm;

scanf ("%d", &numl) ;

scanf ("%d", &num?2) ;

lcm

= LCM (numl, num2) ;

printf ("%d", lcm);

return 0;

Fig. 2. The C code listing for the LCM algorithm

The code in Fig. 2 was compiled to an executable. Having the executable, we suppose
that we have no other knowledge about the original source code except what can be
obtained by decompiling the executable.

FUNCTION

Name: sub411B00
Inputs: v0, vl
Outputs: v7

Locals: v2, v3, v4, v5,

vd := v0

v3 = vl

LABEL1:

v = vd % v3

v2 := v5

vd := v3

v3 = v2

if v2 > 0 goto LABELl
ve = vl * v0

v7 = v6e / v4

return v7

FUNCTION

Name: sub411420

Inputs:

Outputs: vO0

Locals: vl1, v2, v3, v4,

param v2

call scanf int 1

retrieve v2

param vl

call scanf int 1

retrieve vl

param v2

param vl

Vo

v5

8 Dunaev, D., Lengyel, L.

call sub 411B00 2
retrieve v4

v0 = v4

param vO0

call printf int 1
return vO0

Fig. 3. The TAC code listing for LCM algorithm after decompilation

The platform-specific module of IL Obfuscator disassembles the executable, analyzes
it and translates the assembler instructions to three-address code. The latter is passed to a
platform-independent module. That is, the output of a platform-dependent module serves
as the input of a platform-independent three-address code obfuscator. After obfuscating
transformations are done, the process is repeated in reverse direction: TAC to assembly
instructions, assembly instructions to executable.

Main function Worker function
Decisional complexity Decisional complexity =_

DUy = RCE LRI

Cyclomatic complexity = Cyclomatic complexity S —
0 20 40 60 80 100 120 0 50 100 150 200 250 300
m100 m70 50 m30 mo m100 m70 50 m30 mo

Fig. 4. Fine-tuning the Conditional meshing probability, [%]

In the listing on Fig. 3, the decompiled sub_411B00 function corresponds to the
original worker function (LCM), and sub_411420 corresponds to the original main
respectively. To obtain highly durable obfuscation results and face the possible time/cost
limitations, one should select appropriate obfuscation parameters that will guide the
transformation process. We are to show the impact of such parameters to obfuscation
results on the routine in Fig. 3. This routine contains two functions: a very simple main,
and a more complicated LCM, which we shall call a worker function.

One of the parameters to select is the Conditional meshing probability. It can vary
from 0 to 100%. The parameter specifies the probability of substituting a conditional
jump for a series of consequent conditions equivalent to the original one but using
different constants to counteract the signature search. The drawback, however, is increase
of executable file size and execution slowdown to a very slight degree.

Our research shows that the probability of conditional meshing has a direct impact on
metrics related to execution flow and data. However, the ratio of this impact depends on
the “density” of conditional jumps in the code that has been obfuscated. Fig. 4 shows that
since the main function does not contain conditional jumps, its complexity is not
influenced by the examined parameter. On the other hand, the worker function has

Parameterization and Evaluation of Intermediate Level Obfuscator 9

conditional jump instructions, and we observe a high increase in its complexity after
obfuscation.

Main function Worker function
Decisional complexity |— Decisional complexity —|—
Vocabulary e — Vocabulary e —
Cyclomatic complexity |p— Cyclomatic complexity |—
0 50 100 150 200 250 300 4] 200 400 600 800 1000
W70 m50 m30 m15 W70 m50 m30 m15

Fig. 5. Fine-tuning the Fake conditional jump probability, [%]

During evaluation, we apply 100% value to this parameter, since it highly increases
the complexity and has no other drawbacks except for the slight increase in executable
Size.

One more parameter to be discussed would be the Fake conditional jumps
probability. It can vary from 15 to 70%. It specifies the probability of creating a special
conditional jump from an empty NoOperation instruction. Such special conditional jumps
verify whether valid fake input parameters were provided. They are also used to expand
the control flow graph and ensure its irreducibility; therefore, the lower limit is set to
15%.

Our research and experiments proved that the increasing probability of fake
conditional jumps results in increasing complexity of original functions, since there are
no preconditions as for conditional meshing. As we see in Fig. 5, the ratio of this impact
does not depend directly on function type; a complexity increase of 4-5 times has been
observed during other test cases as well. However, during fine-tuning we observed a
sensible delay in obfuscation time. Let us examine the impact of Fake conditional jumps
probability to obfuscation time.

Obfuscation time

0 20 40 60 80

Obfuscationtime, sec

Fake conditional jump probability, %

Fig. 6. Obfuscation time as a function of fake conditional jump probability

10 Dunaev, D., Lengyel, L.

The increasing obfuscation time can be unacceptable for some use cases. We
observed 30-40 times increase in obfuscation time at 70% compared to 15%. For other
test cases, the delay reached 50 times.

During evaluation, we applied 30% value to this parameter. By that, we tried to find a
golden middle between obfuscation time and the desired complexity. However, for cases
with specific needs, other parameter values from the 15...70% scale can be applied. The
higher the parameter value is, the higher the resulting complexity is. However, we have
to face an increase in obfuscation time.

Another parameter to be discussed is the Double meshing, which specifies whether
conditional meshing should be applied to fake conditional jumps. This is a binary
parameter, which allows for two possible values: true (double meshing is applied) and
false (double meshing is not applied).

Comparing Fig. 7 and Fig. 4, we conclude that applying double meshing increases the
complexity metrics considerably in those functions that originally had conditional jumps
in the source code.

Main function Worker function
Decisional complexity |j— Decisional complexity |——
Ry o Vocabulary e ——
— —
Cyclomatic complexity |—— Cyclomatic complexity | —
0 20 40 60 80 100 0 100 200 300 400 500 600
100 m70 m50 m30 m 100 70 m50 m30

Fig. 7. Fine-tuning the Conditional meshing probability while Double meshing is applied, [%]

Moreover, 30% for Conditional meshing probability with Double meshing=true gives
us almost the same complexity as 100% for Conditional meshing probability with Double
meshing=false. We can conclude that Double meshing parameter has a strong impact on
the overall complexity, and therefore has to be applied when strong obfuscation result is
needed.

Double meshing should not be confused with Multiple obfuscation. The latter enables
applying the selected obfuscating transformations for multiple times. Multiple
obfuscation is intended to increase the deobfuscation resistance and by that to increase
the complexity of the obfuscated code. At the same time, we can leave out some
entangling transformation if needed for specific cases.

However, Fig. 8 shows that the increase in obfuscation time is what we pay for the
high complexity. Since the obfuscation takes place only once, for the majority of use
cases this drawback is not relevant. Therefore, during evaluation we select Double
meshing parameter to be true.

Applying multiple obfuscation would result in excessive need for resources. At the
same time, our measurements showed that the complexity would also increase. Therefore,
we can recommend using multiple obfuscation only when there is a need of very high

Parameterization and Evaluation of Intermediate Level Obfuscator 11

complexity and strong deobfuscation resistance. However, since in order to obtain clear
first-order results, we do not use multiple obfuscating transformations during evaluation.

Obfuscation time

30
3
w 20
g
£ 10
= -+ ® ®

0 [4
0 20 40 60 80 100 120

Conditional meshing probability, %

—8—>Single meshing ~ —@— Double Meshing

Fig. 8. Obfuscation time vs. Conditional meshing probability with and without Double meshing, [%]

The other parameters of IL Obfuscator have been examined and fine-tuned in the
same manner as those shown above. The resulting values are grouped into Table 1.

Table 1. Parameters used during evaluation.

Parameter name Unit description Selected
value
Fake local variables % to original 100
Fake input parameters positive integer 3
Unconditional meshing probability value 100
Conditional meshing probability value 30
Double meshing binary true
Fake conditional jumps probability value 30
Minimum number of instructions positive integer 10
per basic block
Multiple obfuscation binary false

Having selected the parameters, the obfuscation process is composed of the following
steps: creation of fake input parameters, creation of fake local variables, constants
coverage, unconditional meshing, conditional meshing, fake conditional jumps
generation, and fake instructions generation.

3.4. Evaluation of obfuscating transformations

To evaluate IL Obfuscator in a more realistic setup, where users are interested in
obfuscating different kinds of functions and routines, we created a number of test cases.
These test cases incorporate various types of programming techniques that are used in
conventional programming:

e arithmetic operations (addition, subtraction, etc.);

o relational operations (less, greater or equal, etc.);

12 Dunaev, D., Lengyel, L.

e logical operations (and, or, not, etc.);

e repetition structures, including pre- and postcondition loops (for, do... while,

etc.);

e decision structures (if...else, switch/case);

e external functions (scanf, abs, etc.).

The number of functions is not limited, however for testing and demonstration
purposes We used only two functions — the main function and some worker function; the
latter does the calculations and returns the result to main. Utilizing this approach, we
show the capability of IL Obfuscator to obfuscate function calls on data level.

Each test case aims at testing different repetition structures (pre/post-conditioned
loops, counters); relational, arithmetic, and logical operators; embedded and multiple
function calls, etc. For that, we have written a number of test algorithms: Fibonacci
sequence, Units Conversion, Least Common Multiple, Greatest Common Divisor,
Geometric Sequence, Factorial, etc.

We have worked out a method of evaluating platform-independent obfuscating
transformations, which is based on Halstead submetrics, complexity and potency metrics.

First, we have calculated the Halstead submetrics for the original routines. Then, after
having applied obfuscating transformations, we calculated the submetrics again. The ratio
of how many times the submetrics have increased is grouped into Table 2.

Table 2. Complexity increase ratio [obfuscated/original].

Least common Greatest common

Halstead submetric name Fibonacci . L
multiple divisor
Program vocabulary 26.6 21 325
Program length 495 458 708
Volume 1133 932 1574
Difficulty 27 24 31
Effort 29505 22835 48963

We see that indicators such as program vocabulary and difficulty have increased by
20-30 times. Halstead effort, which is the quantitative measurement of the mental effort
required to develop or maintain a program, has increased very significantly by 20000-
50000 times. Our tests have never resulted in increase of effort less than four orders of
magnitude.

The greater values for Greatest common divisor algorithm result from high initial
complexity of the original code, e.g. presence of loops and conditional jumps. The more
manifold the original routine is, the more possibilities there are for obfuscating
transformations to increase the code complexity. However, we should not forget that the
fake code should be somewhat similar to the original one in order not to be deobfuscated
automatically, and this fact limits our choices for a very simple code.

Trying to qualitatively measure potency as a whole becomes difficult since the
analysis would be based on human cognitive ability. Therefore, the potency metrics

Parameterization and Evaluation of Intermediate Level Obfuscator 13

provide quantitative results of how much obscurity is added to the program that prevents
human beings from understanding it.

Table 3 presents the ratio of potency metrics. It contains the results, applied to three
test cases. The numbers show that the applied transformations aimed at adding the
obscurity, resulted in high increase of overall code complexity. There is no huge
difference between potency ratios for the three test cases.

Table 3. Potency metrics increase ratio [obfuscated/original].

Least common Greatest common

Metric applied Fibonacci multiple divisor
Cyclomatic complexity 108 115 178
Data flow complexity 325 237 374
Oviedo’s complexity 253 210 325
Decisional complexity 110 117 179
Data complexity 35 2.7 3.7

According to Collberg et al. [21], obfuscating transformation is potent if a measure of
the extent how transformations change the complexity of obfuscated code is positive.
According to our measurements provided in Tables 2 and 3, the IL Obfuscator can be
named potent, and we can classify its potency as high.

The resilience, however, is different from potency. It is a measure of how strong the
program can resist an attack against a deobfuscator. Such attack can be defined as an
attempt to transform the code back to its original structure by an automatic tool.
Considering that the cognitive ability of a computer program is far inferior to that of
humans, the resilience of obfuscating transformation has a large-scale impact on the
overall quality of obfuscation.

According to [21], the resilience of obfuscating transformation can be obtained as a
combination of programmer effort and deobfuscator effort.

Programmer
effort
Inter-
— full full
process
Inter- —— strong full
procedural
Global —— weak strong
Local —— trivial weak
| | < Deobfuscator
I . 2 effort
Polynomial Exponential
time time

Fig. 9. Qualitative measure of resilience [21]

14 Dunaev, D., Lengyel, L.

Programmer effort, the work required to automate the deobfuscation of a
transformation, is measured as a function of the scope of obfuscating transformations.
The deobfuscator effort is a qualitative measure of the execution time and space required
by an automatic deobfuscator to effectively reduce the potency of obfuscating
transformations.

Due to the usage of fake global context (Fake input parameters = 3), the obfuscating
transformations applied in IL Obfuscator are inter-procedural, that is they affect
information flow between procedures (functions). The deobfuscator effort can be
characterized by exponential time, as shown in [22]. Therefore, the resilience of IL
Obfuscator is full.

The cost of obfuscation refers to how much computational overhead is added to an
obfuscated routine. Unlike potency and resilience, cost presents negative impact on the
overall quality of obfuscating transformations.

Cost is usually measured by comparing resources (time, space, memory, etc.) needed
to execute the obfuscated program with respect to that for the original one. In other
words, the obfuscation cost is the time/space penalty, which obfuscating transformations
incur on the routine.

In order to evaluate the cost of IL Obfuscator, we conducted multiple tests regarding
eXecUtion time, memory usage, and executable size. The respective results are shown in
Table 4.

Table 4. Increase ratio of cost indicators [obfuscated/original].

Least common Greatest common

Indicator name Fibonacci . L
multiple divisor
Execution time 5% 4% 6%
Memory usage 23% 11% 14%
Executable size 19 times 22 times 29 times

Collberg et al. [21] offers the qualitative measure of obfuscator cost based on the
eXtra execution time/space requirements of obfuscated routine Obf(P) in comparison to
original routine P. The obfuscating transformations are:

o dear, if executing Obf(P) requires exponentially more resources than P;

o costly, if executing Obf(P) requires O(np), p>1 more resources than P;

e cheap, if executing Obf(P) requires O(n) more resources than P;

o free, if executing Obf(P) requires O(1) more resources than P.

Since executing the obfuscated routine requires linearly more resources than for the
original one, we can classify the overhead added by IL Obfuscator as cheap.

4. Conclusion

In the paper, we have presented an Intermediate Level Obfuscator, focusing on its
parameterization and evaluation. We have shown that our obfuscator implements the
defensive mechanisms inside the software, and can be named highly potent, fully
resilient, and cheap. Owing to high potency and resilience, it can successfully secure the

Parameterization and Evaluation of Intermediate Level Obfuscator 15

sensitive software components. Due to its low cost, it further allows users to directly
interact with the obfuscated systems without additional firewalls and/or gateways.

The great advantage of the IL Obfuscator is that it can be applied to partitioned
routines. Even if there is no possibility to add a fake global context to the original routine
as a whole, it can always be done with respect to the partitioned routines with nesting
level greater than zero. Another advantage is the ability to obfuscate already obfuscated
programs, or to obfuscate the selected routines of a program. By that, we obtain a
multistage obfuscation technique.

The IL Obfuscator can be named universal, since it is independent on the type of
information that is conveyed between the communicating entities.

The IL Obfuscator can be successfully used to protect software from reverse
engineering. The algorithm based on intermediate code is completely automatic and can
therefore be used as part of a software protection utility. The main advantage of this
method compared to its counterparts is its platform independence. Doing obfuscation at
intermediate level allows us to use the same software module at different hardware
platforms, therefore IL Obfuscator can be a good choice in providing security for
multiplatform systems.

Since data exchange between intermediate level component and platform-specific
modules of IL Obfuscator is XML-based, it is possible to make use of a client-server
technology. The code transformation engine can be deployed on a server, while platform-
specific modules can run on client machines.

Future research of authors will include combination of intermediate level and
machine code level obfuscation techniques (e.g. polymorph code generators), which
would further raise the barriers to someone trying to decompile or steal one’s code.

Acknowledgments

This work was partially supported by the TAMOP-4.2.1.D-15/1/KONV-2015-0008
project. This paper was supported by the Janos Bolyai Research Scholarship of the
Hungarian Academy of Sciences.

References

[1] Sallai G. “Future Internet visions and research clusters”, Acta Polytechnica Hungarica, vol.
11, no. 7, pp. 5-24, 2014.

[2] Popa M. “Techniques of program code obfuscation for secure software”. Journal of Mobile,
Embedded and Distributed Systems, vol. 3(4), 2011.

[3] Papadopoulos P., Papadogiannakis A., Polychronakis M., Zarras A., Holz T., and Markatos E.
“k-subscription: privacy-preserving microblogging browsing through obfuscation”, Annual
Computer Security Applications Conference (ACSAC), 2013.

[4] Brakerski Z., Rothblum G.N. “Virtual black-box obfuscation for all circuits via generic
graded encoding.” In Proceedings of 11" Theory of Cryptography Conference, TCC 2014, San
Diego, CA, USA, February 24-26, pp. 1-25, 2014.

[5] Canetti R., Lin H., Tessaro S., and Vaikuntanathan V. “Obfuscation of probabilistic circuits
and applications”. LNCS, vol. 9015, pp. 468-497, 2015.

16 Dunaev, D., Lengyel, L.

[6] Ismail N.A., O'Brien E.A. “Enabling Multimodal Interaction in Web-Based Personal Digital
Photo Browsing.” In Proceedings of Int. Conf. on Computer and Communication Engineering,
2008.

[7] Dunaev D., Lengyel L. “Formal considerations and a practical approach to intermediate-level
obfuscation”. WSEAS Transactions on Information Science and Applications, Volume 11, pp.
32-41, 2014.

[8] Barak, B. “Non-black-box techniques in cryptography.” PhD thesis, Department of Computer
Science and Applied Mathematics, Weizmann Institute of Science, 2004.

[9] Barak B., Goldreich O., Impagliazzo R., Rudich S., Sahai A., Vadhan S., and Yang K. “On
the (im)possibility of obfuscating programs.” In Proceedings of the 21% Annual International
Cryptology Conference on Advances in Cryptology, CRYPTO'01, (London, UK), pp. 1-18,
Springer-Verlag, 2001.

[10] Goldwasser S., Kalai Y.T. “On the impossibility of obfuscation with auxiliary input.” In
Proceedings of the 46" Annual IEEE Symposium on Foundations of Computer Science, IEEE
Computer Society, pp. 553-562, 2005.

[11] Dunaev D., Lengyel L. “Overview of an obfuscation algorithm.” In Proceedings of the
International Conference on Computer Science and Information Technologies, CSIT'2012,
(Lvov, Ukraine), pp. 36-38, 2012.

[12] Dunaev D., Lengyel L. “A method of machine code translation to intermediate
representation.” In Proceedings of the 4" IEEE International Conference on Cognitive
Infococommunications, CoglnfoCom’2013, (Budapest, Hungary), pp. 785-790, 2013.

[13] Grune D., Langendoen K.G., Jacobs C.J., Bal H.E. “Modern compiler design.” Worldwide
Series in computer Science, Chichester, New York, Weinheim: J. Wiley and sons, 2001.

[14] Watson A.H., McCabe Th.J. “Structured Testing: A Testing Methodology Using the
Cyclomatic Complexity Metric.” NIST Special Publication 500-235, 1996.

[15] Halstead M.H. “Elements of Software Science”, Amsterdam: Elsevier North-Holland, 1977.

[16] Al Qutaish R. E., and Abran A. “An analysis of the design and definitions of Halstead’s
metrics”, In Proceedings of the 15" International Workshop on Software Measurement:
IWSM’2005, (Montreal, Canada), pp. 337-352, September 2005.

[17] Elshoff J.L. “An analysis of some commercial PL/1 programs.” In |EEE Transactions on
Software Engineering, 1976.

[18] Oviedo E.I. “Control flow, data flow and program complexity.” In Proceedings of |EEE
Annual International Computers, Software & Applications Conference, Chicago, IL, pp. 146-
152, Nov. 1980.

[19] McClure C.L. “A model for program complexity analysis.” In Proceedings of the 3™
International Conference on Software Engineering, pp. 149-157, 1978.

[20] Chapin N. “A Measure of software complexity.” In Proceedings of National Computer
Conference, pp. 995-1002, 1979.

[21] Collberg C., Thomborson C., and Low D. ”A taxonomy of obfuscating transformations.”
Technical Report 148, Department of Computer Science, University of Auckland. 1997.

[22] Dunaev D., Lengyel L. “Complexity of a special deobfuscation problem.” In 19" Annual
IEEE International Conference and Workshops on the Engineering of Computer Based
Systems, ECBS'2012, (Novi Sad, Serbia), pp. 1-4, 2012.

