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Evaluating software modules for inclusion in a Drupal website is a crucial and complex

task that currently requires manual assessment of a number of module facets. This study
applied data-mining techniques to identify quality-related metrics associated with highly

popular and unpopular Drupal modules. The data-mining approach produced a set of

important metrics and thresholds that highlight a strong relationship between the overall
perceived reliability of a module and its popularity. Areas for future research into open-

source software quality are presented, including a proposed module evaluation tool to
aid developers in selecting high-quality modules.
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1. Introduction

Choosing appropriate tools and libraries is an important part of any software devel-

opment project. This is particularly true for projects built with modular systems,

such as the Drupala content management system for websites. Many thousands of

open-source and independently developed “modules” are available to extend the

core functionality of Drupal, providing features such as e-commerce capabilitiesb,

calendar displaysc, and image carouselsd.

ahttps://drupal.org
bhttps://www.drupal.org/project/commerce
chttps://www.drupal.org/project/calendar
dhttps://www.drupal.org/project/jcarousel
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A common task in Drupal development is searching for modules to extend the

functionality of a website. Whilst it is relatively straightforward to find a module

for a particular use case, there are often unresolved upstream issues that either

require substantial effort to remedy or necessitate the complete removal of module

from the website. Furthermore, these issues may only become apparent after the

module has been in use for some time, and has already become a critical part of

the website’s operations. Because this kind of risk is inherent in using any kind of

third-party module, it is important to evaluate the quality of a Drupal module and

its supporting community before deciding to use it in a website.

Drupal developers have many different opinions on the factors that should be

considered when evaluating whether to use a particular Drupal module. However,

the need for more robust measures of Drupal module quality is now more important

than ever, as the Drupal Association (the organization that supports the Drupal

community) has recently removed the restriction of only allowing peer-reviewed

developers to fully publish modules [1].

While past studies have investigated measures of quality in software projects

and analyzed factors common to popular open-source projects [2–4], there has been

no formal investigations into Drupal modules.

For the purposes of this study, module popularity was chosen as a quantifiable

measure to identify exemplar modules of high-quality. While popular modules may

not necessarily have high software engineering quality, it is likely that they have

been found to be of high utility to the websites that use them, and are therefore

valued by the Drupal community. The popularity of a module also indicates the

size of the community using and contributing to it (whether by providing software

changes, documentation, or bug reports), which has been identified as an impor-

tant prerequisite for high-quality open-source software [2]. Whilst popularity can be

assumed to indicate high utility, it cannot be assumed that all modules with high

utility are popular. Therefore, the analysis of popular modules provides insight into

what features may be related to high utility and therefore gauge where there is

potential risk in choosing a module that is not popular.

Therefore, this study aimed to discover quality-related metrics that are impor-

tant to consider when deciding whether to add a Drupal module to a website. The

research questions were as follows:

1. What quality-related metrics are common to popular Drupal modules?

2. What quality-related metrics are common to unpopular Drupal modules?

These questions were answered by collecting data related to the quality and

popularity of Drupal modules, applying machine learning algorithms to construct

models of the data, and analyzing those models to gain insights into which (if any)

quality-related metrics are closely related to module popularity.
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2. Literature Review

The analysis of software quality has received a large amount of attention from re-

searchers. As at the time of writing, the current industry standard for software

quality is defined by ISO25010 [5], which specifies a number of characteristics that

software quality should be assessed according to: functional stability, performance

efficiency, compatibility, usability, reliability, security, maintainability, and porta-

bility. It is worth noting that all of these attributes can be evaluated (to some

degree) outside of a specific usage context, making objective, generic comparison of

software modules according to these characteristics a possibility. Past studies have

also produced more specialized models for evaluating the quality of commercial,

off-the-shelf software components [6] and open-source software projects [7], which

include evaluation according to quantitative metrics.

Past surveys [8–10] have have documented a variety of ways in which data min-

ing can be applied to help understand and improve software engineering practice.

Applications have included predicting fault-prone modules based on source-code

metrics [11], examining patterns in past source-code changes to provide recommen-

dations to developers as they are making new changes [12], and aiding software

project managers by estimating required development effort [13] and recommend-

ing developers with relevant expertise for tasks based on their past work [14]. The

concept of “software intelligence” systems has also been proposed as a means of

describing those systems that augment the software engineering process in a similar

way to how “business intelligence” systems have improved business processes [15].

Of particular relevance are the previous studies that have evaluated the qual-

ity of open-source software on the basis of source-code quality metrics and the

characteristics of project communities. Adewumi, Misra, Omoregbe, Crawford, and

Soto [16] point out that much of the previous research has focused on creating

models for software evaluation, and that data-mining and tool-based approaches

require further exploration. Their review also notes that previously used source-

code quality metrics can be aligned to the quality-characteristics outlined in the

ISO25010 standard (primarily: maintainability, functional stability, and usability).

However, it appears that much of the focus has been on evaluating larger, stand-

alone pieces of open-source software, rather than modules for an extensible system

(such as Drupal).

Other studies have used data mining techniques to evaluate factors contributing

to the popularity of projects in open-source software ecosystems. Emanuel, War-

doyo, Istiyanto, and Mustofa [17] identified factors that were common to popular

projects on Sourceforge (an open-source software publishing site) by performing 2-

itemset association rule mining with the Weka data-mining toolkit. However, many

of the factors they identified were not helpful for their goal of identifying how a

developer could make their project more popular (for example, they identified that

popular projects were more likely to target unspecialized end-users, but this is not

an appropriate choice for all projects), arguably because the wide breadth of project
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types under analysis meant that detailed factors could not be considered. Cai and

Zhu [18] focused on understanding how developer reputation relates to project pop-

ularity within the Ohloh social network of open-source developers and projects,

although a limitation of this study appeared to be that developer reputation was

based on aggregate project success, making the identified relationship somewhat

cyclic. Some studies have made use of traditional software quality measures such

as cyclomatic complexity and comment-to-code ratios [19–21], while others have

focused on language-specific factors such as dependency hierarchies and abstract

syntax tree (AST) node counts [22,23].

Within the Drupal community, there has been an increasing focus on code qual-

ity evaluation in recent times. Static code analysis tools have been used within

the Drupal community as part of the code-review process for many years [24],

but recently discussion has turned towards following the lead of other open-source

communities, and making code quality checks a more automated part of Drupal

development [25–27]. Morrison [28] created tooling for quantifying the quality of

Drupal modules, though no systematic study was performed using the tooling.

The sources reviewed above confirm that there is potential merit to data-mining

approaches for understanding the quality and popularity of software modules, and

that there is a need within the Drupal community for greater understanding of

project metrics. However, the metrics to be considered in the analysis must be

carefully selected to ensure that they will provide useful insights for informing the

Drupal community. The reviewed studies list a variety of metrics relating to source-

code quality and other project facets that are applicable to Drupal modules and are

therefore candidates for analysis in this study. Furthermore, in order for the results

of this study to be relatable to those of past research, the identified metrics should

be aligned with the software quality factors of the ISO25010 standard.

3. Research Method

3.1. Overview of Methodology

To review, the objective of this research was to discover quality-related metrics

that are important to consider when deciding whether to add a Drupal module to a

website. The methodology used to achieve this objective was a typical data-mining

approach comparable to the KDD, SEMMA, and CRISP-DM processes described

by [29]. The steps involved in the methodology were as follows:

1. Identify features to include in the dataset based on a review of past studies and

a survey of the Drupal community.

2. Construct and employ a tool to collect the dataset.

3. Manually inspect the dataset to remove or rectify incorrect or missing data. This

process of “data cleaning” is considered to be an essential step for successful

data-mining [30].

4. Apply different machine learning algorithms to determine an effective approach
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for producing models from the data, performing additional data-cleaning as nec-

essary.

5. Create and execute an experimental plan to optimize the models produced by

the machine learning algorithms.

6. Analyze and interpret the models and their performance to answer the research

questions above.

Some methodologies (such as CRISP-DM [29]) involve an iterative feedback loop

where the results of analysis are used to drive further data collection, data cleaning,

and algorithm application. For this study, iteration was constrained to step 4 of the

methodology described above, where the initial results obtained by applying certain

algorithms informed decisions for further transformations of the dataset (such as

removing certain features or classes) and the application of different algorithms.

3.2. Feature Identification

The first step in the research process was to identify a feature-set of quality-related

metrics to collect. Source-code and project metrics both needed to be considered.

The full feature-set of source-code and project metrics (along with the data-sources

from where they were obtained) are provided in Appendix A.

3.2.1. Source-Code Metrics

The source-code metrics used in prior studies were good candidates for the feature-

set. Several tools were evaluated for extracting metrics from the PHP source-code of

Drupal modules, including PHPMessDetector [31], phpmetrics [32], and phploc [33].

Two tools were selected for use. PHPDepend [34] was selected for its ability to gen-

erate more of the metrics from prior studies than any of the other tools. Secondly,

PHPCodesniffer [35] was selected because of its wide use in the Drupal community

through the Coder module [36] and PAReview.sh tool [24]. Three Drupal-specific

code standards exist for use with PHPCodesniffer: Drupal and DrupalPractice

[37], and also DrupalSecure [38]. All three standards were selected for testing mod-

ule PHP source-code to generate code-style suggestions/notices that could be used

as quality metrics.

3.2.2. Drupal Project Metrics

In order to gain a better understanding of how Drupal developers currently evaluate

whether to add a module to a website, a small pilot survey of Drupal developers

was performed. The two questions asked on the survey were:

1. What do you consider to be indicators of a Drupal module’s quality?

2. What aspects do you consider when evaluating whether to add a particular

module to a Drupal project?
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Eleven survey responses were received, from which could be identified 46 unique

factors considered by Drupal developers when evaluating a Drupal module for use.

The responses to both questions were combined when evaluating the results be-

cause some respondents had answered both questions with a single response, and

because there was a large degree of cross-over between the factors identified in the

responses to both questions. Of the 46 unique factors, some were impractical to

evaluate quantitatively (e.g. “Is the module configurable?”), and others were de-

pendent on the context of a particular website (e.g. “Does the module meet all

of my needs?”), making them impractical for general evaluation. However, many

factors were identified that could be automatically derived from a Drupal module’s

codebase and project metadata, and would be suitable for quantitative analysis.

Furthermore, there was alignment between these factors and the features analyzed

in past studies, confirming their value for analysis in this study.

Some additional project metrics that were not identified by the survey were

also selected for inclusion in the feature-set on the basis that they could easily be

obtained from the information published about each module on Drupal.org.

3.2.3. Classification Target

The most essential metric for the proposed data mining process was the measure of

popularity which all other metrics would be correlated against. The current number

of Drupal websites with the module installed was selected for this purpose. One

limitation of this metric (which is published for each module on Drupal.org) is that

it is only able to account for websites with the “Update Status” module enabled,

which includes a callback to Drupal.org to report module installations [39]. However,

it is still the most accurate measure of module installation available. While the total

number of module downloads is also published, the installation count is a better

measure of current popularity, as it will not favour modules where developers have

downloaded the module but decided to not use it or stop using it at a later point

in time.

3.3. Data Collection

With the feature-set of project and source-code metrics identified, the next step

was to collect the dataset for a number of Drupal modules.

The data collection was limited to modules available for version 7 of Drupal.

While Drupal 8 is the latest version of Drupal, far fewer Drupal 8 modules exist at

the time of writing (approximately 3000 Drupal 8 modules compared to approxi-

mately 13000 Drupal 7 modules [40]). Furthermore, many of the modules available

for Drupal 8 are much more recently developed and less mature as projects, and

would exhibit less of a distinction between popular and unpopular modules.

A tool was developed with the Python programming language to collect the

selected features for all Drupal 7 modules with “Full Project” status on Drupal.org

(excluding personal “sandbox” projects of Drupal.org users). The tool scraped
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project metrics from pages about each project on Drupal.org, and downloaded

the latest stable release (or unstable release if no stable release existed) of each

module to execute the PHPDepend and PHPCodesniffer tools on, which provided

source-code metrics.

The Python tool was able to collect data for 12,945 modules out of the total

12,950 Drupal 7 modules available at the time the tool was run. The other five

modules exhibited issues which made it difficult to extract data for them from

Drupal.org. Other modules required specific tweaks in order for the scraping tool

to work correctly, such as fixing broken PHP syntax or module archives (.tar.gz

files) to allow the source-code analyses to run, and manually altering the character

encoding expected by the scraping tool in some cases.

3.4. Data Cleaning

Once the dataset had been collected, a manual process of inspecting and evaluating

the correctness of the data was carried out.

Firstly, Boolean values stored numerically were converted to nominal

“True/False” values. This was done to ensure the applied machine learning al-

gorithms would treat the features as only having two discrete possible values, as

opposed to having many possible values on continuous numeric scale. This transfor-

mation was applied for the automated tests status, available for next core,

security covered, and recommended release features.

Secondly, the missing values in the collected dataset were analyzed. All source-

code related features were missing for 6% of the dataset, due to the fact that there

was no published release for those modules. Because modules without a published

release are impractical to install and therefore rarely used, and because they made

up a very small portion of the dataset, those records were removed from the dataset.

For other features, values were missing because the scraping tool could not find

values on project web-pages. Upon manual inspection of these cases, it became

apparent that leaving the values as “missing” was not appropriate, as they were

all numeric features where absence from the project web-pages implied the correct

value was “zero” (for example, a missing installation count on the main project

web-page only occurs in the case when there are zero reported installations of the

module). Therefore, a value of zero was substituted for missing values for the follow-

ing features: average translation percent, description length, issue count,

issue new count, issue participants, install count,

install download ratio, growth per week, issue response rate,

issue response hours, total install count, and total growth per week. Fi-

nally, there were yet other features with missing values because the data was

either not available for the given module, or was not applicable for the mod-

ule. Missing values were therefore left unaltered for the following features:

release frequency days (missing for the 26% of modules with only a single re-

lease), commit frequency days (missing for the 5% of modules with only a single
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commit), seconds since last commit (missing for 3 modules without a Git his-

tory), and days since release (missing on the project web-page for 1 module).

A flaw was also identified in the collection of the available for next core

feature. Some modules that were available for Drupal 7 have been included in the

core of Drupal 8 itself, and therefore do not have a Drupal 8 version published on

their project web-pages. These values were manually adjusted according to a list of

Drupal 7 modules migrated to Drupal 8 core [41].

There were also some issues with the data collected from the “warning”

notices reported by the PHPCodesniffer tool. Firstly, formatting issues in the

CSV output of the tool meant that the names of some notices had been in-

correctly scraped. As this only accounted for 812 of the total 4,901,256 notices,

these incorrectly scraped notices were simply removed from the dataset. Sec-

ondly, the tool had reported Drupal.InfoFiles.AutoAddedKeys.Project and

Drupal.InfoFiles.AutoAddedKeys.Version notices for most modules. The pur-

pose of these notices is to discourage module developers from manually adding

project and version information to module code, as this information is automati-

cally added by the publishing process on Drupal.org. Because PHPCodesniffer was

executed on published releases of modules that contained automatically added val-

ues, these notices were irrelevant, and were therefore removed from the dataset.

Finally, because there were relatively few occurrences of each individual notice, it

was theorized that stronger correlations might be observed if additional features

were added for related groups of notices. For this reason, a new feature for each

possible “level” in the notice namespace hierarchy was added to the dataset. For

example, given the original Drupal.ControlStructures.ElseIf notice, new fea-

tures were added for all notices starting with Drupal.ControlStructures and just

Drupal.

A second run of the scraping tool was also required to amend and replace

some values. The initial implementation for scraping the has documentation fea-

ture incorrectly reported all modules as having documentation, so re-scraping was

required after the implementation was corrected. It was also apparent that the

growth per week could be either very high or very low for popular modules.

Because this could indicate that popular modules are losing Drupal 7 installa-

tions simply because of migrations to Drupal 8, it was decided to re-scrape a

total growth per week that considered all installations of modules, not just those

of the Drupal 7 versions. A total install count was also re-scraped to capture

the total number of installations of all versions of the module (not just Drupal 7

versions) in order to ensure the installation count and growth rate were based on

the same figures.

To reduce feature redundancy in the dataset, the growth per week

and install count were removed from the dataset in favour of the

total growth per week and total install count replacements. The cyclomatic

complexity score (ccn) was also removed because of its similarity to the extended
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cyclomatic complexity measure (ccn2), which captures information about more

branches in source-code and is more widely used in static source-code analysis

tools [42].

Finally, as the purpose of the data mining was to analyze the distinctions be-

tween popular and unpopular modules, very recently published modules were re-

moved from the dataset, as enough time would not have passed for their installation

counts to show whether they were truly popular when compared with more mature

modules. Modules published less than 730 days (∼2 years) from the date of data

collection were removed, as this accounted for the tail of the module age distribu-

tion that were younger than the majority of modules (centred around a mean age of

∼4.5 years), as approximately illustrated in Figure 1. This resulted in the removal

of 21% of the dataset.

Fig. 1. Histogram of module project age, with those under 700 days old highlighted in red.

The final dataset produced after data cleaning included a total of 10,215 records.

3.5. Exploratory Data Analysis

3.5.1. Supervised Machine Learning

Unsupervised association rule mining with the Apriori algorithm [43] was initially

used to analyze the dataset, but was unable to derive meaningful insights. Because

of this, the focus of the research was shifted towards supervised machine learning

algorithms, with the aim of producing models to predict module popularity accord-

ing to the three classes in Table 1. This supervised learning approach has been used
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previously for the prediction of software project popularity [23].

A class from Table 1 was assigned to each module in the dataset according to

the total number of reported installations. The unpopular and popular bin widths

were selected to approximate what would generally be re-garded as the lowest and

highest tiers of module popularity. Correlations of feature values to these two bins

would represent meaningful insights.

Table 1. Manual installation count discretiza-

tion

Label Total installations Bin size

unpopular < 100 5414
moderate >= 100 & < 10,000 4291

popular >= 10,000 510

Initial tests with supervised learning models showed poor predictive perfor-

mance. However, it was possible to substantially improve performance by removing

modules with moderate popularity, which allowed the models to focus on identifying

the key differences between highly popular and highly unpopular modules.

Furthermore, initial training of these models showed a heavy dependence on

features that were directly related to module install counts, high issue queue

activity (popular modules inherently have more active issue queues), or project

age (an older module is more likely to have more installs). It was deter-

mined that identifying correlations between these features and module popu-

larity would not be useful, as the aim of the research was to find insights

into what previously unknown features of modules and their communities are

related to module popularity. In order to force the models to be trained on

other, more independent features, the following features were removed from the

dataset: committer count, total growth per week, install download ratio,

issue count, issue new count, issue participants, issue response hours,

issue response rate, and project age days. issue open ratio was left in the

dataset because it is not directly related to the number of issues or amount of over-

all issue queue activity. Appendix A notes which features were removed from the

feature-set before the final classification models were trained.

3.5.2. Target Classification Models

Based on tests with several classification algorithms, it was decided that four dif-

ferent classification models should be trained to gain different kinds of insights

into the data. All of these models could be trained using the Weka data mining

workbench [44].

Two models would be built with the JRip classifier for generating classification

rules. JRip is an implementation of the Repeated Incremental Pruning to Produce
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Error Reduction (RIPPER) algorithm [45]. One model would produce a model

starting with rules for the popular class, while the other would start with rules

for the unpopular class. Both models would be trained on the dataset including

modules with the moderate class. While including the moderate modules would

decrease the overall predictive performance of the models, the best rules from the

top of each model’s rule list could be analyzed to provide insight into the most

important factors for distinguishing popular and unpopular modules from all other

modules.

Additionally, a J48 decision tree would be trained on the reduced dataset in-

cluding only popular and unpopular modules. J48 is an implementation of the

C4.5 algorithm for generating decision trees [46]. The decision tree would provide

a model for distinguishing between the two classes, and potentially demonstrate

which features were more or less important in the context of the values for other

features.

A Näıve Bayes classifier would also be trained on the reduced dataset to show the

relative importance of different features in distinguishing between the two classes.

3.6. Model Optimization

An experimental plan was produced for the optimization of the four classification

models. The plan consisted of three steps to select optimal configurations for data

balancing, feature selection, and classification algorithm parameters. The best con-

figuration found in each step would be selected for application in subsequent steps.

For all experiments, the area under the precision-recall curve for the minority

class (popular, which only accounts for approximately 5% of the dataset) was

selected as the evaluation metric. Initial testing showed that predictive performance

was good for the moderate and unpopular classes, but quite poor for the popular

class. This is due to the fact that classification algorithms produce models that are

inherently worse at predicting minority classes [47], and the focus of performance

optimization therefore needs to be given to the minority class (though without

comprising performance on other classes). Furthermore, optimizing the area under

the precision-recall curve gives the greatest flexibility when choosing an appropriate

predictive threshold for each of the final classification models in order to optimize

the F-measure (a measure that represents a balance between precision and recall)

for the minority class.

Data balancing techniques can be a useful way to improve classification algo-

rithm performance on minority classes [48]. For each algorithm, a variety of data

balancing techniques were applied, including variations of: over-sampling records for

the minority class with the synthetic minority over-sampling technique (SMOTE),

under-sampling records for the majority classes, and a combination of over-sampling

and under-sampling by way of re-sampling. For efficiency, each technique was ap-

plied to a training dataset of two-thirds of the original data, and the target classi-

fication algorithm was trained to produce a model that was evaluated against the
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remaining third of the data (the test dataset).

Feature selection is another important step for improving the performance of

classification algorithms, as the presence of irrelevant features has been shown to

severely decrease their performance [49]. Various feature-selection techniques were

tested, including information gain evaluation, gain ratio evaluation, feature corre-

lation evaluation, and correlation-based feature subset selection. Given the large

number of features (over 600 with the many PHPCodesniffer features), feature se-

lection was limited to forward searches. The wrapper method of feature selection

was not used, as the running time over the large set of features and training records

was prohibitive. Once again, the same approach of using a training and test set

with a two-third/one-third split was used to test feature selection techniques.

The parameters of the algorithms also needed to be tuned to achieve optimal

performance. The appropriate parameters to be tuned for each algorithm and their

purposes are listed in Table 2. Evaluation of the parameters was performed using

10 iterations (only 3 in the case of JRip, because of the prohibitive model-building

time) of 10-fold cross-validation, where data balancing and feature selection were

applied to the training fold while the model was evaluated on an untreated test

fold.

Table 2. Classification algorithm parameters to tune

Algorithm Parameter Purpose

JRip minNo The minimum number of records a rule must
apply to.

JRip folds The number of folds to split data into, where

one fold is used for pruning rules and the rest
for growing rules.

JRip optimizations The number of optimization runs to test
randomized rule variants.

J48 minNumObj The minimum number of records a tree leaf

must apply to.
J48 confidenceFactor The size of the confidence interval to use when

estimating error rates for the purpose of pruning

branches.
Näıve

Bayes

useKernelEstimator Whether to use kernel density estimation

(rather than a normal distribution) for handling

numeric features.
Näıve

Bayes

useSupervisedDiscretization Whether to use MDL-based supervised

discretization for handling numeric features.

Additionally, in the case of J48 and Näıve Bayes, a threshold selector was applied

to find the optimal predictive threshold to maximize the F-measure for the minority

class (popular). This was not necessary for the JRip models, as the intention was

to manually extract the best subset of generated rules for further evaluation.
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3.7. Final Models

Experiments were run according to the optimization methodology described above

to generate a set of optimal classification models. The critical performance statistics

for the models (averaged over 10-fold cross-validation) are provided in Table 3, and

the performance of each model is discussed below.

Table 3. Classification model performance statistics

Model Accuracy popular F-measure unpopular F-measure

Popular classification rules 66.23% 0.378 0.737
Unpopular classification rules 54.22% 0.299 0.669

Näıve Bayes (feature selection first) 94.83% 0.690 0.972

Näıve Bayes (data-balancing first) 93.69% 0.641 0.965
Decision tree 93.11% 0.652 0.962

3.7.1. Popular Classification Rules Model

The optimal classification rules model for the popular class was produced by: using

SMOTE to double the number of popular records, selecting the top fifteen features

according to correlation evaluation, and configuring JRip to use 5 folds for the

growing/pruning split, 10 optimization runs, and a minimum rule record count of

25.

This model has quite poor accuracy and F-measures, but it is of little importance

because the focus of further analysis will only be the top rules for predicting the

popular class.

3.7.2. Unpopular Classification Rules Model

The optimal classification rules model for the unpopular class was produced by:

re-sampling the dataset to achieve an equal number of records for each class, select-

ing the top three features according to correlation evaluation, and configuring JRip

to use 5 folds for the growing/pruning split, 10 optimization runs, and a minimum

rule record count of 25. It is worth noting that several algorithm parameter config-

urations achieved the greatest area under the precision-recall curve for the popular

class, as well as for the weighted average across all classes. The configuration above

was selected on the basis of it also being the best performing configuration for the

popular rules model.

Once again, while this model has quite poor accuracy and F-measures, it is of

little importance because the focus of further analysis will only be the top rules for

predicting the unpopular class. It is worth noting that even though the model is

intended for use in predicting the unpopular class, the focus on the area under the

precision-recall curve for the popular class is still justified as a performance metric
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because the focus must be on preventing confusion with the popular class.

3.7.3. Näıve Bayes Model

Because of the sensitivity of Näıve Bayes to choices in feature selection (as every

feature contributes equally to the final model [50]), and because of the insignificant

amount of time required to train additional Näıve Bayes models, it was decided to

perform the experimental process with both possible orderings of the data balancing

and feature selection steps. Additionally, once the best techniques for data balancing

and feature selection had been identified, both orders of these operations were tested

with each configuration of algorithm parameters in the final cross-validated set of

experiments.

The best combination of data balancing and feature selection techniques was

found by applying feature selection to the dataset before data balancing. How-

ever, the optimal Näıve Bayes model was produced by first under-sampling the

unpopular class to achieve a class imbalance no greater than 50% of the popular

class, then selecting the top eight features according to gain ratio evaluation, and

finally using supervised discretization to handle numeric features. Additionally, a

predictive threshold of 0.94 was chosen to achieve the greatest F-measure for the

popular class.

This model achieved a very high overall accuracy, as well as a reasonably high

F-measure for the minority class. This shows that the model is able to distinguish

well between popular and unpopular modules based on the small number of features

selected.

It is also worth noting that the inferior model produced by following the same

experimental process that was used for the classification rule models (data balancing

followed by feature selection) was still able to achieve a high level of accuracy

(when using an optimized predictive threshold of 0.8486), as is demonstrated by

the similarity of the performance statistics for both models in Table 3.

This shows that the drastic improvement in performance over that achieved by

the classification rule models was due to the removal of the “moderately popular”

modules from the dataset, and not simply because of the change in experimental

process.

3.7.4. Decision Tree Model

The optimal decision tree model was produced by: re-sampling the dataset with

a bias of 0.7 towards a uniform class distribution, selecting the top ten features

according to information gain evaluation, and configuring J48 with a confidence

factor of 0.25 and a minimum number of objects of 25. It is worth noting that using

a confidence factor of 0.5 also achieved the greatest area under the precision-recall

curve for the popular class, as well as the same weighted average across all classes.

The confidence factor of 0.25 was selected on the basis of it being more conservative
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in its pruning, potentially leading to a simpler model. Additionally, a predictive

threshold of 0.85 was chosen to achieve the greatest F-measure for the popular

class.

The decision tree model achieved a similar accuracy to the Näıve Bayes model,

although it did not achieve as high an F-measure on the minority class. However, it

is still a useful addition, as the structure of the decision tree can provide different

insights to those provided by the Näıve Bayes model.

4. Analysis of Classification Models

With the optimal classification models determined, the next step in the research

process was to inspect the classification models to gain useful insights into the

relationships between the analyzed metrics and module popularity.

4.1. Classification Rule Models

While the classification rule models did not achieve very high accuracy, they play

an important role in the analysis of the dataset. Because they were trained on

the entire dataset (including modules with “moderate” popularity), they produced

rules that identify combinations of metrics that distinguish popular and unpopular

modules from the rest of the dataset.

Table 4 shows the top rules for predicting unpopular and popular modules. Rules

with confidence values less than 60% on the full dataset have not been included

in the analysis. Note that the rules are intended to be applied in sequence for

each class (e.g. the second rule for classifying popular modules is only applied to

those not matched by the first). Also, note that the second and third rules for the

“popular” class are essentially useless, as they make predictions based on maintainer

counts that fall between integer values. These rules can only apply to the training

records introduced by the SMOTE method of data balancing, so do not need to be

considered when evaluating performance on the real dataset.

From the single rule for predicting unpopular modules, we can see that most

unpopular modules have one or zero maintainers and no new commits for almost

two years or more.

There are several metrics that are considered important by the model for pre-

dicting popular modules:

1. Having a version available for the next version of Drupal (as the dataset consisted

of Drupal 7 modules, these would be Drupal 8 versions).

2. Good documentation: Having documentation pages and a module description of

a reasonable length.

3. A relatively high proportion of translation work: more than 10% of all possible

translations for the module. As there are currently 114 languages supported by

Drupal, this would equate to roughly 11 full translations of the module (or many

more partial translations).
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Table 4. Best Performing Classification Rules

Consequent Antecedent Support Confidence

unpopular (seconds since last commit >= 58498871) and 4825 69%

(maintainer count <= 1)

popular (maintainer count >= 2.000363) and 24 71%

(available for next core = True) and

(roots noc ratio >= 0.00254) and

(average translation percent >= 12.622163) and

(roots noc ratio <= 0.31027)

popular (maintainer count >= 2.000363) and 0 0%

(maintainer count <= 2.999844)

popular (maintainer count >= 3.003246) and 0 0%
(maintainer count <= 3.982082)

popular (release frequency days >= 69.6) and 74 80%

(available for next core = True) and

(has documentation = True) and

(average maintainer commits >= 1146.24423) and

(seconds since last commit <= 11800320)

popular (release frequency days >= 69.6) and 38 68%

(available for next core = True) and

(has documentation = True) and

(description length >= 1619.294735) and

(average translation percent >= 10.657789) and

(automated tests status = Enabled)

4. Having three or more maintainers. Furthermore, the maintainers of popular mod-

ules are likely to be very experienced members of the Drupal community, with

an average of over 1000 commits on Drupal.org across the maintainers.

5. Having automated tests enabled.

6. An active code-base: with the latest commit fewer than ∼4.5 months ago.

7. A low release frequency: over ∼70 days between releases. This is probably just

indicative of the fact that popular modules are typically older projects with many

long-lived versions. However, it could indicate that popular modules have more

stable releases. In any case, it seems that while popular modules are committed

to more often, they do not necessarily have frequent releases.

8. The roots noc ratio is an interesting metric. It captures the proportion of

classes in the module’s code-base that are root classes (classes that do not inherit

from a parent). It seems that popular modules have a ratio that is greater than

0% (likely indicating that they have at least some object-oriented code) but not

more than about 30% (indicating that these modules make use of inheritance

from either their own classes, or from classes in Drupal’s core or other modules).

Object-oriented code is not a large part of Drupal 7 module development, but it

appears that typical object-oriented coding with class inheritance occurs more

often in popular modules.

It is worth noting that none of these metrics are able to independently predict
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that a module is popular or unpopular, as the specified combinations of metrics

must be present in order for each rule to apply.

Classification was very poor with the moderate class, suggesting it is quite diffi-

cult to distinguish between modules with less stark differences in popularity, perhaps

because of the external factors affecting module popularity (E.g. If Facebook inte-

gration on websites is more than Twitter integration, then the Facebook modules

will be more popular than Twitter modules, regardless of internal project/software

metrics).

4.2. Näıve Bayes Model

Table 5 shows the probabilities (calculated according to the counts in the trained

Näıve Bayes classifier) that a module is popular or unpopular. Note that the proba-

bilities are not representative of the actual dataset, but of a balanced dataset which

resulted in a classifier that was able to achieve better classification results on the mi-

nority class (“popular” modules). Also, note that because the classifier was trained

without any of the “moderately popular” modules, these probabilities do not repre-

sent rules that will hold across the entire dataset, but rather show the factors that

best differentiate between highly popular and highly unpopular modules.

Table 5. Class probabilities from Näıve Bayes classifier

Feature/value pair

Probability

module is

popular

Probability

module is

unpopular

available for next core = True 89.39% 10.61%

seconds since last commit = (-inf-10595613] 84.51% 15.49%
maintainer count = (2.5-inf) 82.10% 17.90%

automated tests status = Enabled 79.94% 20.06%
issue open ratio = (0.003352-0.497573] 69.97% 30.03%
seconds since last commit = (10595613-59088360] 59.62% 40.38%

issue open ratio = (0.50173-0.664042] 59.22% 40.78%

average translation percent = (1.137024-inf) 50.15% 49.85%
maintainer count = (1.5-2.5] 48.94% 51.06%

recommended release = True 48.69% 51.31%
automated tests status = Disabled 27.05% 72.95%

available for next core = False 22.87% 77.13%
maintainer count = (-inf-1.5] 15.71% 84.29%
seconds since last commit = (59088360-inf) 12.35% 87.65%
issue open ratio = (0.497573-0.50173] 12.28% 87.72%

issue open ratio = (0.664042-0.818075] 10.77% 89.23%
recommended release = False 4.03% 95.97%

issue open ratio = (-inf-0.003352] 3.19% 96.81%
average translation percent = (-inf-1.137024] 0.76% 99.24%
issue open ratio = (0.818075-inf) 0.61% 99.39%

There are a number of insights that can be drawn from this probability table:
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1. If a module has a Drupal 8 version available, it is almost 90% likely that it is

popular. However, if a Drupal 8 version is not available, it is only 77% likely to

be unpopular, suggesting there are still a number of popular Drupal 7 modules

without versions for Drupal 8.

2. A module with a commit in the last four months is likely to be popular, while a

module without a commit in almost two years or more is likely to be unpopular.

3. A module with more than two maintainers is likely to be popular, while a module

with one or no maintainers is likely to be unpopular.

4. A module with automated tests enabled is reasonably likely to be popular, while

a module without automated tests is reasonably likely to be unpopular.

5. A module without a recommended release is very likely to be unpopular, but the

presence of a recommended release does not strongly indicate that a module is

popular.

6. A module with very little translation work (< 1.14%) is almost certainly unpop-

ular, but a higher amount of translation does not necessarily indicate the module

is likely to be popular.

7. The ratio of open issues to closed or resolved issues appears to have a more

complex relationship to popularity:

• Modules with ratios very close to 0%, 50%, or 100% are more likely

to be popular. This is probably because these extreme values are more

common in unpopular modules with fewer issues. This is demonstrated

in Figure 2, which shows a portion of the plot of issue count against

issue open ratio. Note the dense clusters of unpopular modules with very

few issues and issue open ratio values near 0%, 50%, and 100%.

• Importantly, a module is more likely to be popular if it has more closed

issues than open issues, which would indicate that the module has an active

issue base where issues are closed or resolved, and not simply left open.

4.3. Decision Tree Model

Figure 3 shows the trained J48 decision tree, with leaves predicting the minority

“popular” class highlighted in green, and leaves where pruning occurred according

to the threshold probability highlighted in red. The two numbers at each leaf node

represent the number of modules in the dataset (excluding “moderately popular”

modules) that are classified by each leaf, along with the number of these modules

that were incorrectly classified. The percentage represents the success rate of the

classification at that leaf.

Note that while the success rates of the “popular” leaves are relatively low, this

is simply a product of the large class imbalance in the dataset, as there are many

more “unpopular” modules which could be misclassified than there are “popular”

modules.

The decision tree reflects many of the same insights into the features as the clas-
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Fig. 2. Plot of open-issue ratios against issue counts. Unpopular modules marked with green;

popular modules marked with blue. Jitter applied to aid visualization of dense clusters.

sification rule and Näıve Bayes models above, albeit with slightly different critical

values for the features in order to best fit the data classified at each branch point.

However, there are two features present in the model that we have not seen in

previous models: the number of days since the latest release (days since release),

and the extended cyclomatic complexity number (ccn2). These features appear in

the lower branches of the decision tree, so are not as important in the decision

making process as other features, but the fact that they appear in multiple locations

in the tree suggests they are not simply a result of over-fitting the dataset.

Based on the branches in the bottom left and bottom right of the tree, it can

be seen that modules without a release in the last few years (807 and 1,708 days)

or with a release in the last six months (169 days) are more likely to be popular.

This most likely indicates that popular modules are likely to either have frequent

releases, or very long-lived stable releases.

It can also be seen that the extended cyclomatic complexity is higher for pop-

ular modules. This indicates that popular modules tend to have more complex
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Fig. 3. The trained J48 decision tree

code-bases, most likely because they provide more complex functionality. Gener-

ally, maintaining a low cyclomatic complexity is recommended as good software

engineering practice [51], but this finding suggests that it should not be used as an

absolute measure of Drupal module code-quality. In essence, just because a module

is more popular and has more experienced maintainers working on it, does not mean

that the module’s code can be simplified to achieve a lower cyclomatic complexity,

as it depends on the complexity of the functionality of the module.

4.4. Comparison of Models

It is worth noting the metrics that feature in all three models above, as they

are more likely to be strongly related to module popularity. These metrics

are available for next core, maintainer count, seconds since last commit,

average translation percent, and automated tests status. Most notably, hav-

ing two or more maintainers is a consistent indicator of popular modules across all

models, and similarly, having one or no maintainers is a consistent indicator of

unpopular modules.

It is also worth more closely analyzing metrics that are only used in one

of the classification models. The roots noc ratio, has documentation, and

description length metrics only appear in the classification rules for popular

modules, suggesting that these metrics are better for distinguishing popular mod-

ules from all other modules, but not as strong as other features for distinguishing

between only popular and unpopular modules. The recommended release metric

only appears in the Näıve Bayes model, where it features as the strongest indica-
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tor of a module being unpopular (in the case of a recommended release not being

available). Finally, the days since release and ccn2 metrics are only found in the

decision tree model, and even then only in lower branches. This suggests that they

are only strongly related to module popularity in the presence of certain combina-

tions of the metrics that appear above them in the decision tree.

4.5. Application of Models to Closely Related Modules

A possible risk with the trained classifiers is that they simply predict some “con-

founding” external variable, which is in turn correlated with popular or unpopular

modules. For example, if modules providing integration with third-party authenti-

cation services were consistently popular, then the classifiers may simply become

sensitive to factors that are relevant to third-party authentication modules, but not

necessarily related to the popularity of all kinds of modules.

This can be controlled for by observing the performance of the classifiers on

a group of modules with similar functionality. Table 6 shows the predictions for

a group of modules that all provide some mechanism for adding a content stream

from a Facebook page to a Drupal website.

Table 6. Class predictions (with probabilities) for modules that provide Facebook feeds.

Module Installs

Actual

Class

Popular

Rules

Unpopular

Rules Näıve Bayes

Decision

Tree

spider facebook 0 unpop unpop
71.90%

unpop
60.60%

unpop
100.00%

unpop
99.20%

fbapp 9 unpop unpop
71.90%

unpop
60.60%

unpop
100.00%

unpop
96.40%

feeds facebook 618 mod unpop

71.90%

mod

61.70%

unpop

100.00%

unpop

99.20%
facebook wall 1094 mod unpop

71.90%

unpop

60.60%

unpop

97.70%

unpop

96.40%

facebook boxes 1991 mod mod
56.80%

pop
59.70%

unpop
79.30%

popa

55.10%

facebook pull 2526 mod mod

63.10%

pop

59.70%

unpop

52.00%

unpop

89.90%
fb 4687 mod unpop

71.90%

unpop

60.60%

unpop

96.40%

unpop

92.90%

fb likebox 14420 pop mod
63.10%

pop
59.70%

pop
100.00%

pop
87.30%

Note: “unpop” = Unpopular, “mod” = Moderately Popular, “pop” = Popular

aActually classified as “unpop” because of 85% predictive threshold.

It can be seen that the rules-based classifiers exhibit generally poor performance

in determining the popularity of the “Facebook modules”, but these classifiers have

fairly poor performance in general. Still, there is a general trend of more “unpop-

ular” predictions for those with lower install counts, and more “moderate” and
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“popular” predictions for those with higher install counts. Furthermore, the uncer-

tainty in the decisions of these classifiers is reflected in their relatively low prediction

probabilities.

The Näıve Bayes and decision tree classifiers are able to very accurately distin-

guish between the classes (100% accurate if the tuned threshold of 85% is taken

into account for the decision tree classifier). Additionally, even though they were

not trained to predict “moderate” modules, their probabilities for “unpopular” pre-

dictions decrease as the module popularity increases, suggesting the model is able

to distinguish that those modules are less likely to be unpopular.

Based on these results, it is clear that the classifiers have indeed been successfully

trained to distinguish between modules of different popularity, and not simply of

different purpose.

5. Findings

Table 7 fulfills the original research objective of finding quality-related metrics that

are common to popular or unpopular Drupal modules. The table summarizes the

important metrics identified by the models described above. Table 7 also states

which factor of the ISO25010 [5] software-quality model each metric is most related

to, as well as whether the metric is a measurement of the module’s code itself or

the state of the project and its community.

Based on this summary, it appears that metrics related to the project itself and

its community are more strongly connected to a module’s popularity than metrics

related to module source-code. Most of those project-related metrics appear to be

measures of the activity and maturity of the community surrounding the module,

which suggests they would be associated with the reliability of the module (i.e. to

receive support or updates).

5.1. Novelty of Results

As no other similar study of Drupal modules was found in the literature, this appears

to be the first recorded list of metrics correlated with Drupal module popularity.

Of particular note are the metrics relating to the experience of module maintainers,

the level of object-orientation in module source-code, the code complexity, and the

amount of translation work, as these values are not presented on Drupal project

web-pages. Furthermore, the thresholds for metrics relating to release and commit

frequency, the number and experience of maintainers, the amount of translation

work, the description page length, and the ratio of open issues provide an indication

of expected values for these metrics in popular and unpopular modules.

Weber and Luo [23] found that in the case of Python projects on GitHub, source-

code metrics were more relevant than author-related factors for predicting project

popularity, though no attempt was made to train a model with a combination of

these factors. This study indicates that the inverse may be the case for Drupal
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Table 7. Important metrics for distinguishing between popular and unpopular modules

Related

Class Metric

ISO25010

Factor

Code or
Project

Metric?

Popular Version available for next Drupal Core (8) Portability Project

Popular More than 2 Maintainers Reliability Project

Popular 0.25% to ∼30% root-class/child-class ratio Unknown Code
Popular Releases at least ∼70 days apart Reliability Project

Popular Has documentation Usability Project

Popular Average of more than ∼1100 commits on Drupal.org
per maintainer

Reliability Project

Popular Average translation progress greater than ∼11% Usability Project
Popular Latest commit less than ∼4 months ago Reliability Project

Popular Description page more than ∼1600 characters long Usability Project

Popular Has automated tests Maintainability Code
Popular 0.01% to 49% or 51% to 66% of issues open Reliability Project

Popular Extended cyclomatic complexity score greater than

∼∼100

Unknown Code

Popular Less than ∼5 months or more than ∼3.3 years since

last release

Reliability Project

Unpopular Latest commit more than ∼2 years ago Reliability Project
Unpopular 1 or no maintainers Reliability Project

Unpopular No automated tests Maintainability Code

Unpopular No version available for next Drupal Core (8) Portability Project
Unpopular 0%, ∼50%, or more than 66% of issues open Reliability Project

Unpopular No recommended release Reliability Project
Unpopular Average translation progress less than ∼1% Usability Project

Unpopular Extended cyclomatic complexity score less than

∼∼100

Unknown Code

Unpopular More than ∼5 months but less than ∼3.3 years since

last release

Reliability Project

modules: source-code metrics appear to be less related to project popularity than

project-related metrics (including the number of maintainers and their experience).

Emanuel et al. [17] found that projects with high download counts on the Source-

Fourge open-source project hosting platform were more likely to have a “stable /

production” development status. In the metrics identified by this study, only the

absence of a “recommended release” was a useful metric for identifying unpopular

Drupal modules. This suggests that while modules without a “recommended re-

lease” are likely to be unpopular, a module with a “recommended release” may be

popular or unpopular.

The fact that maintainer experience was identified as an important metric in

this study is consistent with the results reported by Cai and Zhu [18], who found

that open-source projects with higher aggregate developer reputation on the Ohloh

social network were more likely to be popular.
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5.2. Implications

As the Drupal Association has recently removed the restriction of only allowing

peer-reviewed developers to fully publish modules, there is a potential risk that

many more low-quality modules could appear on Drupal.org. For this reason, the

Drupal Association is looking for ways to present a clearer distinction between good

and poor modules to Drupal website builders. The identified metrics are good can-

didates to be considered for presentation as measures of quality on module project

pages. While many of these metrics are already presented in some form, they could

potentially be grouped together and emphasized as project quality indicators. Ad-

ditionally, the identified thresholds for the metrics could be used to create a scale

for communicating module quality, such as a “red, amber, green” colour scale for

metric values associated with unpopular, moderately popular, and popular modules

(respectively). An example of how this could be applied to create a module evalu-

ation tool is demonstrated in Figure 4. A tool such as this would help developers

make informed decisions about whether to use a module, even when they have no

prior knowledge of reasonable values for project metrics. Such an evaluation tool

could also be useful for other open-source communities, as long as the included

metrics were verified as being important indicators of project quality for the given

context.

Fig. 4. Example of a module evaluation tool applied to the “Facebook Boxes” module
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As automated code-quality checks are being considered by the Drupal Associa-

tion and other open-source communities, it is worth noting that source-code quality

metrics were not good distinguishers of module popularity; popular and unpopular

modules could have a range of values for these metrics. The commonly held idea

that popular open-source software projects with more experienced developers and

more community attention have higher source-code quality appears to be incorrect.

This does not necessarily mean that it is not worth running automated checks to

remind developers to conform to coding standards and write maintainable code,

but perhaps there is an argument to be made that a project with low source-code

quality is still a worthy contribution to the open-source community, and may be

useful for many thousands of users. At the very least, project-related metrics appear

to be better indicators of project success than traditional software quality metrics.

6. Limitations

It is worth noting that the discovered metric/popularity relationships are not nec-

essarily causal. For example, in the case of the majority of metrics associated with

reliability: it is not known whether a module that becomes popular will become

more reliable as its community grows, or if a module achieves popularity because

of its reliability.

Furthermore, while the potential confounding factor of module purpose has been

ruled out by applying the models to a group of modules with a similar purpose, it is

possible that other confounding factors may affect module popularity. For example,

this study did not take into account internal factors that were impractical to collect

on a large scale, such as whether a module has any functional issues preventing its

use, the extent and quality of documentation, and how easy the module is to install

and configure. Also, external factors were not considered, such as the amount of

promotion a module had received.

Additionally, while a popular module can safely be assumed to be of high quality

in that it is useful for many Drupal websites, it is not necessarily the case that

popular modules are exemplars of high software quality. In fact, the absence of

a strong link between traditional software quality metrics and module popularity

suggests that this may not be the case. Therefore, while the metrics identified by

this study can be taken as indicators of modules that are useful to the community,

they do not necessarily indicate that a module is well engineered.

7. Conclusions and Future Work

In summary, the data-mining process has identified a collection of metrics that

can be used to distinguish between popular and unpopular Drupal modules. Some

of these metrics are novel in that they are not currently presented on project web-

pages, and threshold values have been discovered for other metrics. An approach has

also been proposed to allow Drupal developers to make informed choices based on

the identified metrics and threshold values. Furthermore, this study has highlighted
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a strong relationship between module popularity and project-related metrics asso-

ciated with software reliability, while revealing the absence of a strong relationship

between module popularity and traditional software-quality metrics.

This study has also highlighted a number of areas for further research into the

quality of open-source software.

Firstly, the presented module evaluation tool could be refined further and tested

with Drupal website developers to evaluate whether they find it useful for deciding

whether to use a module. An experimental trial could be set up to enable com-

parisons to be made. A comparison can be made between the decisions of more

experienced developers with those made by both less experienced developers who

did not use the tool as well as less experienced developers who did use the tool. Such

an analysis would enable the utility of the tool to be ascertained. If the tool is found

to be useful, similar tools could also be trialed in other open-source communities.

As the quantity and experience of module maintainers was shown to have a

strong relationship with module popularity, further research could be performed to

understand the relationship between module popularity and more detailed metrics

about maintainers. A good example of this approach is presented by [18], where

metrics such as maintainer reputation and the deviation of experience among main-

tainers were examined.

To understand how features in the dataset (including popularity) are associated

with the software-engineering quality of modules, expert analysis of modules would

need to be performed to qualitatively evaluate modules for software-engineering

quality. Alternatively, it may be possible to determine quantitative measures for

software-engineering quality through interviews with expert Drupal module devel-

opers. With measurements of Drupal software-engineering quality, a similar study

to this could be performed to identify metrics associated with well or poorly engi-

neered modules.

The dataset of Drupal 7 modules produced for this study could also be of use

for further analysis by members of the Drupal community, such as in identifying

typical values for software metrics to be included in any automated code-analysis

implemented on Drupal.org.

Additionally, the approach taken in this study could be re-applied to study other

open-source software projects, including Drupal Themes (which alter the appear-

ance of Drupal websites) and modules for Drupal 8 (when the ecosystem has become

more mature and made more data available).

To understand the nature of the relationships between software metrics and

popularity in open-source projects (such as Drupal modules), the progression of

metric values over time would need to be studied for a collection of projects. In

particular, the project histories would need to be studied from an early point in

their life-cycle, which could reveal whether projects become popular because of

certain metric values, or if the metric values are a consequence of a project achieving

popularity.

This study has shown that mining data about open-source software projects
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is a fruitful activity with the potential to aid the selection process for developers

wishing to use them. The area also presents a number of opportunities for further

research.

Appendix A. Dataset Features

Table 8: Full list of module metrics collected for the dataset

automated tests status Data type: Boolean

Source: Project page
Included in final models: Yes

Whether the module has automated testing by

Drupal CI enabled on Drupal.org.
available for next core Data type: Boolean

Source: Project page

Included in final models: Yes
Whether the module has a version available for the

next major version of Drupal Core (as the scraped
modules were all for Drupal 7, the presence of

Drupal 8 modules was checked).

average file loc Data type: Numeric
Source: Source-files and PHPDepend report loc

Included in final models: Yes

The average lines of code per source-code file in the
module.

average maintainer commits Data type: Numeric

Source: Project and user profile pages
Included in final models: Yes

The average number of commits each maintainer of

the module has made to any project on Drupal.org.
Included as a measure of the average experience of

module maintainers.
average npath Data type: Numeric

Source: PHPDepend report

Included in final models: Yes
The average npath complexity of all

functions/methods in the module’s source-code.

average translation percent Data type: Numeric
Source: Translations page

Included in final models: Yes

The average percentage of translations that exist for
the module in different languages.

calls loc ratio Data type: Numeric
Source: PHPDepend report

Included in final models: Yes

The ratio of method/function calls to the total lines
of source-code.

ccn Data type: Numeric

Source: PHPDepend report
Included in final models: No

Cyclomatic complexity score.
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Table 8: (Continued)

ccn2 Data type: Numeric

Source: PHPDepend report
Included in final models: Yes

Extended cyclomatic complexity score.

cloc loc ratio Data type: Numeric
Source: PHPDepend report

Included in final models: Yes

The ratio of comment lines of source-code to the
total lines of source-code.

clsa noc ratio Data type: Numeric
Source: PHPDepend report

Included in final models: Yes

The ratio of abstract classes to the total lines of
source-code.

commit frequency days Data type: Numeric

Source: Commits feed
Included in final models: Yes

The average number of days between the last (up to

10) Git commits to the project.
committer count Data type: Integer

Source: Committers page
Included in final models: No

The total number of Drupal.org users who have

committed code to the project.
days since release Data type: Integer

Source: Project page

Included in final models: Yes
The number of days since the latest stable release (or

unstable release if no stable release exists) for Drupal

7.
dependencies count Data type: Integer

Source: .info file

Included in final models: Yes
The number of other modules this module depends

on.
description images Data type: Integer

Source: Project page

Included in final models: Yes
The number of images in the project’s description.

description length Data type: Integer

Source: Project page
Included in final models: Yes

The number of text characters in the project’s
description.

development status Data type: Nominal[“Under active development”,

“Maintenance fixes only”, “No further development”,
“Obsolete”, “Unknown”]

Source: Project page
Included in final models: Yes
The development status of the module advertised by

the module’s maintainers.
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Table 8: (Continued)

eloc loc ratio Data type: Numeric

Source: PHPDepend report
Included in final models: Yes

The ratio of “executable” lines of source-code to the

total lines of source-code.
growth per week Data type: Numeric

Source: Usage page

Included in final models: No
The average increase or decrease in the install count

of the Drupal 7 version of the module over the last
(up to) 10 weeks.

has documentation Data type: Boolean

Source: Project page
Included in final models: Yes

Whether the module has documentation pages linked

to from its project page.
install count Data type: Integer

Source: Usage page

Included in final models: No
The number of Drupal websites that currently report

having the Drupal 7 version of the module installed.
install download ratio Data type: Numeric

Source: Project page

Included in final models: No
The ratio of the total number of installs for the

module (across all Drupal versions) to the number of

times the module has been downloaded from
Drupal.org.

issue count Data type: Integer

Source: Project page
Included in final models: No

The total number of issues in the module’s issue

queue.
issue new count Data type: Integer

Source: Project page
Included in final models: No

The current number of “new issues” as reported on

the module’s project page.
issue open ratio Data type: Numeric

Source: Project page

Included in final models: Yes
The ratio of open issues to the total number of issues

in the project’s issue queue.
issue participants Data type: Integer

Source: Project page

Included in final models: No
The current number of issue queue participants as

reported on the module’s project page.
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Table 8: (Continued)

issue response hours Data type: Integer

Source: Project page
Included in final models: No

The current number of hours until “1st response” in

the issue queue as reported on the module’s project
page.

issue response rate Data type: Numeric

Source: Project page
Included in final models: No

The current issue queue “response rate” as reported
on the module’s project page.

lloc loc ratio Data type: Numeric

Source: PHPDepend report
Included in final models: Yes

The ratio of “logical” lines of source-code to the total

lines of source-code.
loc Data type: Integer

Source: PHPDepend report

Included in final models: Yes
The total lines of source-code.

maintainer count Data type: Integer
Source: Project page

Included in final models: Yes

The number of maintainers that currently exist for
the module.

maintenance status Data type: Nominal[“Seeking co-maintainer(s)”,

“Actively maintained”, “Minimally maintained”,
“Unsupported”, “Seeking new maintainer”,

“Unknown”]

Source: Project page
Included in final models: Yes

The maintenance status of the module advertised by

the module’s maintainers.
noc loc ratio Data type: Numeric

Source: PHPDepend report
Included in final models: Yes

The ratio of the number of object-oriented classes to

the total lines of source-code.
nof loc ratio Data type: Numeric

Source: PHPDepend report

Included in final models: Yes
The ratio of the number of functions to the total

lines of source-code.
noi loc ratio Data type: Numeric

Source: PHPDepend report

Included in final models: Yes
The ratio of the number of object-oriented interfaces

to the total lines of source-code.
nom loc ratio Data type: Numeric

Source: PHPDepend report

Included in final models: Yes

The ratio of the number of methods to the total lines
of source-code.
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Table 8: (Continued)

project age days Data type: Integer

Source: Project page
Included in final models: No

The number of days since the module was first

published on Drupal.org
recommended release Data type: Boolean

Source: Project page

Included in final models: Yes
Whether the module has a stable release for Drupal

7 recommended by the module’s maintainers.
release frequency days Data type: Numeric

Source: Release feed

Included in final models: Yes
The average number of days between the last (up to

10) Drupal 7 releases of the module.

roots noc ratio Data type: Numeric
Source: PHPDepend report

Included in final models: Yes

The ratio of root classes (classes that do not inherit
from another class) to the total number of classes in

the source-code.

seconds since last commit Data type: Integer

Source: Commits feed

Included in final models: Yes
The number of seconds since the last Git commit to

the module.

security covered Data type: Boolean
Source: Project page

Included in final models: Yes

Whether the module is covered by the Drupal
Security Team.

total growth per week Data type: Numeric

Source: Usage page
Included in final models: No

The average increase or decrease in the install count
of all versions of the module over the last (up to) 10

weeks.

total install count Data type: Boolean
Source: Project page

Included in final models: Yes

The number of Drupal websites that currently report
having any version of the module installed.

phpcs ratio total Data type: Numeric

Source: phpcs report
Included in final models: Yes

The ratio of the total number of phpcs notices to the
total lines of source-code.

For each notice type in the
PHPCodesniffer report:
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Table 8: (Continued)

phpcs ratio A.B.C.D.E Data type: Numeric

Source: phpcs report
Included in final models: Yes

The ratio of phpcs notices of type “A.B.C.D” to the

total lines of source-code.
phpcs ratio level 0 A Data type: Numeric

Source: phpcs report

Included in final models: Yes
The ratio of phpcs notices starting with “A.” to the

total lines of source-code.
phpcs ratio level N PART Data type: Numeric

Source: phpcs report

Included in final models: Yes
The ratio of phpcs notices starting with “PART” to

the total lines of source-code.

Table 9. Sources for module metrics

Project page https://www.drupal.org/project/$MODULE
Commits feed https://www.drupal.org/node/$MODULE ID/commits/feed

User profile
page

https://www.drupal.org/u/$USERNAME

Usage page https://www.drupal.org/project/usage/$MODULE

Release feed https://www.drupal.org/node/$MODULE ID/release/feed
?api version[0]=103

Translations

page

https://localize.drupal.org/translate/projects/$MODULE

Commits feed https://www.drupal.org/node/$MODULE ID/commits/feed

Committers

page

https://www.drupal.org/node/$MODULE ID/committers

PHPDepend

report

Output of running the PHPDepend static-code-analysis tool on the

module’s source-code
.info file The .info file included in the source-code of the module

phpcs report List of “code smell” notices reported by the PHP Codesniffer tool

when evaluated against the Drupal, DrupalPractice, and DrupalSecure
coding standards.
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