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Testing processes and workflows in information and Internet of Things systems is a
major part of the typical software testing effort. Consistent and efficient path-based

test cases are desired to support these tests. Because certain parts of software system
workflows have a higher business priority than others, this fact has to be involved in
the generation of test cases. In this paper, we propose a Prioritized Process Test (PPT),

which is a model-based test case generation algorithm that represents an alternative to

currently established algorithms that use directed graphs and test requirements to model
the system under test. The PPT accepts a directed multigraph as a model to express

priorities, and edge weights are used instead of test requirements. To determine the test-
coverage level of test cases, a test-depth-level concept is used. We compared the presented
PPT with five alternatives (i.e., the Process Cycle Test, a naive reduction of test set

created by the Process Cycle Test, Brute Force algorithm, Set-covering Based Solution
and Matching-based Prefix Graph Solution) for edge coverage and edge-pair coverage. To

assess the optimality of the path-based test cases produced by these strategies, we used

fourteen metrics based on the properties of these test cases and 59 models that were
created for three real-world systems. For all edge coverage, the PPT produced more

optimal test cases than the alternatives in terms of the majority of the metrics. For

edge-pair coverage, the PPT strategy yielded similar results to those of the alternatives.
Thus, the PPT strategy is an applicable alternative, as it reflects both the required test
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coverage level and the business priority in parallel.

Keywords: Software testing; Model-based testing; Process testing; Path-based testing

1. Introduction

In current software and Internet of Things (IoT) systems, the testing of processes

and workflows is one of the major testing techniques [1, 2]. This type of testing also

represents a considerable part of the overall software testing budget; for instance,

Eldh et al. estimates that these costs are between 40% and 80% of the total software

development project costs [3]. The efficiency of process tests (i.e., tests that are

based on a flow of actions in a system under test (SUT) to detect possible defects in

SUT processes [4]) strongly depends on the quality and consistency of the created

test cases [5, 2, 6]. Hence, the generation of consistent and efficient path-based test

cases (i.e., test cases that are based on flows or logical paths that can be executed in

an SUT) [1] has been a subject of interest of the Model-based Testing discipline in

the last decade [7, 8]. For test case generation, an underlying SUT model is needed.

For path-based test cases, this model is based on a directed graph [1, 5]. A Unified

Modeling Language (UML) activity diagram, which is the current established design

option for the modeling of workflows and processes in information systems [9, 10] can

be converted into a directed graph [5, 1] (a simple example is presented in Fig 1). A

process modeling alternative to UML is Business Process Model Notation (BPMN),

for which a natural solution is a conversion to a Petri net [11, 12]; however, for

model-based testing purposes, a conversion to a directed graph is also feasible [13].

Several strategies were proposed to generate path-based test cases in the literature;

for example [14, 15, 16, 17, 18, 19].

In this paper, we present the Prioritized Process Test (PPT), which is an alter-

native approach to path-based test case generation from an SUT model based on

a directed graph. This approach enables good flexibility for different testing goals,

allows the test coverage level of the test cases to be scaled, and in parallel with this

scaling, it provides a prioritization mechanism to optimize the test set (additional

details are provided in Section 3). In the experiments, we compare this strategy with

five alternatives to evaluate its performance and the properties of the produced test

set.

The rationale behind this study is twofold. First, due to its the importance, the

process-based approach and workflow testing is worth further exploring to find an

alternative to previously published strategies. Second, defining exact optimization

criteria is a challenging task. As we can see in Section 2.3, various aspects can be

further used to optimize the test sets.

The motivation for this approach is underpinned by several points. As we explain

in detail in Section 2.4, algorithms that are built upon an SUT model that is based

on a directed graph and a set of test requirements (explained in Section 2.2), which

are present in the test cases, may reach their limit when trying to satisfy a defined

test coverage level together with the prioritization of the SUT model parts, which
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Fig. 1. An example of UML Activity Diagram conversion to a directed graph as a SUT model

are visited by the test cases. Test requirements practically allow only two levels of

priority (i.e., priority and not priority), whereas in practical test prioritization, more

levels are usually used [20, 21]. Another limit of algorithms based on established test

requirements is the possible limit of visiting priority paths sideways in the processes

that are captured by the SUT model. Although this limit can be solved by employing

multiple sets of test requirements, the number of these alternative combinations can

grow to an extent that makes it challenging to keep the SUT model actual with

the SUT. Finally, for commonly used process models, algorithms that accept only a

directed graph as an input require conversion of the parallel edges in the model into

additional nodes, which leads to more extensive models that may be impractical to

maintain. Hence, the objective of this paper is to propose an alternative approach

to prioritized path-based test generation, which mitigates the aftermentioned issues

and compare it with the current alternatives.

The contributions of the paper are as follows:

(1) the modeling approach for path-based testing is discussed and an alter-

native problem model is proposed, which, in our opinion, better suits the

needs of the current software testing industry;

(2) the PPT test case generation approach, which employs this alternative

model and aims to optimize the test set, is proposed to reflect the business



4 Miroslav Bures, Bestoun S. Ahmed, Kamal Z. Zamli

priorities defined in the model;

(3) fourteen evaluation criteria are proposed to evaluate the optimality of the

generated test case; and

(4) experimental results from 59 problem instances created from three real-

world systems are presented to compare the PPT with five alternatives,

which provides insight into the performance of the PPT and the five com-

pared algorithms from the viewpoint of the presented evaluation criteria.

This paper is organized as follows. In Section 2, we define the problem and

introduce our motivation to develop an alternative strategy; we present this strategy

in Section 3. Section 4 shows the experimental methodology for evaluating the

proposed strategy, the results and the discussion. We analyze and present some

possible threats to validity in Section 5. In Section 6, we summarize and discuss

related works. The last section concludes the paper.

2. Preliminaries and Problem Definition

For path-based testing, the SUT model is commonly defined as a directed graph

G =(D, A), where D is a set of nodes, D 6= ∅, and A is a set of edges [1]. A is a

subset of D ×D. In the model, one start (initial) node ds ∈ D is defined. De ⊆ D

is a set of end nodes, De 6= ∅.
The nodes in the graph can be used to model decision points in the process

and the SUT actions or functions, which are executed between particular decision

points. Alternatively, nodes can be used to model decision points in the process and

edges can be an abstraction of either:

(1) one physical step performed in the SUT, or

(2) a linear sequence of physical steps in the SUT without the possibility to

select an alternative way (i.e., no decision point is implemented in this

sequence of physical steps).

In this paper, we use the SUT model presented in Fig. 1 as a running

example to document the presented concepts and algorithms. In our exam-

ple, DR = {start, A,B,C,D,E, F,G,H, I, J,K,L,M,N,O, end} and AR =

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.
The granularity of the physical steps can differ by the level of abstraction for

which the test cases are prepared. For example, for the design of a business end-

to-end test, this step typically corresponds to the SUT function defined on the

conceptual level of SUT design.

The test case t is a sequence of nodes d1, d2, .., dn, with a sequence of edges

a1, a2, .., an−1, where ai = (di,di+1), ai ∈ A, di ∈ D. Moreover, d1 = ds and

dn ∈ De. When these conditions are satisfied, we can alternatively denote the test

case as a sequence of nodes d1, d2, .., dn or edges a1, a2, .., an−1 only. We refer to the

individual nodes and edges in the test case t as test case steps. The test set T is a

set of test cases. Alternatively, some studies refer to test cases as test paths [16, 1].
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In our example, a sequence such as {start, 1, A, 2, B, 4, F, 11, I, 15, K, 17, N, 19,

O, 20, end} can be a test case.

2.1. Test Coverage Criteria

The extent of a test set T is determined by coverage criteria. First, let us describe

the problem without considering the prioritization of SUT functions.

A trivial coverage criterion example would be following each edge a ∈ A mini-

mally once in the test set T . Usually, this criterion is referred to as All Edge Cov-

erage. Alternatively, All Node Coverage can also be defined, which requires each

node d ∈ D to appear minimally once in the test set T . In fact, All Node Coverage

is even weaker than All Edge Coverage. All Edge Coverage serves for lightweight

testing that is usually suitable for smoke tests (i.e., tests detecting that the essential

functionality of the SUT has not been disrupted by defects) or routine regression

tests (i.e., repetitive tests following SUT updates to determine if new defects are

present in parts of the SUT, which were considered free of defects) [4]. For more

thorough workflow testing, a higher level of test coverage is usually needed.

An opposite extreme to All Edge Coverage (in terms of the extent of T ) that

exercises all possible paths in G, starting with ds and ending with any of de ∈ De,

is usually referred to as All Paths Coverage [1]. However, such tests would be too

extensive and result in high demand for resources and time for testing. Thus, a

compromise is needed to determine a practical level of test coverage.

One possibility is the Test Depth Level (TDL) criterion used in the Process

Cycle Test (PCT) technique, as defined in TMap Next [4]. PCT uses G as the SUT

model and produces test cases t (as defined above). The TDL criterion is defined

as:

(1) TDL = 1 if ∀a ∈ A, edge a occurs at least once in at least one test case

t ∈ T (which is equivalent to All Edge Coverage).

(2) TDL = n if the following conditions are satisfied: for each node d ∈ D, the

Sd is a set of all possible paths in G starting with an edge incoming to the

node d and, followed by a sequence of n − 1 edges outgoing from node d.

Then, ∀d ∈ D, the test cases of the test set T contain all paths from Sd.

Alternatively, TDL = 2 is referred to as Edge-pair Coverage. In practice, TDL >

3 is not commonly used for the generation of test cases [21, 4].

Another concept used in the area is Prime Path Coverage (PPC), which elimi-

nates redundancy in the created tests [1]. To satisfy the PPC criterion, each reach-

able prime path in G has to be a subpath of a test case t ∈ T . A path p from d1 to

d2 is prime if the following conditions are satisfied:

(1) p is simple, which means no node d ∈ D appears more than once in p (i.e.,

p does not contain any loops). The only exceptions are d1 and d2, which

can be identical (p itself can be a loop).

(2) p is not a sub-path of any other simple path in G.



6 Miroslav Bures, Bestoun S. Ahmed, Kamal Z. Zamli

By its nature, PPC tends to produce more extensive test cases with high cov-

erage. In this sense, the advantage of TDL is the possibility to flexibly set the test

coverage level. It is worth noting that in the graph G used as a SUT model, other

coverage criteria can also be defined (e.g., all simple paths, all simple round trips or

all complete round trips), but they are out of the scope of this paper. Importance

or priorities of individual functions of the SUT are reflected neither in TDL nor

Prime Path Coverage concepts.

To illustrate some of the explained coverage criteria using the running example,

All Edge Coverage (equivalent to TDL = 1) and All Node Coverage are satisfied

by a TR1 = {t1, t2, t3}, where t1 = {start, 1, A, 2, B, 3, C, 5, D, 7, E, 8, F, 9, G,

10, H ,1 2, I, 13, J, 16, M, 18, N, 20, O, 21, end}, t2 = {start, 1, A, 2, B, 4, F, 11,

I, 14, L, 19, N, 20, O, 21, end}, and t3 = {start, 1, A, 2, B, 3, C, 6, E, 8, F, 9, G,

10, H, 12, I, 15, K, 17, N, 20, O, 21, end}.
For instance, Edge-pair Coverage (equivalent to TDL = 2) is satisfied by a

TR2 = {t1, t2, t3, t4, t5, t6}, where t1 = {start, 1, A, 2, B, 3, C, 5, D, 7, E, 8, F, 9,

G, 10, H, 12, I, 13, J, 16, M, 18, N, 20, O, 21, end}, t2 = {start, 1, A, 2, B, 4, F, 9,

G, 10, H, 12, I, 14, L, 19, N, 20, O, 21, end}, t3 = {start, 1, A, 2, B, 3, C, 6, E, 8,

F, 11, I, 13, J, 16, M, 18, N, 20, O, 21, end}, t4 = {start, 1, A, 2, B, 4, F, 11, I, 14,

L, 19, N, 20, O, 21, end}, t5 = {start, 1, A, 2, B, 4, F, 11, I, 15, K, 17, N, 20, O, 21,

end}, and t6 = {start, 1, A, 2, B, 4, F, 9, G, 10, H, 12, I, 15, K, 17, N, 20, O, 21,

end}. The edge pairs, which have to be present in at least one of the test cases of

T to satisfy the Edge-pair Coverage are, for example, 2-3 and 2-4 for B, 4-9, 4-11,

8-9 and 8-11 for F, 11-13, 11-14, 11-15, 12-13, 12-14, and 12-15 for I and so forth.

2.2. Prioritization of the SUT Functions

To achieve more efficient test cases that address real business priorities in the testing

process, particular SUT functions (nodes D or edges A) should be prioritized. For

prioritization, we can use the Test Requirements [15, 16, 1].

The particular form of a test requirement depends on the selected test coverage

criteria. For Edge Coverage, a test requirement is an edge a ∈ A, which has to be

present in at least one test case t ∈ T . Thus, in contrast to All Edge Coverage, we

do not require all edges of G to be covered, and cover only those defined by a set

of test requirements. By analogy, for Node Coverage, a test requirement is a node

d ∈ D that must be present in at least one test case t ∈ T .

Generally, when we compose the test case as a sequence of nodes d1, d2, .., dn
with a sequence of edges a1, a2, .., an−1, where ai = (di,di+1), ai ∈ A, di ∈ D, a test

requirement is a path in G that must be a sub-path of at least one test case t ∈ T
[16] (in some studies, the test requirement is discussed as a node or an edge to be

toured by at least one test case t ∈ T [1]; however, in this paper, we consider the

test requirement as defined previously). We denote the set of test requirements as

R.

An adequate set of test requirements can express priority edges or nodes (com-
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posing the priority parts of the SUT workflows). If an edge a ∈ A is a priority edge

and a is not adjacent to any other priority edges in G, a test requirement {a} is

added to R. If a node d ∈ D is a priority node and its incoming and outgoing edges

are non-priority edges only, a test requirement {d} is added to R. If a path p in G

consists of priority edges and priority nodes only and p is not a sub-path of any

other path in G, which also consists of priority edges and priority nodes only, a

test requirement {p} is added to R. However, in a number of published algorithms,

the test requirements are also used to determine the test coverage criteria, which

could limit the usage of test requirements for prioritization. We analyze this issue

in Section 2.4.

2.3. Test Set Optimization Criteria

In the optimization of the test set T , a number of criteria can be used; for instance:

(1)
∑
t∈T | t |, the total number of test case steps (nodes or edges) in the

test case t. The lower total number of test steps would be the lower we

can expect the testing costs in the phases of detailed test design and test

execution. In the running example used in this paper,
∑
t∈TR1

| t |= 71 and∑
t∈TR2

| t |= 128.

(2) A total number of nodes can be found as an alternative criterion to a total

number of test case steps [16]. The nodes in the test case usually require

entering the test data, which makes the testing process costlier. However,

this criterion is principally very similar to the total number of test case

steps. In the running example, the total number of nodes is 37 for TR1 and

67 for TR2.

(3) | T | is the total number of the test cases. A higher number of test cases

can imply higher maintenance of the test set. However, end-to-end test

cases with test paths that are too long could also be counterproductive.

For instance, when a defect in the SUT disables execution of the test case

and we are waiting to have this defect fixed, the rest of the test cases

cannot be executed. The longer the test cases are, the larger the extent of

the SUT that can become unavailable to test. Waiting for defect fixes is a

classical situation software testers experience daily. In the running example,

| TR1 |= 3 and | TR2 |= 6.

(4) |R||T | which express how many test requirements are covered by one test case

[16]. At first glance, the higher this ratio is, the closer the test set T is to the

optimum. However, consider the following situation: a test requirement r ∈
R cannot be feasible for some reason, and we do not have this information

during the high-level abstraction of the test design. Thus, r blocks the test

case from completion. If this test case contains another test requirement,

it will be blocked. For this reason, we might prefer to keep the |R||T | ratio

lower.
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For the practical testing process, determination of the best optimization criteria

could be challenging. Individual algorithms for generating path-based test cases

from to generate paths-based test cases from G can perform differently in satisfying

these individual optimization criteria.

2.4. Motivation for an Alternative Approach

There are several factors that motivate us to develop an alternative to the current

path-based strategies that use a directed graph G and a set of test requirements R

as an SUT model.

(1) The test requirements R, which have been extensively used in previous work,

can be used to define either the prioritized parts of the SUT model that should be

examined in the test cases or the general test coverage level of the test set T (e.g.,

Prime Path coverage [22]). Unfortunately, when test requirements are used to specify

the general test coverage criteria, they cannot also be used to determine which parts

of the SUT should be considered a priority to be covered by the tests, along with

the general test coverage criterion, which limits many published algorithms that use

the test requirement concept, such as the Set-Covering Based Solution algorithm or

the Matching-Based Prefix Graph Solution [16]. For example, we can use Edge-Pair

Coverage as the test coverage level (explained previously in Section 2.1). For Edge-

Pair Coverage, R contains each possible pair of adjacent edges in G that shall be

present in T . In such a situation, we cannot use R further to specify, which parts

of the SUT model G are considered as priorities.

(2) The test requirements can be used to determine which parts of the SUT

should be prioritized in only two priority levels (i.e., which parts of the model, as

captured by a set of test requirements, should be prioritized, and which parts should

not be prioritized). In contrast, in most software engineering and management prac-

tices, more priority levels (typically three) are used [20, 21]. A trivial solution to this

issue involves transforming the priority levels into a set of test requirements. How-

ever, during such a transformation, information about priority levels is reduced to

two states: priority and nonpriority. Therefore, more detail about the priority levels

is not available to an algorithm that accepts G and R as inputs. Capturing more

priority levels in the SUT model would allow the formulation of algorithms that

more efficiently optimize the test according to these priorities.

(3) When a path p in an SUT model G is considered a priority scenario in

the SUT process, we are primarily interested in examining this process in the test

cases. However, for crucial SUT processes, it might also be useful to exercise the

sideways of p, which typically represents parts of the workflow that can be initiated

from the path p. By sideway in this context, we mean a path p2 that starts with a

nonempty intersection with path p. Such a situation can be modeled using several

sets of test requirements. Let R1, R2 and R3 be three sets of test requirements. In

R1, we capture the path p. In R2, we capture only the immediate sideways of p.

For intense testing, we can define an R3 that captures another possible sideways
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of p. Practically, this approach requires the maintenance of multiple sets of test

requirements, which merges three aspects in parallel: (a) the required level of test

coverage, (b) the prioritized parts of the SUT model and (c) the sideways we need

to test. By considering a simple real-life example in which the test analyst would be

interested in generating test cases for three test coverage levels using three priority

levels (i.e., low, medium and high) and two sideways levels, we end up with 18

possible sets of test requirements, which must be maintained and representative of

the actual SUT. Such modeling is possible but demanding for the analyst, and the

resulting model can be prone to creation and maintenance errors. A strategy that

uses only the prioritized parts of the SUT to generate test cases and systematically

examines the paths of the workflow that are initiated from these prioritized parts

shall beprovided.

Another issue occurs as a result of using a directed graph in SUT modeling:

(4) If a directed graph is used, parallel edges (i.e., edges that have the same

start and end nodes) are not allowed in the model. In numerous models based on

UML Activity Diagrams, parallel edges are used frequently. This situation can also

be modeled using a directed graph, where special nodes must be used to distinguish

the parallel edges. However, such a situation can lead to more complex models,

which are difficult to maintain and result in a greater amount of data that must be

processed by the test case generation algorithms. To illustrate this issue, consider a

SUT model that is captured as a directed multigraph that consists of 15 nodes and

40 edges, 12 of which are parallel to other edges of the graph. To model the problem

with G, we need to add 12 more nodes and 12 more edges so that the final model

consist of 27 nodes and 52 edges (note that the number of nodes almost doubled).

The second, third, and fourth issues do not limit the current concept of SUT

modeling based on G and R. With a set of data transformations, the problem can be

converted to the form of G and R and current algorithms can be used, as explained

in the discussion above. However, to solve the first issue, an alternative approach

must be proposed.

3. Prioritized Process Test

In the proposed prioritized process test (PPT), we combine the TDL criterion (see

Section 2.1) with the priorities of the SUT functions based on the weights of the

G edges. The PPT technique generates test cases that focus on covering the priori-

tized parts of the workflows using more test steps and deliberately covers nonpriority

parts with a lower number of steps. In this section, we first describe the extended

SUT model, which includes the prioritization of the SUT functions. Then, we de-

fine additional coverage criteria for the PPT technique, i.e., Prioritized Test Level.

Finally, we provide details of the PPT strategy for the generation of the test set T .
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Table 1. Specification of TDL by particular value of PTL

Coverage

Criteria

PTL = high PTL = medium

TDL = 1 P = Ah P = Ah ∪Am
TDL = n,

n > 1

P = set of all paths

identified in G by

TDL = n criterion,

which start with

any of a ∈ Ah

P = set of all paths

identified in G by

TDL = n criterion,

which start with

any of a ∈ Ah ∪Am

3.1. Prioritization of SUT Functions and Coverage Criteria

PPT uses the SUT model defined as a weighted multigraph G = (D,A, s, t), where

D is a set of nodes, D 6= ∅, and A is a set of edges. Here, s : D → A assigns each

edge to its source node and t : D → A assigns each edge to its target node. One

start node ds ∈ D is defined. The set De ⊆ D contains the end nodes of G, De 6= ∅.
For each edge d ∈ D, a priority p is defined, p ∈ {high,medium, low}. When a

priority is not defined, it is considered low. Then, Ah is a set of high-priority edges,

Am is a set of medium-priority edges, and Al is a set of low-priority edges, where

Ah ∪ Am ∪ Al = A, Ah ∩ Am = ∅, Am ∩ Al = ∅, Ah ∩ Al = ∅. When modeling the

SUT, priorities are determined by test analysts. Various techniques and approaches

can be used, such as the Product Risk Analysis (PRA) presented in the BDTM

approach [21]. Other approaches can be found in the study by Achimugu et al. [20].

To determine the test coverage of individual parts of the SUT, the Prioritized

Process Test uses two concurrent coverage criteria: (1) the TDL criterion, as men-

tioned, and (2) Prioritized Test Level (PTL). PTL can be set to values high,medium

and is defined as:

(1) PTL = high if ∀a ∈ Ah, edge a occurs at least once in at least one test

case t ∈ T .

(2) PTL = medium if ∀a ∈ Ah ∪ Am, edge a occurs at least once in at least

one test case t ∈ T .

To determine the test coverage, the TDL criterion is used as specified in Table

1. Let P be a set of paths in G such that ∀p ∈ P , p must be a sub-path of a test

t ∈ T to satisfy the test coverage criteria. These paths have length 1 for TDL = 1.

In Table 1, P is specified for particular possible combinations of PTL and TDL.

3.2. Test Generation Strategy

In this paper, we present the optimized version of the test generation strategy,

the initial version of which we published in [23]. The version presented in this

paper produces T in a better runtime due to optimization of Algorithm 3 and
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the optimization of the physical implementation of the algorithm in the Oxygen

platform used in the subsequent experiments.

The strategy is composed of several algorithms. PPT test cases are generated

by Algorithm 1. Inputs to Algorithm 1 are the model of the SUT G and the selected

TDL and PTL values. Output of the algorithm is the test set T . The test cases are

specified as a sequence of G edges a1, a2, .., an−1.

The main Algorithm 1 uses Algorithms 2, 3 and 4. Subsequently, Algorithm 4

uses Algorithms 5, 6 and 7.

The principle of the PPT algorithm is the following. The main Algorithm 1,

which produces the test set T , starts with the initial identification of the paths

specified by the TDL criterion, which should be present in the test cases (the set

ALLTDL, line 6). This identification is done by Algorithm 2. Then, using Algorithm

3, only paths starting with an edge of priority high (or high and medium, depending

on the PTL criterion) are filtered (set P , line 8). The set P represents the paths

that must be present in the test set T to satisfy the coverage criteria. In the next

step of Algorithm 1, all possible end-to-end paths in G, starting from the ds ∈ D
and ending in any node de ∈ De that contain a path p ∈ P are identified (set

ALLE2E, line 9). These end-to-end paths are candidates for the test cases of the

test set T . However, in this phase, the set ALLE2E is not optimal and is going to

be reduced by Algorithm 4 in the last step (line 13).

In Algorithm 4, the optimization process is as follows. From ALLE2E, we

select the end-to-end paths that contain most p ∈ P using Algorithm 5 (line 3).

Then, the end-to-end paths of ALLE2E that are not needed because the particular

p ∈ P is already contained in the other end-to-end path are removed from the

selection by Algorithm 6 (line 4). During this process, paths p ∈ P that have been

already contained by some of the selected end-to-end paths are removed from further

processing by Algorithm 6 (line 5).

We implemented the PPT algorithms in Oxygena (formerly PCTgen) which is

a model-based testing platform being developed by our research group [24]. For

workflow testing, the PCTgen platform supports either a directed multigraph G
with prioritization of the SUT model edges specified in Section 3.1 or a simplified

UML activity diagram that is converted to a weighted directed multigraph G before

the test generation process. We used this platform to compare the algorithms in

the following experiments.

Let us illustrate Algorithm 1 using our example from Figure 1. In the example,

let Ah = {11, 13, 14, 16}, Am ={3, 6}, and, by default, Al = {1, 2, 4, 5, 7, 8,

9, 10, 12, 15, 17, 18, 19, 20, 21}. In Figure 2 we depict the SUT model with Ah
emphasized in red and Am emphasized in blue.

During the execution of Algorithm 1, the set ALLTDL (line 6) is equivalent to

AR for TDL = 1 and to a set of paths {1-2, 2-3, 2-4, 3-5, 3-6, 4-9, 4-11, 5-7, 6-8, 7-8,

8-9, 8-11, 9-10, 10-12, 11-13, 11-14, 11-15, 12-13, 12-14, 12-15, 13-16, 14-19, 15-17,

ahttp://still.felk.cvut.cz/oxygen/
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Algorithm 1 GenerateTestCases(G, TDL, PTL) Output: test set T

T ← ∅, P ← ∅, ALLTDL ← ∅, ALLE2E ← ∅
Set PTAB as empty

Initialize new empty stack S

depth ← TDL

For (each d ∈ D) do

ALLTDL ← ALLTDL ∪ GetAllTDLPathsForNode(d, depth, ALLTDL, S)

End for

P ← SelectRelevantTDLPaths(D, ALLTDL, TDL, PTL)

ALLE2E ← { z | z is path in G starting with node ds ∈ D and ending with any

node de ∈ De and there exist a path p ∈ P such that p is a sub-path of z }
For (each p ∈ P ) do

add p to indexed table PTAB, p is indexed by the second node from p

End for

T ← CreateTestCases(PTAB, ALLE2E)

Algorithm 2 GetAllTDLPathsForNode(d, depth, ALL, S) Output: Iterative

contribution to ALLTDL for node d
depth ← depth-1

If (depth<0) then

Create a new path from a sequence of edges stored in stack S and add it to

ALLTDL

End if

O ← set of edges outgoing from d

For (each o ∈ O) do

Push o to stack S

do ← node at the end of edge o

GetAllTDLPathsForNode(do, depth, ALLTDL, S)

remove o from stack S

End for

If (stack S is empty) then

return ALLTDL

End if

16-18, 17-20, 18-20, 19-20, 20-21} for TDL = 2.

After subsequent selection of relevant paths from ALLTDL (line 8), the set P

is equivalent to {11, 13, 14, 16} for TDL = 1 and for PTL = high. For TDL = 1

and PTL = medium, P is equivalent to {3, 6, 11, 13, 14, 16}. For TDL = 2 and

PTL = high, P is equivalent to {11-13, 11-14, 11-15, 13-16, 14-19, 16-18}. Finally,

for TDL = 2 and PTL = medium, P is equivalent to {3-5, 3-6, 6-8, 11-13, 11-14,

11-15, 13-16, 14-19, 16-18}.
For TDL = 1 and PTL = high, Algorithm 1 produces a test set TR1H =
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Algorithm 3 SelectRelevantTDLPaths(D, ALLTDL, TDL, PTL) Output:

P
For (each c ∈ ALLTDL) do

e ← the first edge of c

If ((PTL=high and priority of e is high) or (PTL=medium and priority of e is

high or medium)) then

P ← P ∪ {c}
End if

End for

If (TDL>1) then

If (PTL=high) then A ←Ah End if

If (PTL=medium) then A ←Ah ∪Am End if

For (each a ∈ A) do

If (a is not contained in any path of P ) then

P ← P ∪ {a}
End if

End for

End if

Algorithm 4 CreateTestCases(PTAB, ALLE2E) Output: test set T

T ← ∅
While (PTAB contains any elements) do

b ← SelectBestE2EPath(PTAB, ALLE2E)

ALLE2E ← RemoveUnnecessaryE2EPaths(PTAB, ALLE2E)

PTAB ← RemoveUsedTDLPaths(PTAB, b)

T ← T ∪ b
End While

{t1H1, t1H2}, where t1H1 = {start, 1, A, 2, B, 4, F, 11, I, 13, J, 16, M, 18, N, 20, O,

21, end} and t1H2 = {start, 1, A, 2, B, 4, F, 11, I, 14, L, 19, N, 20, O, 21, end }. For

TDL = 1 and for PTL = medium, the algorithm produces TR1M = {t1M1, t1M2},
where t1M1 = {start, 1, A, 2, B, 3, C, 6, E, 8, F, 11, I, 13, J, 16, M, 18, N, 20, O,

21, end } and t1M2 = {start, 1, A, 2, B, 4, F, 11, I, 14, L, 19, N, 20, O, 21, end}.
Note that the test case t1M1 is longer than t1H1, as nodes C and E must be visited

due to PTL = medium.

For TDL = 2 and PTL = high, the algorithm produces TR2H =

{t2H1, t2H2, t2H3}, where t2H1 = {start, 1, A, 2, B, 4, F, 11, I, 13, J, 16, M, 18, N,

20, O, 21, end}, t2H2 = {start, 1, A, 2, B, 4, F, 11, I, 14, L, 19, N, 20, O, 21, end},
and t2H3 = {start, 1, A, 2, B, 4, F, 11, I, 15, K, 17, N, 20, O, 21, end}. Compared

to TR1H , | TR2H |= 3, as in TR2H edge 15 must be visited because TDL = 2 (path

{15-K-17-N} is sideway of the high priority part of the process modeled by the edges

11, 13, 14 and 16).
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Algorithm 5 SelectBestE2EPath(PTAB, ALLE2E) Output: bestE2EPath

bestE2EPath ← ∅
bestScore ← 0

For (each x ∈ ALLE2E) do

score ← 0

For (each key k from PTAB) do

Pk ← set of all paths for key k from PTAB

For (each p ∈ Pk) do

If (p is sub-path of x) then

score ← score + 1

End if

End for

If (score>bestScore) then

bestScore ← score

bestE2EPath ← { p }
End if

End for

End for

Algorithm 6 RemoveUnnecessaryE2EPaths(PTAB, ALLE2E) Output:

ALLE2E
For (each x ∈ ALLE2E) do

score ← 0

For (each key k from PTAB) do

Pk ← set of all paths for key k

For (each p ∈ Pk ) do

If (p is sub-path of x) then

score ← score + 1

End if

End for

If (score=0) then

ALLE2E ← ALLE2E – { x }
End if

End for

End for

Finally, for TDL = 2 and PTL = medium, the algorithm produces TR2M =

{t2M1, t2M2, t2M3}, where t2M1 = {start, 1, A, 2, B, 3, C, 6, E, 8, F, 11, I, 13, J,

16, M, 18, N, 20, O, 21, end}, t2M2 = {start, 1, A, 2, B, 3, C, 5, D, 7, E, 8, F, 11,

I, 14, L, 19, N, 20, O, 21, end}, and t2M3 = {start, 1, A, 2, B, 4, F, 11, I, 15, K,

17, N, 20, O, 21, end}. Compared to TR1M and TR2H , in TR2M , the node D must

be visited because TDL = 2 (path 5-D-7 is sideway of the medium priority part of
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Algorithm 7 RemoveUsedTDLPaths(PTAB, b) Output: PTAB

For (each key k from PTAB) do

Pk ← set of all paths for key k

For (each p ∈ Pk ) do

If (p is sub-path of b) then

Pk = Pk – { p };
Remove p from PTAB;

End if

End for

If (Pk=∅) then

Remove key k from PTAB;

End if

End for
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Fig. 2. The running example SUT model with emphasized priority edges

the process modelled by edges 3 and 6).

4. Experimental Evaluation

In the experimental evaluation of the Prioritized Process Test, we conducted a

comparison with five alternative algorithms. In the experiments, we compared:
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(1) The Process Cycle Test (PCT) without a prioritization mechanism [4] (in

the comparison, the results of this algorithm are used only as a baseline

to provide an idea of the size of the test sets without prioritization). PCT

uses G as an SUT model.

(2) A simulation of a naive method for prioritization of the test cases using G
as an SUT model. In this method, T is a set of PCT test cases that has

been reduced by the removal of all test cases that do not contain:

(a) any edge with priority high for PTL = high (further denoted as

DCT(h)),

(b) any edge with priority high or medium for PTL = medium (further

denoted as DCT(m)).

(3) Test cases produced by the Prioritized Process Test (PPT) proposed in

Section 3 using G as an SUT model (further denoted as PPT(h) for PTL =

high and PPT(m) for PTL = medium).

(4) The Brute Force algorithm using G and a set of test requirements R as an

SUT model, published by Li et al. [16] (further denoted as BF).

(5) The Set-Covering Based Solution using G and R [16] (further denoted as

SC).

(6) The Matching-Based Prefix Graph Solution, also using G and R as an SUT

model [16] (further denoted as PG).

All algorithms PCT, DCT, PPT, BF, SC and PG were implemented in the PCT-

gen platform. Regarding the BF algorithm, we used our own implementation based

on the pseudocode published in [16]. Here, we exactly implemented the pseudocode

without any changes or optimizations of the algorithm. As BF composes the test

case as a sequence of G nodes d1, d2, .., dn, we added a conversion mechanism to

transform the produced test cases to sequences of G edges a1, a2, .., an−1, to ensure

comparability of the BF results with those of PCT, DCT and PPT. Regarding the

SC and PG algorithms, we used open-source code published by Offut et al. [25] and

we integrated this code with the Oxygen platform.

Several alternative approaches mentioned in this paper are related to the dis-

cussed problem. However, comparability with the presented PPT algorithm is af-

fected by the following issues. Regarding the work by Dwarakanath and Jankiti [15],

they focus on prime-path coverage, which is out of the scope of the paper. The ap-

proach by Gke et al. [17] (also presented in Belli et al.[18]) is aimed at minimization

of the test set for complete coverage, which is also out of the scope of the paper.

Moreover, prioritization by individual parts of the SUT as discussed in this paper is

not the subject of the study. Panthi and Mohapatra [19]aim at optimization of all

possible feasible test sequences in a control flow graph generated for a state machine

diagram modelling the SUT. Despite the similarity with the scope of this paper, as

this paper focuses on of all possible feasible test sequences, its scope differs from

the test coverage viewpoint.
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Table 2. Method of creation of the test requirements R from the graph G

Method of

creation of

R from G

PTL = high PTL = medium

Atomic

conversion

R = set of all G

adjacent node pairs

a = (di, di+1) for

each a ∈ Ah

R = set of all G

adjacent node pairs

a = (di, di+1) for

each a ∈ Ah ∪Am
Sequence

conversion

R = set of paths in

G, each a ∈ p ∈ R
has priority high

R = set of paths in

G, each a ∈ p ∈ R
has priority high

or medium

4.1. Experiment Method

As the testing data in the experiments, we used a set of created graphs G represent-

ing an SUT model. The graphs were manually created to correspond to workflows

of three real software systems: the medical information system Pluto, the customer

relationship management system Global and the issue tracking system MantisBT.

The graphs capture processes and workflows on two principal levels in these three

systems: (1) high-level business workflow and (2) low-level technical workflow on

the code level. In all cases, either running development version, the source code and

design documentation (for Pluto and Global) or the source code (for MantisBT) of

these systems are available to our research team members; hence, the relevance of

the created graphs to a real-world software development problem was ensured.

Because BF,SC and PG use G as an SUT model, to ensure objective compa-

rability of PCT, DCT, PPT, BF, SC and PG, the graphs do not contain parallel

edges; therefore, the problem instances were not directed multigraphs, but were

rather directed graphs only.

To compare PCT, DCT and PPT with BF, SC and PG, each of the graphs G
was converted to a corresponding graph G and a set of test requirements R (defined

as sequences of G nodes that must be present in the test cases) by the following

process:

(1) G is created from G by simply neglecting its edge weights.

(2) For TDL = 1, R is created from G by two alternative methods, atomic

conversion and sequence conversion, as specified in Table 2. Both alternative

methods are evaluated in the experiments.

(3) For TDL = 2, which is practically equivalent to the Edge-pair Coverage

criterion, the process is as follows. A set Apair contains all possible pairs of

adjacent edges of G. Then, R is a set of all paths (di, di+1, di+2), such that

ai = (di,di+1), ai+1 = (di+1,di+2) for each (ai, ai+1) ∈ Apair.
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Illustrating the conversion process using our running example, for atomic con-

version and PTL = high, R is a set of adjacent node pairs for edges {11, 13, 14,

16}. For PTL = medium, R is a set of adjacent node pairs for edges {3, 6, 11, 13,

14, 16}. For sequence conversion and PTL = high, R is a set of paths {11-13-16,

11-14} and for PTL = medium, R is a set of paths {3-6, 11-13-16, 11-14}.
Properties of the SUT models used in the experiments are presented in Table

3. Value loops denote the number of loops and value deg denotes the average node

degree (the sum of the average outgoing node degree and the average incoming

node degree) in a particular graph. Values| R |PTL=high and | R |PTL=medium
in the table 3 are given for the sequence conversion of the test requirements (see

Table 2). For the atomic conversion of test requirements | R |PTL=high=| Ah | and

| R |PTL=medium=| Ah | + | Am | .
To compare the test sets produced by the individual strategies, we use two sets

of metrics: the test set metrics and efficiency metrics. The test set metrics are

based on the properties of the test set T produced by a particular strategy:

• | T | - number of tests in a generated test set

• α - total number of edges in all test cases of a test set T

• αh - total number of edges of priority high in all test cases of a test set T

• αm - total number of edges of priority high and medium in all test cases

of a test set T

• β - total number of unique edges in all test cases of a test set T

• βh - total number of unique edges of priority high in all test cases of a test

set T . For correctly generated test cases and PTL = high, βh =| Ah |. This

metric was used to verify the consistency of the test cases.

• βm - total number of unique edges of priority high or medium in all test

cases of a test set T . For correctly generated test cases and PTL = medium,

βm =| Ah | + | Am |. This metric was used to verify the consistency of the

test cases.

• δ - total number of nodes in all test cases of a test set T

• ε- total number of unique nodes in all test cases of a test set T

The efficiency metrics are calculated from the values of the test set metrics and

parameters of the SUT model G. This set of metrics reflects more on the efficiency

of test cases of the test set T .

• ac = β
|A| .100% - ratio of unique edges contained in a test set T (in percent-

age). For PCT, ac = 100% by the principle of the algorithm. A lower value

of ac indicates more optimal test cases. Fewer unique edges (which would

imply extra testing costs) are present in the test cases while the required

test coverage criteria are maintained.

• λh = αh

α .100% - ratio of edges of priority high and all edges contained in

a test set T (in percentage). A higher value of λh indicates more optimal

test cases: fewer edges that do not have priority high (and thus are not
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Table 3. SUT models used in experiments

SUT model ID | D | | A | | Ah | | Am | | Al | loops | R |PTL=high | R |PTL=medium deg

1 11 19 4 2 13 5 2 4 3.45
2 13 19 4 2 13 5 3 5 2.92
3 24 43 9 8 26 10 7 12 3.58
4 15 24 8 5 11 7 4 7 3.20
5 14 22 3 3 16 7 2 5 3.14
6 9 14 5 1 8 4 3 4 3.11
7 13 21 4 3 14 7 3 6 3.23
8 15 23 6 6 11 6 6 10 3.07
9 13 19 5 2 12 5 3 4 2.92
10 19 32 6 4 22 7 6 7 3.37
11 15 25 3 4 18 8 2 3 3.33
12 16 26 7 3 16 9 7 8 3.25
13 12 19 6 2 11 5 3 5 3.17
14 14 22 6 3 13 8 4 5 3.14
15 16 19 5 5 9 0 4 5 2.38
16 6 10 3 3 4 1 3 2 3.33
17 11 16 2 3 11 0 2 5 2.91
18 13 20 3 4 13 0 2 6 3.08
19 8 10 1 3 6 2 1 4 2.50
20 9 11 2 3 6 0 1 2 2.44
21 10 15 3 3 9 0 2 3 3.00
22 7 9 1 4 4 0 1 4 2.57
23 8 12 2 3 7 0 2 3 3.00
24 10 12 3 2 7 0 3 3 2.40
25 8 12 3 2 7 3 2 2 3.00
26 8 11 3 3 5 3 3 5 2.75
27 7 12 3 2 7 5 3 3 3.43
28 8 11 2 4 5 2 2 4 2.75
29 7 11 4 2 5 0 2 2 3.14
30 10 15 3 4 8 1 2 3 3.00
31 23 32 7 9 16 3 6 13 2.78
32 26 40 8 4 28 4 8 9 3.08
33 35 48 5 9 34 4 5 11 2.74
34 45 61 10 9 42 5 8 15 2.71
35 21 27 12 6 9 0 2 3 2.57
36 19 24 7 4 13 1 3 4 2.53
37 24 29 8 9 12 2 5 7 2.42
38 25 35 8 7 20 0 5 4 2.80
39 26 38 10 3 25 2 3 4 2.92
40 27 37 8 7 22 3 8 12 2.74
41 14 20 5 5 10 1 5 6 2.86
42 21 26 3 3 20 0 3 5 2.48
43 20 30 7 4 19 4 4 5 3.00
44 28 46 13 10 23 5 11 19 3.29
45 21 28 10 6 12 0 7 12 2.67
46 19 31 9 9 13 6 8 19 3.26
47 25 39 9 11 19 8 8 13 3.12
48 52 79 7 9 63 3 5 10 3.04
49 47 68 12 8 48 3 5 10 2.89
50 46 65 9 11 45 0 6 10 2.83
51 61 97 21 10 66 3 12 17 3.18
52 51 71 16 8 47 0 10 13 2.78
53 27 40 11 3 26 2 8 10 2.96
54 21 22 7 4 11 0 4 5 2.10
55 29 35 9 8 18 0 4 8 2.41
56 34 50 10 8 32 0 6 9 2.94
57 35 50 8 4 38 0 8 11 2.86
58 37 55 16 5 34 2 9 13 2.97
59 35 48 12 8 28 1 10 11 2.74
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necessary to test) are present in the test cases while the required coverage

criteria are maintained.

• Λh = βh

α .100% - ratio of unique edges of priority high and all edges con-

tained in a test set T (in percentage). A higher value of Λh indicates more

optimal test cases. Fewer unique edges that do not have priority high (and

thus are not necessary to test) are present in the test cases while the re-

quired coverage criteria are maintained.

• λm = αm

α .100% - ratio of edges of priority high or medium and all edges

contained in a test set T (in percentage). A higher value of λm indicates

more optimal test cases. Fewer edges that do not have priority high or

medium (and thus are not necessary to test) are present in the test cases

while the required coverage criteria are maintained.

• Λm = βm

α .100% - ratio of unique edges of priority high and medium and

all edges contained in a test set T (in percentage). A higher value of Λm
indicates more optimal test cases. Fewer unique edges that do not have

priority high or medium (and thus are not necessary to test) are present

in the test cases while the required coverage criteria are maintained.

In the experiments, we ran the PCT, DCT(h), DCT(m), PPT(h) and PPT(m)

algorithms for TDL = 1 and TDL = 2, which we consider the test coverage being

used in the majority of testing assignments for noncritical software systems [21]. For

TDL = 1, the BF, SC and PG algorithms were executed for all four combinations

of PTL, and the method of creation for a set of test requirements R, as specified

in Table 2. For TDL = 2, the BF, SC and PG algorithms were executed with a

set of test requirements that contains all pairs of adjacent edges (equivalent to o

TDL = 2). For TDL = 1 and TDL = 2, PCT acts only as a baseline for comparison,

as this algorithm does not reflect either prioritization of G edges, nor a set of test

requirements R. For TDL = 2, BF, SC and PG also take the role of a comparison

baseline, as the set of test requirements R is used to model the requirements of

Edge-pair Coverage.

Test cases produced by all algorithms were automatically verified for their con-

sistency and satisfaction of test requirements by the following checks:

(1) A test case t ∈ T is a path in G (or G); which starts in ds and ends in any

node of De (applies to all algorithms),

(2) for PTL = high, all edges of Ah are present in the test cases, for PTL =

medium, all edges of Ah ∪Am are present in the test cases (applies to the

PCT, DCT and PPT algorithms),

(3) all test requirements of R are present in the test cases (applies to the BF,

SC and PG algorithms), and

(4) for PTL = high, βh =| Ah |and for PTL = medium, βh =| Ah | and

βm =| Ah | + | Am | (applies to all algorithms).
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Table 4. Experiment results for TDL=1, PTL=high. Detailed data for all graphs are available in

Appendix A.

Metric / G PCT DCT(h) PPT(h) BF a BF s SC a SC s PG a PG s

| T | 9.86 8.10 2.56 4.85 4.19 4.69 3.88 3.93 3.80
α 85.97 78.00 19.90 32.93 29.20 32.76 27.95 27.92 27.42
αh 21.51 21.51 7.86 11.31 10.42 11.59 10.15 9.95 10.05
αm 34.83 33.08 9.95 14.92 13.64 15.03 13.25 12.95 12.98
β 30.59 27.90 15.93 18.39 17.53 17.71 16.98 17.03 16.86
βh 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71
βm 11.78 11.12 8.41 8.95 8.81 8.76 8.63 8.71 8.56
δ 76.10 69.90 17.34 28.08 25.02 28.07 24.07 23.98 23.63
ε 28.68 26.20 14.39 16.76 15.93 16.10 15.42 15.42 15.31
ac 100% 90.26% 53.86% 61.51% 58.81% 59.04% 56.80% 57.10% 56.45%
λh 24.28% 27.62% 40.73% 34.82% 37.19% 36.72% 38.62% 38.18% 38.83%
λm 42.52% 45.60% 52.50% 47.33% 49.42% 48.52% 50.55% 50.47% 50.63%
Λh 9.90% 11.91% 36.74% 23.23% 27.06% 24.18% 28.98% 28.34% 29.21%
Λm 18.10% 20.97% 46.62% 31.68% 35.98% 31.87% 37.48% 37.11% 37.71%
time 13.29 8.69 35.46 1.39 1.35 2.25 1.30 49.16 53.13

4.2. Experimental Results

During the experiments, all algorithms were run on the same hardware and software

configuration. This configuration was an Intel i5 2.40GHz CPU, 8GB RAM, Ubuntu

16.04.3 operating system, OpenJDK Runtime Environment version 1.8.0.

In Tables 4, 5, 6 and 7, time denotes the execution time of the algorithm in

milliseconds. For the BF algorithm, the time for generation of R from G edge pri-

orities was not included in the measured execution time to make the comparison

more objective, as R generation represents a conversion step only and precedes the

generation of the test cases. For the DCT test cases are considered as inputs to

the test case reduction process, and the measured time covers only this reduction.

Thus, the total execution time of DCT shall also include the time needed for the

generation of PCT test cases.

Table 4 summarizes the results for PCT, DCT(h), PPT(h), BF, SC and PG with

R created by the atomic and sequence conversions for TDL = 1 and PTL = high.

In Table 4, the averaged results of all 59 graphs presented in Table 3 are provided. In

the following tables, BF a denotes the BF algorithm with R created by the atomic

conversion, and BF s denotes the BF algorithm with R created by the sequence

conversion. The same notation is used for the SC and PG algorithms (SC a, SC s,

PG a and PG s).

The comparison of the individual algorithms is presented in Figure 3. In Tables

4, 5, 6 and 7, the best scores for individual metrics are emphasized in bold. Detailed

data for all graphs are available in Appendices A-D.

Further, Table 5 summarizes the results of DCT(m), PPT(m), BF, SC and

PG with R created by the atomic and sequence conversions for TDL = 1 and

PTL = medium. In Table 5, the averaged results for all 59 graphs presented in

Table 3 are provided.

The results of the DCT(m), PPT(m), BF, SC and PG algorithms in these test

coverage criteria can be compared with PCT with TDL = 1, acting as a baseline
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Fig. 3. Comparison of algorithms for TDL=1 and PTL=high

Table 5. Experiment results for TDL=1, PTL=medium. Detailed data for all graphs are available
in Appendix B.

Metric / G PCT DCT(m) PPT(m) BF a BF s SC a SC s PG a PG s

| T | 9.86 9.14 3.92 7.51 6.69 7.32 6.27 5.76 6.12
α 85.97 83.36 31.27 51.10 48.36 51.36 46.75 42.86 45.75
αh 21.51 21.51 9.56 14.47 14.02 14.88 13.76 12.29 13.54
αm 34.83 34.83 15.66 22.73 23.27 23.58 23.00 19.90 22.51
β 30.59 29.76 21.63 23.54 22.34 23.10 22.05 22.20 22.03
βh 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71 6.71
βm 11.78 11.78 11.78 11.78 11.78 11.78 11.78 11.78 11.78
δ 76.10 74.22 27.36 43.59 41.66 44.03 40.47 37.10 39.63
ε 28.68 27.93 19.95 21.81 20.68 21.41 20.42 20.53 20.41
ac 100% 97.13% 73.64% 79.77% 75.58% 79.22% 74.95% 75.78% 74.91%
λh 24.28% 24.97% 31.06% 28.41% 30.69% 29.32% 31.41% 30.44% 31.49%
λm 42.52% 43.86% 53.33% 46.66% 51.48% 48.12% 52.54% 50.77% 52.66%
Λh 9.90% 10.29% 23.86% 14.42% 16.98% 14.34% 17.59% 18.86% 17.79%
Λm 18.10% 18.87% 42.95% 26.26% 30.08% 26.02% 31.36% 34.01% 31.72%
time 13.29 9.60 47.36 1.88 1.41 2.79 1.87 57.62 63.41

when no prioritization is reflected in the test set. A comparison of values averaged

for all 59 graphs is presented in Figure 4.

The average results of all 59 graphs for PCT, DCT(h), PPT(h), BF, SC and PG

with R created as edge pairs for TDL = 2 and PTL = high are presented in Table

6 and a comparison of their average values are depicted in Figure 5.

Finally, Table 7 presents the averaged experimental results for all 59 graphs for

the PCT, DCT(m), PPT(m), BF, SC and PG algorithms with R for TDL = 2 and

PTL = medium. The results of the DCT(m) and PPT(m) algorithms in these test

coverage criteria can be compared against PCT with TDL = 2 and BF, SC and PG

with R created as edge pairs, acting as baselines when no prioritization is reflected

in the test set. A comparison of the algorithms for this coverage criteria is presented

in Figure 6.
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Fig. 4. Comparison of algorithms for TDL=1 and PTL=medium

Table 6. Experiment results for TDL=2, PTL=high. Detailed data for all graphs are available in

Appendix C.

Metric / G PCT DCT(h) PPT(h) BF edge pairs SC edge pairs PG edge pairs

| T | 14.92 12.32 5.14 23.93 24.15 15.98
α 141.41 129.19 42.19 182.03 187.14 131.39
αh 33.86 33.86 14.54 44.37 44.88 31.14
αm 55.39 52.95 19.53 67.27 68.90 49.66
β 30.59 28.63 22.12 30.59 30.59 30.59
βh 6.71 6.71 6.71 6.71 6.71 6.71
βm 11.78 11.29 9.80 11.78 11.78 11.78
δ 126.49 116.86 37.05 158.10 162.98 115.41
ε 28.68 26.88 20.59 28.68 28.68 28.68
ac 100% 93.24% 73.33% 100% 100% 100%
λh 23.79% 26.93% 34.63% 24.44% 24.34% 23.85%
λm 42.38% 45.12% 48.25% 41.09% 41.04% 41.26%
Λh 6.12% 7.46% 18.19% 5.09% 4.93% 6.24%
Λm 11.25% 13.49% 27.04% 9.49% 9.20% 11.56%
time 17.57 14.61 65.84 3.11 13.12 131.73

In all four cases of measured test coverage (Tables 4, 5, 6 and 7), the value of βh
is equal for all of the measured algorithms. This selection of βh is fair and correct,

as it represents a number of unique edges of priority high covered by the test cases.

For PTL = medium (tables 5 and 7), the value of βm is also equal for all compared

algorithms. This result is also correct, as βm represents a number of unique edges

of priority high or medium covered by the test cases. The other metrics indicate

differences in the performance of the individual algorithms, which we discuss in the

following subsection.

4.3. Discussion

Several issues can be observed from the experiments. First, the comparability issue

of the individual algorithms is considered. For TDL = 1 test coverage (or All Edge
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Table 7. Experiment results for TDL=2, PTL=medium. Detailed data for all graphs are available

in Appendix D.

Metric / G PCT DCT(m) PPT(m) BF edge pairs SC edge pairs PG edge pairs

| T | 14.92 13.80 7.36 23.93 24.15 15.98
α 141.41 137.25 60.85 182.03 187.14 131.39
αh 33.86 33.86 17.34 44.37 44.88 31.14
αm 55.39 55.39 28.36 67.27 68.90 49.66
β 30.59 29.88 26.36 30.59 30.59 30.59
βh 6.71 6.71 6.71 6.71 6.71 6.71
βm 11.78 11.78 11.78 11.78 11.78 11.78
δ 126.49 123.46 53.49 158.10 162.98 115.41
ε 28.68 28.05 24.68 28.68 28.68 28.68
ac 100% 97.50% 88.51% 100% 100% 100%
λh 23.79% 24.53% 28.06% 24.44% 24.34% 23.85%
λm 42.38% 43.82% 48.61% 41.09% 41.04% 41.26%
Λh 6.12% 6.45% 12.09% 5.09% 4.93% 6.24%
Λm 11.25% 11.91% 22.08% 9.49% 9.20% 11.56%
time 17.57 15.33 77.15 3.11 13.12 131.73
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Coverage), we compared the PCT, DCT, PPT, BF, SC and PG algorithms for

PTL = high and PTL = medium. Moreover, for BF, SC and PG, we compared

two alternative ways of creating test requirements R can be created from G: atomic

and sequence conversion (specified in Table 2). Regarding All Edge Coverage, this

approach is valid because all algorithms satisfy the All Edge Coverage criteria. For

BF, the test requirements are used to reflect the priorities of the individual edges.

Thus, PCT serves as a baseline (as no prioritization of the edges is reflected there)

and the DCT, PPT, BF, SC and PG algorithms can be compared in terms of the

effectiveness with which they reflect the defined priorities.

For TDL = 2 test coverage (or Edge-Pair coverage), we also compared the PCT,

DCT, PPT, BF, SC and PG algorithms for PTL = high and PTL = medium. Here,

a situation differs in the way how BF, SC and PG algorithms is comparable with the

other algorithms. In the BF, SC and PG algorithms, we used the test requirements

to satisfy TDL = 2 coverage. Thus, no option has been left to allow the algorithm

to reflect the priorities defined in G. Hence, for TDL = 2, PCT, BF, SC and PG

serve as baselines (as they reflect no prioritization of the edges), and the DCT and

PPT algorithms can be compared in terms of the effectiveness with which they

reflect the defined priorities.

For TDL = 1, PPT outperforms the compared algorithms for the majority of

the indicators. The only exception is PTL = medium and λh, which is the ratio of

the edges of priority high and all edges contained in a test set T (in percentage). In

this case, SC and PG algorithms using sequence conversion of the test requirements

performs better than PPT.

Regarding the number of tests steps (α), which can be considered as the main

indicator related to the amount of work needed to exercise the produced test cases,

for PTL = high, an average figure drops from 85.97 in case of baseline PPT (when

no prioritization is used) to 78.00 in case of DCT(h). Obviously, the naive test set

reduction strategy DCT does perform well in this point. Then, α drops to 29.20 in

case of BF algorithm with sequence conversion of R, reflecting the priorities in the

generation of the test cases systematically using R. Compared to DCT(h), this is

a significat reduction. This reduction is further slightly improved by SC algorithm

with sequence conversion of R (α drops to 27.95) and further on very slightly by

PG algorithm with sequence conversion of R (α drops further to 27.42). However,

the PPT algorithm reduces this average number further to 19.90, which is a 27.4%

difference compared to PG with sequence conversion of R.

In case of TDL = 1 and PTL = medium, the density of priority edges which

should be considered in the test cases is higher. In this situation, PPT produced test

cases with 31.27 steps in average, which is the most significant reduction compared

to PG, where this figure was 42.86 for atomic conversion of test requirements. In

this case, the difference of α between PPT and PG is 27%.

Considering the number of tests steps α, for TDL = 2, a naive reduction of test

cases simulated by DCT algorithm does not reduce the test set significantly when
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compared to PPT. In this case, PPT represents a considerable alternative for the

situations when we try to achieve Edge-Pair coverage, and in parallel with that, to

reflect priorities of edges in the model G. Analyzing the data, this conclusion can

be made for the PTL = high as well as PTL = medium.

When analysing the performance of PG algorithms for TDL = 2, this algorithm

produced more optimal T without reflection of priorities in the model compared

to PCT, PG and SC algorithms. This is documented by α, αh, αm and δ , whose

values are better for PG than for PCT, PG and SC.

When discussing the effort needed to execute the produced test cases, another

indicator should also be considered: the number of unique edges in the test cases

(β). It is reasonable to assume that unique test steps will take more time to execute,

as the testing situation is new for the tester. In test automation, this factor is even

more significant, as we need to implement a new test script for a new unique test

step. In this indicator, PPT also introduces a certain improvement; however, it is

smaller than that of the total test steps (α). Regarding the β values for TDL = 1 and

PTL = high, the second best result following the PPT algorithm has been achieved

by PG algorithm with sequence conversion of R. Compared to this algorithm, PPT

further reduced β by 5.5%. For PTL = medium, the second best result has been

also achieved by PG algorithm with sequence conversion of R, however improvement

in β further achieved by PPT can be considered insignificant (1.8%).

Regarding the execution time, for TDL = 1, PPT is outperformed by BF and

SC algorithms; the average execution time of BF and SC is approximately 15-25

times better than PPT average execution time (depends on PTL ). The PPT is also

outperformed by PCT algorithm, as the PCT average execution times is approxi-

mately 2.5 times better for PTL = high and 3.5 times better for PTL = medium.

The PPT overperformed PG algorithm and the difference in average execution time

is approximately 30% for PTL = high and 20% for PTL = medium. For TDL = 2,

the trend is the same with two differences: for this test coverage level, BF starts

outperforming SC and difference between average execution time of PPT starts

to be more significant than average execution time of PG (for PTL = high this

difference is approximately 50% and for PTL = medium approximately 40%).

Considering the average execution times, the highest value for PPT is 77.15

milliseconds for TDL = 2 and PTL = medium, which is the highest test coverage

level examined in the experiments. When analyzing runtimes of PPT for individual

problem instances for TDL = 2 and PTL = medium (refer to Appendix D), for

the largest problem instances the runtime of PPT has not exceeded 0.6 seconds.

5. Threats to Validity

Although our goal was to design the experiments to be maximally transparent and

objective, several concerns can be raised regarding the validity of the results. In this

section, we list these issues and discuss countermeasures we have taken to minimize

their impact.
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The comparability of the PCT, DCT, PPT, BF, SC and PG algorithms in the

experiments was discussed at the beginning of Section 4.3. An issue related to

this discussion is the objective creation of a set of test requirements R from the

SUT model G. We solved this problem by measuring two possible alternatives of R

creation: atomic conversion and sequence conversion (specified in Table 2).

Another issue is that the PCT, DCT and PPT algorithms compose the test

case as a sequence of G edges a1, a2, .., an−1, whereas BF, SC and PG compose the

test case as a sequence of G nodes d1, d2, .., dn. In our implementation of the BF

algorithm, we converted the test cases to edge sequences to make the BF results

comparable with those of other algorithms. The same procedure was performed for

SC and PG algorithms. The correctness of this conversion was verified thoroughly

during the implementation tests and does not affect the objectivity of the results.

Except this conversion, we implemented the BF pseudo code without any changes or

optimizations of the algorithm. To implement the SC and PG algorithms, we used

open-source code published by Offut et al. [25], which eliminates possible biasws

caused by our own implementation of the algorithms.

A question can be raised regarding the problem instances used in the experi-

ments. However, the graphs used in the experiments were created manually to corre-

spond to workflows of real software systems. In this process we used our knowledge

and access to design documentation and source code for three real-world information

systems: the medical information system Pluto, the customer relationship manage-

ment system Global and the issue tracking system Mantis. Hence, the relevance of

the problem instances is maintained. All three systems used in the experiments were

selected to be tested by path-based techniques because of their practical suitability.

The systems are workflow-based, provide multiple user roles and support processes

of nontrivial complexity with a number of decision points and parallel branches of

user scenarios triggered by these decision points, as documented by the complexity

of the created process models used in the experiments. Regarding these properties,

the systems serve as good cases for prioritized testing: coverage of the entire SUT

by test cases of uniform intensity without any prioritization would, in a practical

testing process, lead to either (1) a relatively small set of test cases with low test

coverage (which would be realistic to execute with a given amount of time and

resources but would possibly have lower effectiveness in detecting defects) or (2)

a more extensive set of test cases with a higher probability to detect some defects

(the execution of which is unfortunately very likely infeasible with a given amount

of time and resources).

Regarding the measured execution times, for the BF, SC and PG algorithms,

the generation time of R from G edge priorities was not included in the measured

execution time. We decided to exclude the test requirement conversion time to

achieve more objective comparability of the algorithms with PPT. For the DCT

algorithm, the PCT test cases were considered as an input to the test case reduction

process, and the measured time covers only this reduction. Hence, the total time of

DCT execution can be computed as a sum of the test case reduction time (i.e., the



28 Miroslav Bures, Bestoun S. Ahmed, Kamal Z. Zamli

time presented for the DCT algorithm execution) and the PCT execution time. As

this calculation is easy, we decided to present only the test case reduction time.

Regarding the performed experiments, we measured the performance of the al-

gorithms on TDL = 1 and TDL = 2, which we consider as the test coverage being

used in the majority of testing assignments for non-critical software systems [21, 4].

This test coverage is equivalent to All Edge Coverage and Edge-pair Coverage when

we use an alternative terminology established in the area. Additional measurements

can be performed for TDL > 2, nevertheless, due to its limited usage [21, 4], we de-

cided to perform more intense experiments on the TDL = 1 and TDL = 2 coverage

levels.

6. Related Work

The current research on path-based testing techniques commonly uses a directed

graph and a set of test requirements as an SUT model. Several test set optimization

criteria can be defined (e.g., the minimal number of nodes, edges or paths satisfying

the test requirements or coverage of test requirements by the produced test cases

or alternatives [26]). Several algorithms have been explored to generate test cases

[15, 16], such as Brute Force algorithm, Set-Covering Based Solution or a Matching-

Based Prefix Graph Solution [16]. In addition, alternative strategies and algorithms

for prioritizing the path-based test cases have been studied and developed. For

instance, approaches based on neural network clustering [17], fuzzy clustering [18]

and the firefly optimization algorithm [19] have been implemented. In contrast to

algorithms based on an SUT model and a set of test requirements only, in these

techniques, information about the SUT internal structure is also used as an input

to the prioritization.

The path-based techniques generally operate on an abstract level of an SUT

model. These techniques can be applied to different levels of the SUT, where a

process flow can be exercised. Three typical applications are: (1) testing of busi-

ness processes and workflows related to functional end-to-end testing performed

by testers (or an automated test) that exercise the SUT functions in a GUI [24],

(2) path testing on the code level [27, 26] and (3) integration testing of larger sub-

processes.

In this type of integration testing, we focus on complex subprocesses with a

process logic that can be modeled by a directed graph rather than close-API atomic

integration tests, in which we focus rather on defining the API parameters to call

and assert the expected results.

For path testing on the code level, Control Flow Graphs, conceptually similar to

G, were used by [27] as SUT models. The related work in this domain starts to over-

lap with data-flow testing, which is more oriented toward checking the consistency

of the data processed inside an algorithm [28, 29, 30, 31].

The test requirements concept is used as a common abstraction to determine

which parts of the SUT model are prioritized for testing and have to be covered
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by the test cases [14]. In addition to this purpose, the test requirements can also

be used to specify a general test coverage criteria, such as Edge-pair Coverage for

instance, which can be seen as a limitation of this concept. For situations in which

test requirements are used to define general test coverage, the requirements cannot

be used again to specify priority parts of the SUT model (unless we perform a special

determination of test requirements which would reflect the both aspects, which is

a process, which is feasible to be done by a special dedicated algorithm created for

this purpose, but hardly feasible manually in real-life praxis of test designers).

In contrast to the test requirement concept, which can be practically used to

set only one level of priority, more levels are used for prioritization in the common

software engineering and test management practice [20, 21]. However, this issue can

be solved by transforming priority levels into a set of test requirements.

Due to the large volume of testing activities dedicated to process-oriented test-

ing, further evolution of path-based techniques is a relevant topic. For the reasons

we have summarized in Section 2.4, the approach we propose in this paper rep-

resents an alternative to the previous research achievements in path-based testing

methods.

7. Conclusion

In this paper, we proposed the Prioritized Process Test (PPT) algorithm in a strat-

egy that generates path-based test cases from the SUT model. A weighted directed

multigraph is used as a model for the SUT. The weights are the priorities of the

SUT functions, which must be reflected in the generated test set T . This concept

is an alternative to the currently established approach [15, 16], in which a plain

directed graph is used as an SUT model and the priorities to test can be expressed

by a set of test requirements (i.e., paths in the graph, which must be present in the

test cases). In addition, the test requirements can also be used to determine the

test coverage level of the test set.

At this point, the test requirement concept can reach a certain limit when we

need to determine the test coverage level of the test cases and, in parallel, specify

the priority of SUT functions, which should be reflected in the test set T . This limit

can be demonstrated for TDL = 2 (or Edge-pair) coverage.

The PPT algorithm allows both the test coverage level and the priorities to be

specified in parallel, as it uses two concurrent test coverage criteria: Test Depth

Level (TDL) and Prioritized Test Level (PTL). As the experimental results have

shown, PPT represents an alternative for situations in which we try to achieve

Edge-pair Coverage and, in parallel, reflect the priorities of functions or actions

in the SUT model. Additionally, for All Edge Coverage (TDL = 1), the algorithm

produced more optimal test set T than the BF, SC and PG algorithms for a number

of aspects.

Several optimization criteria can be discussed when analyzing the test set. In

this paper, we provided comprehensive data for nine metrics based on test case
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properties and another five metrics based on various indicators computed for these

properties. The most important issue is the minimization of the test set. Consid-

ering the total number of test steps, for PTL = high the PPT algorithm reduced

this number by 27.4% on average compared to the best result achieved by the al-

ternatives (namely PG with sequence conversion of R ). For PTL = medium the

PPT algorithm reduced the total number of test steps by 27% on average compared

to the best result achieved by the alternatives (PG with atomic conversion of R in

this case). When considering the number of unique test steps, the PPT algorithm

reduced this number by 5.5% compared to PG algorithm with sequence conversion

of R (which yielded the second best result following PPT algorithm).

Regarding future work, we are currently optimizing the implementation of the

PPT algorithm on the Oxygen platform. In parallel, we are adapting PPT to accept

a set of defined preconditions in the input and reflect these preconditions in the

generated test set. Currently, we are considering two types of preconditions: (1) if

an edge or a node is visited ina test case, another set of edges or nodes must also be

visited, and (2) if an edge or a node is visited in a test case, another set of edges or

nodes must not be avoided in the test case. These preconditions are inspired by our

discussions with testing industry practitioners and model several real-life situations

in the testing of software and IoT systems, such as the prerequisites required to

create test data during the process tests, the handling of different user access roles

in the SUT, the possible run-time optimization of the test set based on collected data

on defects present in the SUT in previous iterations of the software development

process, or the testing of the limited network connectivity in IoT systems from a

process viewpoint.
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