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Abstract

In recent years, deep learning models have shown great potential in source code
modeling and analysis. Generally, deep learning-based approaches are problem-
specific and data-hungry. A challenging issue of these approaches is that they
require training from starch for a different related problem. In this work, we
propose a transfer learning-based approach that significantly improves the per-
formance of deep learning-based source code models. In contrast to traditional
learning paradigms, transfer learning can transfer the knowledge learned in solv-
ing one problem into another related problem. First, we present two recurrent
neural network-based models RNN and GRU for the purpose of transfer learn-
ing in the domain of source code modeling. Next, via transfer learning, these
pre-trained (RNN and GRU) models are used as feature extractors. Then, these
extracted features are combined into attention learner for different downstream
tasks. The attention learner leverages from the learned knowledge of pre-trained
models and fine-tunes them for a specific downstream task. We evaluate the per-
formance of the proposed approach with extensive experiments with the source
code suggestion task. The results indicate that the proposed approach outper-
forms the state-of-the-art models in terms of accuracy, precision, recall, and
F-measure without training the models from scratch.

Keywords: Transfer Learning, Deep Neural Language Models, Source Code
Modeling, Attention Learning.

1. Introduction

Source code suggestion and syntax error fixing are vital features of a mod-
ern integrated development environment (IDE). These features help software
developers to build and debug software rapidly. Recently, deep learning-based
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language models have shown great potential in various source code modeling
tasks [3, [Bl, 46, 20, 28, 16, 43, 47, 56, 27]. Several studies have explored deep
learning for source code suggestion [43] [56] in which they suggest the next pos-
sible source code token. They take a fixed size context prior to the prediction
position as features and help the software developers by suggesting the next pos-
sible code token. Further, deep learning has recently been explored for syntax
error detection and correction [46], 20] problem. They consider the source code
syntax as features and use them for the correction of the syntax errors found
in a source code file. Moreover, deep learning has shown its effectiveness in the
source code summarization [3, 28, [16] , which summarizes the working of source
code.

A challenging issue of these approaches is that they are problem-specific
which requires training from starch for a different related problem. Further, deep
learning-based approaches are data-hungry which means they require training
on large data set to produce satisfactory results. Furthermore, deep learning
models requires days to train while training on a large dataset. To overcome
these issues, we exploit the concept of transfer learning in this work. In transfer
learning, the learned knowledge from a pre-trained model is extracted and then
be used for a similar downstream task [45].

This work proposes a transfer learning-based approach that significantly
improves the performance of deep learning-based source code models. First,
we exploit the concept of transfer learning for deep learning-based source code
language models. The key idea is to use a pre-trained source code language
model to transfer the learned knowledge from it to a different related problem.
We train two different variants of recurrent neural network-based models RNN
and GRU for the purpose of transfer learning. Then, we combine the learned
knowledge of pre-trained (RNN and GRU) models into attention learner for a
downstream task. The attention learner leverage from the learned knowledge
of pre-trained models and fine-tunes it for a specific downstream task. Via
transfer learning, pre-trained models are used to extract generalized features
and then fine-tune them for a target task without requiring the model training
from scratch. We evaluate the proposed approach with the downstream task of
source code suggestion.

This work makes the following unique contributions:

e We exploit the concept of transfer learning in the domain of source code.
We propose transfer learning-based attention learner approach for the
downstream task of source code suggestion.

e We present two recurrent neural network-based (RNN and GRU) pre-
trained models for the purpose of transfer learning in the domain of source
code.

e An extensive evaluation of the proposed approach on the real-world data
set shows significant improvement in the state-of-the-art language models.



2. Related Work

In this section, we present background study on deep learning, transfer learn-
ing and source code language models.

2.1. Source Code Modeling

Hindle et al. [23] have shown how natural language processing techniques can
help in source code modeling. They provide a n-gram based model which helps
predict the next code token in Eclipse IDE. Tu et al. [51], proposed a cache-
based language model that consists of an n-gram and a cache. Hellendoorn et
al. [22] further improved the cache-based model by introducing nested locality.
Another approach for source code modeling is to use probabilistic context-free
grammars(PCFGs) [7]. Allamanis et al. [I] used a PCFG based model to mine
idioms from source code. Maddison et al. [35] used a structured generative
model for source code. They evaluated their approach with n-gram and PCFG
based language models and showed how they can help in source code generation
tasks. Raychev et al.[44] applied decision trees for predicting API elements.
Chan et al. [8] used a graph-based search approach to search and recommend
APT usages.

Recently there has been an increase in API usage [54] [30, I4] mining and
suggestion. Thung et al. [50] introduced a recommendation system for API
methods recommendation by using feature requests. Pham et al. [40] proposed
a methodology to learn APT usages from byte code. Hussain et al. [26] proposed
GRU based model for source code suggestion and completion task (completion
of a whole line of code). A neural probabilistic language model introduced in
[2] that can suggest names for the methods and classes. Franks et al. [I7]
created a tool for Eclipse named CACHECA for source code suggestion using a
n-gram model. Nguyen et al. [37] introduced an Eclipse plugin which provide
code completions by mining the APT usage patterns. Chen et al. [J] created a
web-based tool to find analogical libraries for different languages.

A similar work conducted by Rabinovich et al. [4I], which introduced an
abstract syntax networks modeling framework for tasks like code generation
and semantic parsing. Sethi et al. [47] introduced a model which automatically
generate source code from deep Learning-based research papers. [4], Allamanis
et al. proposed a bimodal to help suggest source code snippets with a natural
language query. Recently deep learning-based approaches have widely been
applied for source code modeling. Such as code summarization [28] [3] [19] 29],
code mining [57], clone detection [33] [61], API learning [18, [55], code generation
[62] etc.

We observe [43], [56] approaches are related to our downstream task of source
code suggestion. Raychev et al. [43] used RNN for the purpose of code com-
pletion specifically focusing on suggesting source code method calls. Similarly,
White et al. [56] applied RNN based deep neural network for source code com-
pletion task. Generally, these approaches [43] [56] are problem-specific which
requires training from scratch for a different related problem. In this work, we
exploit the concept of transfer learning to extract the learned knowledge from



pre-trained models and then fine-tunes it for a related problem, which shows
a significant performance boost, without requiring the models training from
scratch.

2.2. Transfer Learning

Transfer learning as the name suggests intending to transfer knowledge (fea-
tures) learned in solving one problem into another related problem. Hu et al.
[24] have proposed a transfer metric learning approach for visual recognition in
cross-domain datasets. Duan et al. [I5] have proposed a kernel learning ap-
proach for the detection of cross-domain keyframe feature changes. Pan et al.
[39] have proposed a dimensionality reduction method which uses the transfer
learning approach by minimizing the distance between distributions between
target and source domains. Khan et al. [3I] have proposed a deep trans-
fer learning approach for the detection of breast cancer by using pre-trained
GoogLeNet, VGGNet, and ResNet. Huang et al. [25] have proposed a trans-
fer learning-based approach for Synthetic Aperture Radar (SAR) classification
with limited labeled data. Kraus et al. [32] proposed a decision support system
by using deep neural networks and transfer learning for financial disclosures.
Further, transfer learning has been extensively studied for various tasks in the
field of image and text classification [48] [60, 59, 32]. In this work, we exploit
the transfer learning approach for the purpose of source code modeling. Instead
of using a single model for transferring knowledge, in this work, we use a novel
approach that transfers knowledge from two different recurrent neural network-
based pre-trained models and then fine-tunes it by using attention learner for a
specific source code modeling tasks.

3. Preliminary

In this section, we will discuss the preliminaries and technical overview of
this work.

8.1. Recurrent Neural Network

The recurrent neural network has recently shown great potential in a wide
range of applications including image recognition, text classification, and source
code modeling. However, a major drawback of vanilla RNN is the vanishing
gradient which can be overcome by using the gated recurrent unit (GRU) [58].
The GRU exposes the full hidden content on each timestep, thus evading the
disappearing gradient issue. It can be expressed as

h; = (1 — z)hi—1 + z:h; (1)
zi = ¢(W.Ti + Uzhi—1) (2)
hi = tanh(Wr; +1; @ Uh;_1) (3)
ri = ¢(Wyri + Urhi—1) (4)



3.2. Attention Learner

Recently, attention-based approaches have shown great potential in various
fields such as speech recognition [I1], machine translation [34] 6], and more
[62, B5]. The attention ([6]) model calculates a context vector as the weighted
mean of the state sequence. it can be expressed as

o enp(ch) ;
CO i emp(ct) )
¢t =a(s'"1, hy) (6)

4. Proposed approach

This section discusses the proposed approach in detail. The [1] shows
the overall workflow of the proposed approach. This section is subdivided into
two major parts. In the first part, we discuss the preparation of pre-trained
models for the purpose of transfer learning. The second part discusses the key
steps involved to prepare the source code for the downstream task of source
code suggestion. Further, we discuss the attention learner, which leverages
the learned knowledge from pre-trained models and fine-tunes it for the source
code suggestion task. The details about each step are given in the following
subsections.
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Figure 1: Overall framework of the proposed approach

4.1. Transfer Learning

[2lshows the difference between traditional learning and transfer learning-
based approaches for source code modeling. For the purpose of transfer learn-
ing, we first need a pre-trained model. There are several CNN [49, 21] and
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Figure 2: Difference between traditional learning and transfer learning based approaches. (a)
Traditional learning approach; (b) Transfer learning based approach.

NLP [13] 12, [42] based models for image and text classification respectively.
The source code strictly follows the rules defined by their grammaxﬂ thus these
models are not suitable for our purpose. In this work, we first train two variants
of recurrent neural networks-based models RNN and GRU for the purpose of
transfer learning in the field of source code. We choose RNN and GRU because
of their recent success in the modeling of source code. To train the models
for transfer learning, we gather the data set used in previous studies [23] [38].
shows the details of the data set used to build pre-trained models. By
combining all collected projects, we end up with 13 million code tokens with a
large vocabulary of size 177,342.

Table 1: Data set used to pre-train models for transfer learning. The table shows name of the
project, version of the project, line of code (LOC), total code tokens and unique code tokens
found in each project.

Projects ~ Version LOC Total Vocab Size (V)
ant 1.10.5 149,960 920,978 17,132
cassandra  3.11.3 318,704 2734218 33,424
db40 7.2 241,766 1,435,382 20,286
jgit 5.1.3 199,505 1,538,905 20,970
poi 4.0.0 387,203 2,876,253 47,756
maven 3.6.0 69,840 494,379 8,066
batik 1.10.0 195,652 1,246,157 21,964
jts 1.16.0 91,387 611,392 11,903
itext 5.5.13 161,185 1,164,362 19,113
antlr 4.7.1 56,085 407,248 6,813
Total 1,871,287 13,429,274 177,342

Ihttps://docs.oracle.com/javase/specs/jls/se7/html/jls-18.html
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Table 2: Deep learning models architecture summary used to pre-train source code models
for transfer learning purpose.

Type Size Activations

Input Code embedding 300
Estimator RNN,GRU 300 tanh
Over Fitting Dropout
Output Dense 1% softmax
Loss  Categorical cross entropy
Optimizer Adam

4.1.1. Pre-Training Models for Transfer Learning

All models are trained on Intel(R) Xeon(R) Silver 4110 CPU 2.10GHz x
32 cores and 128GB of ram running Ubuntu 18.04.2 LTS operating system,
equipped with the latest NVIDIA GeForce RTX 2080. The shows the
architecture of trained models used for transfer learning. We follow the same
approach used in previous works [56, 43] to pre-process the data set. To build a
global vocabulary system, we remove all code tokens appearing less than three
times in the collected data set which ends up with the vocabulary size of 88,022
unique code tokens. We map the vocabulary (V') to a continuous feature vector
of dense size 300. We use 300 hidden units with context size () of 20. For
each model training we employ Adam optimizer with the default learn rate of
0.001. To control overfitting, we use Dropout. Each model is trained until it
converges by employing early stop with the patience of three consecutive hits on
the validation loss. One important thing to point out here is that the training
process of these models is one time and do not need retraining. The trained
models are publicly availableﬂ for the purpose of transfer learning.

4.2. Learning to Transfer Knowledge

For transfer learning, we prepared the pre-trained models as described earlier
in this section. Then, we use these pre-trained models to transfer the learned
knowledge for the downstream task of source code suggestion. A key insight is
to freeze the learned knowledge in pre-trained models to keep the learned knowl-
edge unchanged and then fine-tune the extracted knowledge. In the proposed
approach, we use the attention learner to fine-tune the model for the source
code suggestion task. The attention learner pays attention to the task-specific
features to achieve optimal performance. The shows the architecture
design of our proposed transfer learning-based attention model. We show the
effectiveness of the proposed approach with the downstream task of source code
suggestion. A source code suggestion engine recommends the next possible
source code token given a context.

2Trained Models: https://github.com/yaxirhuxxain/TransferLearning
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4.2.1. PreProcessing

In this section, we briefly introduce each of the key preprocessing steps
that we apply for the downstream task of source code suggestion. We perform
normalization, tokenization and feature extraction. For the illustrating example,
[Table] 3] shows the effect of each preprocessing step. We discuss each step in
detail in the following subsections.

Table 3: An example of preprocessing steps.

/* This is a simple Java program.

FileMame : "HelloWorld.java". */
class HelloWorld
{

// Your program begins with a call to main().
Original Source code /! Pr.'lnts }:{ello,. WDr‘?d to.the terminal window.
public static void main(String args[])

{

System.out.println("Hello, World");

}

class HellokWorld

{
public static void main(String args[])

Normalized Source Code {
¥

System.out.println(StringVal);

class Helloliorld { public static void main ( String args [] ) { System . out . println ( StringVal
Hellollorld { public static void main ( String args [] ) { System . out . println ( Stringval )
Tokenized Source Code { public static void main ( String args [] ) { System . out . println ( StringVal ) ;

public static void main ( String args [] ) { System . out . println ( Stringval ) ; }
static void main ( String args [] ) { System . out . println ( Stringval ) ; } }

[}

678910 11 12 3 13 14 15 14 16 8 17
7891011 12 3 13 14 15 14 16 8 17 12
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910 11 12 3 13 14 15 14 16 8 17 12 18 19
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Normalization

One of the vital preprocessing steps is to normalize the data set. Usually,
a data set contains some values which are unnecessary for a particular task,
these type of values will intensely upset the outcome of the analysis. For this
purpose, we normalize the source code files by removing all blank lines, inline
and block-level comments. We replace all constant numerical values to their
generic types (e.g. 1 = IntVal, 1.2 = FloatVal) and replace constant strings
with a generic String Val token.

Tokenization
After normalizing source code files, we tokenize the source code files. Tok-
enization is the process of extracting terms/words from the data set. For this



purpose, each source code file is parsed into a sequence of space-separated code
tokens. Each sequence is then parted into multiple subsequences of fixed size
context 20 [56].

Vectorization

To convert the source code sequences into a form that is suitable for training
deep learning models we perform a series of transformations. First, we replace
common tokens occurring only once in the corpus with a special token unk to
build a global vocabulary system. Next, we build the vocabulary where each
unique source code token corresponds to an entry in the vocabulary. Then
each source code token is assigned a unique positive integer corresponding to
its vocabulary index to convert the sequences (feature vectors) into a form that
is suitable for training a deep learning model.

Embedding RNN

Attention

Input ',l

Output;

Embedding GRU

Transferring Learned features from pre-trained models Fine Tuning the learned features for target task

Figure 3: Proposed transfer learning based attention model architecture.

Table 4: Proposed transfer learning based attention model architecture summary.

‘ Layers ‘ Type ‘ Size ‘ Activations
Input Code embedding 300
Frozen Estimator RNN,GRU 300 tanh
Combining Concatenate
Over Fitting Dropout
Fine Tuned Attention Attention Learner
Output Dense 14 softmax
Loss Categorical cross entropy
Optimizer Adam




5. Evaluation

In this section, we evaluate the effectiveness of our proposed approach by
investigating the following research questions:

e RQ1: Does the proposed approach outperform the state-of-the-art ap-
proaches? if yes, to what extent?

e RQ2: How well the proposed approach performs in terms of source code
suggestion task as compared to other baseline approaches?

e RQ3: Does normalization help to improve the performance of the proposed
approach? If yes, to what extent?

To answer the research question (RQ1), we compare the performance of the
proposed approach with the state-of-the-art approaches. To answer the research
question (RQ2), we evaluate and compare the proposed approach for source
code suggestion tasks with other baseline approaches. To answer the research
question (RQ3), We conduct a comparative analysis to show the impact of
normalization on model performance.

5.0.1. Data set

To empirically evaluate our work, we collected java projects from GitHub a
well-known open-source software repositories provider. We gather the top five
java projects sorted by the number of stars from GitHub at the time of this
study. We download the latest snapshot of the project usually named as the
master branch. Here, we choose the projects which are not used while training
the pre-trained models discussed in [Section][d] The [Table|[5] shows the version of
each project, the total number of code lines, total code tokens and unique code
tokens found in each project. To empirically evaluate our work, we repeat our
experiment on each project separately. We randomly partition the projects into
ten equal lines of code folds from which one fold is used for testing, one fold
is used for model parameter optimization (validation) and rest of the folds are
used for model training.

Table 5: List of projects used for the evaluation of this work.

Code Tokens

Projects Version LOC Total  Vocab Size (V)
elastic-search v7.0.0 210,357 1,765,479 24,691
java-design-patterns v1.20.0 30,784 200,344 5,649
RxJava v2.2.8 257,704 1,908,258 12,230

interviews v1.0 13,750 80,074 1,157
spring-boot  v2.2.0.M2 224,465 1,813,891 34,609
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5.1. Training and Prediction

We train several baseline models for the evaluation of this work. The pro-
posed approach is evaluated in the following manner;

e We train RNN [43] based model as baseline similar to White et al. [56].

e We train GRU based deep neural model as baseline similar to Cho et
al.[10]

e We train transfer learning-based attention model by following the pro-

posed approach as discussed in [Section][]

We choose the approach proposed by White et al. [56] for comparison be-
cause they have shown the effectiveness of their approach with the similar task
of source code suggestion and as far as we know, considered as the state-of-
the-art approach. We train the GRU [I0] based model as the baseline because
GRU based model is an advanced version of RNN which removes the vanish-
ing gradient problem and performs better. The [ shows the proposed
transfer learning-based attention model architecture. First, we preprocess the
data set as discussed earlier in Then, we map the vocabulary to
a continuous feature vector of dense size 300. We use 300 hidden units with
context size (1) of 20. For each model training we employ Adam optimizer with
the default learn rate of 0.001. To control overfitting, we use Dropout. Each
model is trained until it converges by employing early stop with the patience of
three consecutive hits on the validation loss.

For the prediction of next source code token y in a source code file, the model
takes the context information prior to the prediction position y. Then, we use
the trained models to predict the most likely next source code suggestions for
the given context. If the predicted source code token is the same one as the
original then we consider it a success.

5.2. Metrics

Usually deep learning approaches are evaluated by using different perfor-
mance metrics. We choose similar evaluation approach as in previous studies.
We choose top-k accuracy [50, [43] and Mean Reciprocal Rank (MRR) [38], 46]
metrics for the evaluation of this work. Further, to evaluate the performance of
the proposed approach we measure the precision, recall and F-measure scores
which are widely used metrics [5]. Furthermore, to evaluate the significance of
the proposed approach we perform ANOVA statistical testing. The computed
metrics are formalized as,

Accuracy = TP+rTN (7)
Y"TPYFN+FP+TN
TP
P 3 ] = ——
recision = s (8)
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TP
Recall = m (9)

Precision * Recall
F- =92 10
fneasure * Precision + Recall (10)

Where true positive (TP) defines the total number of source code suggestions
that are predicted correctly by the model. The true negative (TN) defines
the total number of source code suggestions that are predicted incorrectly by
the model. The false positive (FP) defines the total number of source code
suggestions that are mistakenly predicted correctly by the model. Similarly, the
false negative (FN) defines the total number of source code suggestions that are
mistakenly predicted incorrectly by the model.

6. Results

In this section, we will discuss and compare the results of our proposed
approach with other baseline models.

6.1. RQ1: Comparison against the baseline approaches

The top-k accuracy score of the proposed approach and the baseline ap-
proaches are presented in [ We make the following observations form
@

e The average accuracy rate of RNN based model is 45.01 % @k=1, 65.56 % Qk=5
and 68.55%@k=10, for the GRU based model is 50.06%@k=1, 64.38%@k=5
and 78.27%@k=10, while the proposed approach’s average score is 66.15%Qk=1,
90.68%@k=5 and 93.97%@k=10 which is much higher as compared to the
baseline approaches.

e On average the proposed approach improves the accuracy (k@1) by 21.14%
from RNN and 16.09% from GRU based model.

e Results suggests that by employing the transfer learning-based attention
model it significantly improves the model performance.

Further, to evaluate the performance of the proposed approach we measure
the precision, recall and F-measure scores. [Tabl€|[f] exhibits the precision, recall

and F-measure scores. From the [Tabl¢|[f] and we make the following

observations

e The proposed approach’s average F-measure is 68.36, while RNN and
GRU gain much lower score of 89.73 and 46.20 respectively.

e The proposed approach’s minimum F-measure is much higher than the
maximum F-measure of the baseline approaches.

e The results suggest that the proposed approach outperforms the state-of-
the-art approaches in precision, recall, and F-measure.

12



Table 6: Precision, Recall and F-measure comparison with baseline approaches

Baselines
RNN GRU | Proposed

Precision 30.43 38.91 63.82
elasticsearch Recall 40.75  46.86 82.89
F-measure | 34.84 42.52 72.11

Precision 37.29 40.77 62.39
spring-boot Recall 43.86  50.19 62.93
F-measure | 40.31 44.99 62.65

Precision 41.15 46.54 66.97
RxJava Recall 46.20 54.81 66.01
F-measure | 43.53 50.34 66.48

Precision 37.68 41.23 69.09
java-design Recall 41.76  48.08 68.71
F-measure | 39.62 44.39 68.89

Precision 38.11  47.00 71.02
interviews Recall 42.47  50.39 70.19
F-measure | 40.17 48.63 70.60

Precision 36.93 42.89 66.66
Average Recall 43.01  50.07 70.15
F-measure | 39.73 46.20 68.36

13
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Figure 4: Top-k accuracy comparison.

6.2. RQ2: Comparative analysis for Source Code Suggestion Task

To further quantify the accuracy of the proposed approach for source code
suggestion task, we measure the Mean Reciprocal Rank (MRR) scores of each
model. The MRR is a rank-based evaluation metric which produces a value
between (-1, where the value closer to 1 indicates a better source code suggestion
model. The MRR can be expressed as

MRR(C) = 1 > 1 (11)

where C' is code sequence and gy’ refers to the index of the first relevant
prediction. M RR(C) is the average of all sequences C in the test data set.

The results of all models are presented in the [Table][7] The average MRR
score of RNN is 0.5156 and the average score of GRU is 0.5749, while the
average score of the proposed approach is 0.7618 which is much higher. From
the results, we conclude that the proposed approach significantly outperforms
the baseline approaches.

To further validate the statistical significance, we employ the ANOVA One-
Way statistical test. We conduct the AVOVA test with its default settings («
= 0.05) using Microsoft Excel, and no modifications were made. Comparing
the proposed approach with the best baseline (GRU), we found F >
F-crit and P-value < « is true in all cases (Accuracy, MRR, Precision, Recall
and F-measure); therefore, we reject the null hypothesis, suggesting that using
different approaches has statistically significant difference in performance.

6.3. RQ3: Impact of Normalization

The evaluation results of the proposed approach for normalized source code
and non-normalized source code are presented in [Table][0] We only remove the

14



Table 7: MRR scores with and without proposed approach

‘ ‘ Baselines ‘ ‘
RNN GRU | Proposed
| elasticsearch | 0.4851 0.5405 | 0.7344 |
| spring-boot | 0.5161 0.5672 | 0.7363 |
| RxJava | 0.5403 0.6085 | 0.7619 |
| java-design | 0.5082 0.5625 | 0.7805 |
| interviews | 0.5284 0.5960 | 0.7960 |
| Average | 05156 0.5749 | 0.7618 |

Table 8: ANOVA Analysis.

Source SS df MS F P-value F-crit
Accuracy (K@Q1)
Between Groups 646.416 1 646.416 64.04975 4.35463E-05 5.317655
Within Groups 80.73924 8 10.092405
Total 727.1552 9
MRR
Between Groups 646.416 1 646.416 64.04975 4.35463E-05 5.317655
Within Groups 80.73924 8 10.092405
Total 727.1552 9
Precision
Between Groups 1412.295 1 1412.29456 108.0003 6.36396E-06 5.317655
Within Groups 104.6141 8 13.07676
Total 1516.909 9
Recall
Between Groups 1008.016 1 1008.016  29.81202 0.000601504  5.317655
Within Groups 270.4992 8 33.812405
Total 1278.515 9
F-measure
Between Groups 1206.92 1 1206.92196 99.9581 8.5015E-06 5.31766
Within Groups 96.5942 8 12.07428
Total 1303.52 9

Where, SS = sum of squares, df = degree of freedom, MS = mean square.
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comments while building the non-normalized source code. From the results, we
observe that the normalization of source code improves the model performance
significantly. On average the proposed approach with normalization achieves the
accuracy score of 66.15@Qk=1 where without normalization the accuracy drops
to 56.27@Qk=1. From the results E[), we conclude that the normalization
process significantly affects the model performance.

Table 9: Impact of Normalization

‘ ‘ Accuracy ‘ Precision ‘ Recall ‘ F-measure ‘ MRR ‘
| Normalized | 66.15 | 66.66 | 70.15 | 6836 | 0.7618 |
| Non-Normalized |  56.27 | 5725 | 6214 | 5466 | 0.6524 |

6.4. Additional Findings

From our experiments, we find several interesting facts. First, we notice
that the transfer learning-based models take advantage of a large set of pre-
trained parameters resulting in a significant performance boost. [6] shows
the parameters in each model and time per epoch. we can observe that the pro-
posed approach’s average parameters are 58M (million) which are much higher
as compared to other baseline’s average parameters which are 9M. The parame-
ters space of the proposed approach is much larger than the other baseline with
minimum to none overhead on time. The proposed approach significantly boosts
the model’s performance by leveraging pre-trained knowledge without needing
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to learn the parameters from scratch. One important thing to mention here is
that the model training is offline thus has no impact on the source code sugges-
tion task. The proposed approach can suggest the next source code token in less
than 20 milliseconds. Moreover, we experimented with another variant of the re-
current neural network named LSTM. We found that the performance of LSTM
is worse as compared to RNN and GRU, thus we choose not to use it for transfer
learning purpose. Furthermore, to evaluate the proposed approach qualitatively
consider the example input code public static void display(int[][] matrix) { System.out. ,

where the next possible source code token could be println. The proposed
approach correctly captures the source code context and predicts the most prob-
able next source code suggestions [println,print,writeShort] , effectively

ranking println on its first index.
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Figure 6: Model parameters and train time (epoch).

The proposed approach attains the finest performance due to several different
reasons. First, the proposed approach takes leverage from pre-trained models by
transferring the learned features from them. Second, the attention learner fine-
tunes the model by paying attention to only task-specific features and does not
increase the computational complexity which resulted in better performance.
Consequently, transfer learning-based attention model has better generalization
capability without training the model from scratch.

The broader impact of our work is to show that transfer learning could be
beneficial in the domain of source code modeling. This work is the first step
in this direction and results encourage future research on it. The work can
be improved in several different ways. First, the performance of the proposed
approach can be improved by hyper-parameter optimization [36]. Second, the
proposed approach can be improved by using complex architectures such as
transformers [I3] and stacked neural networks [53]. Another possible path for
improvement is to train the model on an even larger data set. In the future, we
consider exploiting these possibilities.
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7. Threats to Validity

A risk to construct validity is the selection of assessment metrics. To alle-
viate this threat, we use several different evaluation metrics. We use the Top-k
accuracy metric as done by former studies [23] 56} [38]. We use the precision,
recall, and F-measure [5] metrics for the evaluation of the proposed approach.
These metrics are most generally used for the model evaluation purpose. More-
over, we evaluate the proposed approach with MRR [38] [46] metric which is a
ranked based metric. Further, to show the statistical significance of the proposed
approach we adopt the ANOVA statistical testing.

A risk to internal validity is the employment of the baseline methods. We
re-implement the baseline approaches by following the process described in the
original manuscripts. To alleviate this risk, we twofold the implementations
and results. Conversely, there could be some unobserved inaccuracies. Another
risk is the choice of hyper-parameters for deep learning methods. The change
in training, validation or testing set or the variation in hyper-parameters may
impact the performance of the anticipated method.

A threat to external validity is related to the generality of results. The
data set used in this study is collected from GitHub, a well-known source code
repositories provider. It is not necessary that the projects used in this study
represent other languages or Java language source code entirely.

8. Conclusion

In this work, we proposed a deep learning-based source code language model
by using the concept of transfer learning. First, we exploit the concept of trans-
fer learning for neural language-based source code models. Next, we presented
RNN and GRU based pre-trained models for the purpose of transfer learning
in the domain of source code. Both models are trained on over 13 million code
tokens and do not need retraining and can directly be used for the purpose of
transfer learning. We evaluated the proposed approach with the downstream
task of source code suggestion. We evaluated the proposed approach extensively
and compared it with the state-of-the-art models. The extensive evaluation of
this work suggests that the proposed approach significantly improves the model’s
performance by exploiting the concept of transfer learning.
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