
This item is the archived peer-reviewed author-version of:

Refactoring legacy software for layer separation

Reference:
Khalilipour Alireza, Challenger Moharram, Onat Mehmet, Gezgen Hale, Kardas Geylani.- Refactoring legacy software for layer separation

International journal of software engineering and knowledge engineering - ISSN 0218-1940 - 31:02(2021), p. 217-247

Full text (Publisher's DOI): https://doi.org/10.1142/S0218194021500066

To cite this reference: https://hdl.handle.net/10067/1758380151162165141

Institutional repository IRUA

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

Refactoring Legacy Software for Layer Separation

Alireza Khalilipour

Sama Technical and Vocational Training College, Islamic Azad University, Mahshahr Branch,

Mahshahr, Iran.

a.khalilipour@mhriau.ac.ir

Moharram Challenger∗

Department of Computer Science, University of Antwerp, Middelheimlaan 1, 2020 Antwerp;

and Flanders Make, xzw, Belgium.

moharram.challenger@uantwerpen.be

Mehmet Onat

R&D Center, Ford Otosan Inc., Istanbul, Turkey.

monat2@ford.com.tr

Hale Gezgen

R&D Center, KocSistem Information and Communication Services Inc., Istanbul, Turkey.

hale.gezgen@kocsistem.com.tr

Geylani Kardas

International Computer Institute, Ege University, Bornova 35100, Izmir, Turkey.

geylani.kardas@ege.edu.tr

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Abstract One of the main aims in the layered software architecture is to divide the

code into different layers so that each layer contains related modules and serves its upper
layers. Although layered software architecture is matured now; many legacy information
systems do not benefit from the advantages of this architecture and their code for the

process/business and data access are mostly in a single layer. In many legacy systems, due
to the integration of the code in one layer, changes to the software and its maintenance

are mostly difficult. In addition, the big size of a single layer causes the load concentration

and turns the server into a bottleneck where all requests must be executed on it. In
order to eliminate these deficiencies, this paper presents a refactoring mechanism for
the automatic separation of the business and data access layers by detecting the data
access code based on a series of patterns in the input code and transferring it to a new
layer. For this purpose, we introduce a code scanner which detects the target points
based on these patterns and hence automatically makes the changes required for the

∗Corresponding author

1

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

2 A. Khalilipour, et al.

layered architecture. According to the experimental evaluation results, the performance
of the system is increased for the layer separated software using the proposed approach.

Furthermore, it is examined that the application of the proposed approach provides

additional benefits considering the qualitative criteria such as loosely coupling and tightly
coherency.

Keywords: Layered Software Architecture; Code Refactoring; Software Layers Separation;
Software Modernization; Data Access Layer; Business Layer.

1. Introduction

Layering as a structural approach for increasing the abstraction level of a system

is used not only in computer engineering, but also in many other disciplines. In

software systems, this method is used to dominate the complexity of systems, such

as enterprise systems [1], composite content applications [2] and cloud-based systems

[3].

Layered software architectures enable developers to group their code in different

layers. In this way, various tasks will be categorized in different layers which can

lead to increase the development performance, decrease the cost of maintenance and

development and simplify the distribution of the software over nodes of a network

e.g. to create a distributed system [1]. Also, separation of the layers makes it possible

to move the layers as services to a cloud which constitute a Software as a Service

(SaaS) [4] for performance improvement.

The layered software architecture mainly targets business information systems

which include a database to save users’ data permanently and execute some processes

in storing/retrieving these data into/from the database. Generally, an information

system has three layers [5]: Presentation, Logic (Process or Business), and Data

Access. The layered architecture suggests that different parts of the software code

are placed into these layers which brings some advantages. First, the dependency

of different parts of the code will decrease which results in simplicity of making

changes in each layer. Second, with distributing each layer on a node of a network,

it is possible to distribute and balance the server load, especially in web servers.

Despite all the advantages discussed for this architecture, in the legacy systems,

many developers have used integrated architectures such as Windows Distributed

interNet Applications (DNA). In this architecture, the codes for process/logic layer

and Data Access Layer (DAL) are located in a single layer called Business Layer

(BL). Nowadays, there is good number of running applications based on this kind

of technologies. However, these systems have a high risk of crashing, due to both

the centralization of computation load on the server hosting this layer and the

lack of supporting rapid changes on the BL. Therefore, in legacy systems, most

of the processing and business logic of the software is in a monolithic form. The

monolithic systems face risks and problems over time which lead the motivation

for (automatic) refactoring of these systems. Refactoring is a well-known software

maintenance activity that improves the software quality by changing the structure

of the code or architecture in a variety of ways.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 3

The purpose of the refactoring is to achieve the quality features such as reusability,

usability, and benefits such as understandability, ease of finding software bugs,

and obtaining a faster development process [6]. Besides, software needs to change

over time due to new requirements. But the complexity of legacy and monolithic

systems makes these change difficult [7]. Therefore, refactoring will inevitably be

the solution in front of us. Legacy systems continue to play an important role in the

implementation of information systems in organisations.

Many large organisations still rely heavily on these systems in delivering critical

services. Legacy systems are important assets of organisations as they contain

important business logic and data over several years. Although these systems are

critical to the business yet organisations have to face technical difficulties and

unnecessary expenses in maintaining the systems. In order to continue providing

quality services in line with the global changes, legacy systems need to be refreshed

through modernization [8]. Moreover, other disadvantages of monolithic architecture

such as being non-scalable and non-reliable also force us to refactoring [9]. Given the

difficulty of change and the difficulty of debugging monolithic systems, this can also be

a motivation to refactor them [10]. Another motivation to refactor monolithic systems

is the use of new technologies such as the microservices. The microservice architecture

is widely used to overcome the restrictions of monolithic legacy systems, such as

limited maintainability and reusability. Migration to a microservice architecture is

increasingly becoming one of the foci of software engineering research [11].

As also stated in [12], many new system architectures are constructed based on

the previous applications which are either re-engineered or wrapped on the legacy

systems. Hence, in most situations, there is no need to develop a new system (from

scratch) and refactoring can be a more appropriate option. Refactoring can be done

manually or automatically. However, manual refactoring is inefficient, tends to be

error-prone, and mostly challenging as expected. Even small changes (only a few

lines of code) have a significant chance of introducing a bug. So, there is a need for

the automatic refactoring [13].

To this end, in this paper, a code scanner is proposed which can receive the input

code, detect and separate the software layers in an available information system. Our

focus is the separation of the BL and the DAL, since usually these layers constitute

a large part of the code in an information system and improving them can have a

high impact on the performance of the overall system.

The remaining of the paper is organized as follows: In section 2, the background

required for the paper is presented. Section 3 gives the related work. The architecture

and the operational phases of the scanner are discussed in section 4. Section 5

evaluates the proposed methodology. Finally, the paper is concluded, and some

future studies are suggested in section 6.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

4 A. Khalilipour, et al.

2. Background

In a layered system, including layered software architecture, each layer provides

service(s) for its upper level and receives service(s) from its lower layer. To reduce

the connections between the layers, services which are strongly related to each other

(tightly coherent) should be located in the same layer. However, the provided layers

should also be loosely coupled and have a weak connection to reduce the system

communication load. A layered system is based on a hierarchy and in this manner

the layering can be considered as a logical grouping for the subsystems based on

their functionality. To this end, a business information system can have the following

hierarchy [14]:

• Presentation/Interaction Layer: Tasks and functions related to the user as

the highest level. All display components are placed in this layer to display

the extracted information to the user, such as ComboBox, TextBox, ListBox,

etc.

• Business/Logic Layer (BL): Tasks and functions related to the problem

domain as the middle level. The modules that make up the main logic of the

software fall into this layer, such as payroll calculations, audits, comparisons,

sorts, search algorithms, schedules, work order priority, and so on.

• Data Access Layer (DAL): Tasks and functions for data transportation. The

commands and modules that communicate between the business layer and

the final data are located in this layer, such as the types of data access

components (local or remote) that are responsible for sending and receiving

data to/from the data source.

• Data Layer: The data and the data management system as the lowest level.

In this layer, there are data source and their management, such as types of

databases, tables, views, triggers, etc. Low-level operations are performed

on these components (such as executing SQL commands) in this layer.

In Information Systems (IS), a large part of the code is related to the interaction

between the software with a repository, since each IS has at least one data resource,

e.g. a repository, to use the data. This code which is called the data access code

has a great impact on system performance. For this reason, the providers of the

components related to this part of the software work on improving the capability of

this part, since it can naturally affect the overall system performance [15]. Over the

last two decades, the developers used ADO.NET and JDBC as tools for data access

since the introduction of .NET and J2EE as the promising platforms for enterprise

systems [16]. Although, these components were among the complete tools for data

access, the improper use of them has become the reason for some problems in the

functionality of IS. Websites with many users and transactions, e.g. application

servers, educational portals and banks, are examples of such systems. Their problems

with low performance or even systems crashing are not because of malfunctioning of

those components, but improper use of them in these systems [17].

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 5

The DAL fills the gap between the business/process layer and the data layer

in the layered architecture. The BL includes the code for process and logic of the

system which is required for system data that is in databases or other information

resources. So, to retrieve the data from these resources, the software should have

some code for data access. Also, after the process, the software needs to store the

information into the resources which requires some data access codes.

Having fewer layers in the architecture, more code will be integrated in the

unified layers, which increases the probability of the system failure in those layers.

The problem of separating the layers, especially the DAL, is also important from

the security point of view. To this end, it is possible to apply security mechanisms

in the code level over these layers.

Regardless of the scale and the complexity of the software system and utilized

middleware, data access is realized by the following steps [18]: Connection to the data

resource, preparing the command (e.g. SQL command), executing the command and

receiving the result. These steps are illustrated in Figure 1 in the form of a sequence

diagram. This diagram describes the protocol for data access in the traditional

layering model for software systems.

Figure 1. The sequence diagram describing the steps of data access in the traditional layering

model for software systems

The above-mentioned steps depicted in Figure 1 are elaborated as follows:

• Connection to the data resource: To connect to a data resource, a connection

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

6 A. Khalilipour, et al.

object is usually used. This object includes the required information for

making the connection, such as the address/URL of the server, server name,

port number, username, and password. Using this object, the requests are

delivered to the data resource and the replies are received. To realize data

access, a connection should be opened and after finishing the access, it

should be closed. The connection generally includes these steps: Setting the

connection parameters, opening the connection, and closing the connection.

• Command preparation: After establishing the connection, the desired query

should be sent to the data resource. But before submitting the query, it

should be encapsulated in an object. To this end, a command object is

used. This object executes the query in the data resource and returns the

result using the established connection. The preparation of the command

object consists of selecting the connection object and specifying the SQL

command.

• Command execution and returning the result: After preparing the command

object, the command should be executed using this object. The object

usually has different methods, due to a variety of SQL commands. Gener-

ally, these methods have the ability of executing the following commands:

Select command, Update commands (including delete, update, insert), Data

Definition Language (DDL) commands (such as create table and so on).

Finally, after execution of the command, the command object returns the result

(if there is any) in the form of a data structure, such as record set, which can be

used in the programming languages.

As also indicated in the introduction, the legacy systems based on a monolithic

architecture encounter many problems such as no-scalability, unreliability, high

maintenance costs, difficult debugging, and hence refactoring to the separation of

their above described layers provides a convenient way to overcome their problems.

3. Related Work

To do code refactoring and apply compiler techniques both for the increase in software

performance or the separation of the code, there are many studies which can be

categorized under the names of code parallelizing and clustering, and migrating from

legacy to cloud and SOA.

3.1. Parallelizing the Legacy Software and Software Clustering

There are studies in which the authors try to refactor or apply layering for paral-

lelizing or distributing software. However, these studies have their criteria for the

layering, and they do not consider the principles of layered software architecture.

For example, some of the studies try to generate a distributed code from the serial

code, such as Parsa and Bushehrian’s study in 2008 [19]. Dolz et al. [20] presents a

framework for discovering pipeline and farm parallel patterns of a sequential system

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 7

and converting them to a Generic Parallel Pattern Interface (GrPPI). Alsubhi et

al. [21] present an architecture for converting legacy codes into parallel web service

codes based on MPI, CUDA, OpenMP and OpenCL models. In the proposed method,

two goals are pursued, one is the conversion of sequential to parallel codes and the

other is to provide parallel codes as web services.

Parsa and Bushehrian [22] cluster the object-oriented programs in two phases

to speed up with increasing their concurrency level. In phase one, the program

instructions are re-ordered in a way that the distance between a calling instruction

and its dependent instructions become maximum. In phase two, a clustering algorithm

is used to cluster the modules provided in the previous phase with the aim of

distributing and executing the clusters with the maximum level of concurrency.

Similarly, Muhammad et al. [23] propose an approach for automatic modularization

of the clusters which are resulted from object-oriented programs. With this clustering

algorithm, the related objects in the program are grouped in a cluster which is a

challenge when different criteria are considered. Muhammad et al. [23] evaluate these

criteria and suggest some proposals for various situations. However, the proposed

methodologies in [22] and [23] are mostly for an object-oriented code and try to

cluster the objects of the software to run the initial serial code in a parallel manner.

These approaches are not suitable for layered systems, since they only address the

relation between objects, and they do not consider software layers in their clustering.

Alkhalid et al. [24] propose an approach to distribute the load in the package

level. To this end, a Computer Aided Support is provided to inform the programmer

during program design about the level of internal and external connection of a

package with other packages. The problem with this approach is that the separation

of packages (or layers) is provided with the direct intervention of the programmer.

On the other hand, Millham [25] proposes a method to convert the legacy single layer

system into a two-layer system. In fact, most of the above-mentioned noteworthy

studies aim at converting one-layer systems into two-layer systems while the aim of

our approach is to separate BL and DAL.

The study presented by Andreopoulos et al. in [26] introduces an algorithm for

layer clustering, but the layers targeted in this algorithm are not aligned with the

criteria of the layered software architecture; and utilizing this kind of algorithm

in the development of layered information systems will not guarantee the goal of

layered software architecture. The reason is that they try to cluster to optimize the

performance and do not consider the architectural layers in the clustering.

3.2. Software Modernization and Refactoring

Code refactoring applies some changes on the source code by preserving the behaviour

of software [27] which may also lead to re-structuring software. For example, Santos

et al. [28] consider the refactoring as an appropriate solution for the modernization

of legacy software systems. By conducting a case study, the effect of refactoring on

the improvement of the code maintainability has been studied by Wahler et al. [29].

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

8 A. Khalilipour, et al.

Moreover, Zimmermann [30] examines the issue of refactoring at the architectural

level and introduces an architectural refactoring as a new strategy for improving

maintainability. Similarly, in [31], Kandukuri modernizes a legacy software by re-

engineering the software using model extraction and transformation.

In addition, there are studies which address the increase of software performance

and quality with applying some changes in the environment or in the codes. In fact,

the main goal of these studies is to re-use the software components. For instance,

there are some studies in which some experiments are conducted to change the type

of services or service calls with the aim of performance increase or reuse. Various

approaches (e.g. [32], [33], [34], and [35]) are suggested for changing the synchronous

calls to asynchronous calls. Although these techniques have some improvements in

system functionality, they do not make any change in the architecture or layers of

the system. Also, in [36], Balis et al. offer an approach to convert the legacy services

into web services. The aim of this approach is only to increase the reuse in the

software, and it does not have any suggestions for the separation of layers.

3.3. Legacy to SOA

Some methodologies and techniques (such as the studies in [37], [38], [39], and [40])

are provided to convert the architecture of legacy systems into SOA [41]. However,

unlike our approach, these approaches do not focus on layering the software, instead,

they only focus on converting into SOA.

Also, there are few studies in which, as in our study, the authors aim to provide

software layering. For example, Pereira et al. [42] propose a framework for imple-

menting a software BL in a way that it is also re-usable. Although one of the indirect

goals of this study is the separation of layers, the proposed method is not in the

compiler level, but in the implementation level. This type of approaches is useful for

new systems with layered architecture but is not useful for improving legacy systems

with classical architectures as being targeted in our study.

Finally, Heckel et al. [43] introduce an approach for converting legacy systems

to layer-based and SOA-based systems. In this study, the authors introduce an

approach to convert traditional one or two-layered systems to three layered ones.

Their approach includes 4 steps: Annotation, Reengineering, Redesign, and For-

ward Engineering. The code is annotated based on pre-defined categories such as

input instructions, business instructions, and data access instructions. Then, in the

Reengineering phase, a graph is extracted from the code. This graph is Redesigned

considering the node dependency; and finally, the new code is generated in the

Forward Engineering phase. However, when we compare our study with the study of

Heckel et al. [43], we can see that the annotating the code is performed in a manual

way by Heckel et al. [43] which is a time-consuming task. So, Heckel et al.’s approach

is a semi-automatic while our approach is fully automatic. Finally, in [43], the aim is

not distributing the layers and the approach does not support this goal while code

(layer) distribution is one of the main goals in our approach.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 9

4. The Architecture of the Code Scanner

The scanner proposed in our study does not only parse the code, but it also converts

it to target layers. In other words, the scanner, as can be seen in Figure 2, receives

the middle layer of an information system including data access and business codes

as input and then scans them to detect the pre-defined patterns. Then, it separates

the code and as output it gives the middle layer in the form of two separated layers,

data access and business.

Figure 2. The proposed architecture for the scanner

As it can be seen in the scanner architecture, the scanner identifies the necessary

conversion code in 6 phases and converts the initial code into separate layers. These

phases are DAL Preparer, Connection String Extractor, Command Object Extractor,

SQL Command Extractor, Complementary and Remoting. These phases are discussed

in detail in this section.

This scanner is not limited to any language with specific grammar and fixed rules,

instead, it is designed to be customizable. Therefore, any legacy system can be the

input of this scanner, provided that the rules related to data access code in the

system are given as input to the scanner.

Basically, the operation of accessing data is moved to another layer. The sequence

diagram showing data access, based on the newly generated code, is given in Figure

3. Comparing the data access request in the traditional approach (Figure 1), and the

new approach (Figure 3), in Figure 1 the request is directly sent to data resource,

but in Figure 3, with layer separation, the request is sent from the BL to the DAL

and it is delivered to the data resource indirectly.

To reach this goal, the code scanner separates the code which fulfills the oper-

ation of data access based on the proposed approach and moves them to another

layer. However, the remaining code needs to be manipulated to keep the connection

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

10 A. Khalilipour, et al.

Figure 3. The sequence diagram for data access in the proposed layering model

between these two new layers correctly. The critical issue is that the scanner should

not change the logic of the source code which is considered in the design of the

approach. According to the operations which should be performed by DAL, we can

divide the phases of the approach for scanning and separation as follows:

Phase 1: Preparing the DAL. This phase includes the initial steps which the scanner

should do for separating the code. The main task of this phase is creating the new

DAL including related package and name space.

Phase 2: Scanning and code conversion for connection operations. In this phase,

the scanner detects the codes related to connecting operations and makes required

changes on them.

Phase 3: Scanning and code conversion for preparing command object. This phase

provides the operations which are needed for command object.

Phase 4: Scanning and code conversion for executing the commands via command

object such as SQL-SELECT, SQL-UPDATE, and SQL-DDL. The instruction of the

program which includes one of the SQL commands should be executed via command

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 11

object on database. The operations of moving these commands into DAL are realized

in this phase.

Phase 5: The complementary operations. After moving the required commands from

the BL into the new layer, the DAL, the complementary operations should be done

on both layers. For example, removing the remaining commands in the BL and

adding new commands into the DAL such as closing the connections. These tasks

are fulfilled in phase 5.

Phase 6: Adding remoting capability to layers. Finally, the scanner should add

remoting capability to layers to provide the ability of their connection in a network.

This phase covers the scanning operations to realize this goal.

In the following, the implementation details of these phases in addition to the

approach for automatically generating the separated code are discussed.

A template of a legacy system is given as an input to the scanner. Although, this

template can vary slightly in different cases, the main elements are the same and

with slight adjustments in the scanner, the functionality of layer separation can be

realized successfully. The input code in our case is in Java language representing

mid layer of an information system. This layer consists of a combination of process

and data access codes.

The scanner detects different elements of the program statement after it extracts

the parse tree of the statement. Then, using the proposed approach, it transforms

the statement into different statements in separated layers.

In our case, the component which is used for accessing the data is the Java

Database Connectivity (JDBC); and the Remote Method Invocation (RMI) mecha-

nism is used for establishing connection between the layers. The execution of the

scanner is presented in the Tables 1 to 6 for each phase of the following approach.

Phase 1: Creating a data access class

The scanner, in this phase, constitutes the layers and creates a class named

DALClass, see Table 1. Since this class will be located in a computation node and

perform the required computations, it will not be serializable. Serializable objects are

transmitted completely to the client and this feature does not help in load balancing.

This phase is elaborated as follows:

• Create a package named DAL. This is the structure for DAL.

• Create a package named BL

• Create a class named BLClass in BL package and move the initial code

there. This is the structure for BL.

• Create a non-serializable class named DALClass in DAL.

Phase 2: Preparing the connection object

In this phase, the parse tree of Connection statement is extracted and then the

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

12 A. Khalilipour, et al.

Table 1. Input and output of the scanner for phase 1.

layers are constructed using the required elements of the tree, circled with the red

color in Figure 4.

Figure 4. The parse tree of the Connection statement

Also, the objects created from a serializable class are sent and received by the

value in the network. The results of these operations are demonstrated in Table 2.

This phase is elaborated as follows:

• Create a serializable class named CONNECTION with the following pattern

and add it to BL and DAL packages.

c l a s s CONNECTION extends S e r i a l i z a b l e {

St r ing DriverName ;

S t r ing URL;

St r ing UserName ;

S t r ing Password ;

}

• All the connection objects in BL are converted to an object of the CON-

NECTION class.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 13

Table 2. Input and output of the scanner for phase 2.

• All the connecting parameters in the source code are encapsulated with a

proper format of the new CONNECTION class.

• All the instructions leading to a connection are removed from BL.

Phase 3: Preparing a command object

The aim of this phase is to execute the instruction in the new layer, DAL. So, the

command object should be moved to this layer. To this end, the command object is

re-organized, and its main parameters are marshaled in a string and sent to the new

layer to be executed.

In this phase, the parse trees of different Command statements are extracted and

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

14 A. Khalilipour, et al.

then the layers constructed in the previous phase are extended using the required

elements (marked with the red color) of the trees, Figure 5. It is worth noting that

the numbers beside the parse trees in this figure indicate the order of the statements

in the ’before’ section of the Listing 3. Figure 5 shows the parse tree for executeQuery,

among the others. However, the scanner can create the parse tree for executeUpdate

and executeDDL commands in a similar manner.

Figure 5. The parse trees of Command statements

The result is shown in Table 3. The details of this phase in the approach are

described below:

• Create a new serializable class named COMMAND with the following

pattern and add it to BL and DAL packages:

c l a s s COMMAND extends S e r i a l i z a b l e {

CONNECTION CON; // Comes from the prev ious phase

St r ing Query ;

}

• Convert all the command objects in BL to objects of COMMAND class.

• Encapsulate all the parameters of command object which are in BL (i.e.

connection object and the query) into COMMAND class

Phase 4: Executing a SQL command via COMMAND object

Since the execution of the commands should be done in the DAL layer, all the

commands which are representing SQL commands in BL should be removed and

requests for their execution should be sent to DAL. Therefore, DAL should have an

interface layer which covers all the commands including SELECT, UPDATE, and

DDL. The result of these modifications on the source code and the new code are

illustrated in Table 4 for the example.

Finally, the elaborated tasks of phase 4 in the approach are stated below:

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 15

Table 3. Input and output of the scanner for phase 3.

• Create a reference of DAL class, dal, in BL: This reference is needed when

the commands are called.

• Replace all of the SELECT commands in BL with calling SELECT() service

using dal: dal.SELECT(COMMAND);

• If the result of executing SELECT command in BL is stored in a non-

serializable object, an alternative serializable object should be replaced.

• All the INSERT, DELETE, and UPDATE commands should be replaced

with UPDATE service using dal: dal.UPDATE(COMMAND);

• All the DDL commands such as CREATE TABLE, should be replaced with

DDL service using dal: dal.DDL(COMMAND);

• Add a method named SELECT() with the following signature into DALClass:

RecordSet SELECT(COMMAND)

• Add a method named UPDATE() with the following signature into DAL-

Class: void UPDATE(COMMAND)

• Add a method named DDL() with the following signature into DALClass:

void DDL(COMMAND)

The function of the SELECT, UPDATE, and DDL methods are:

• Extracting SQL command and connection string from COMMAND object

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

16 A. Khalilipour, et al.

Table 4. Input and output of the scanner for phase 4.

• Executing SQL command

• Returning the result to BL in the form of a serializable object from RecordSet

family (for SELECT method)

Phase 5: Complementary operations

This phase includes the following steps:

• Remove all the commands to close the connections and dispose the command

objects in BL.

• Open the required connections at the beginning of DALClass methods

• Close all the connections and dispose all of the command objects at the end

of DALClass methods.

The results of executing this phase of the scanner over an example are shown in

Table 5.

Phase 6: Adding Remoting capability to the layers

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 17

Table 5. Input and output of the scanner for phase 5.

Due to the separation of BL and DAL layers and the possibility of their parallel

execution in the form of two different processes on two different computation nodes,

their communication should be remote [16]. To this end, phase 6 fulfills some required

steps as follows and the result of the scanner in this phase is depicted in Table 6

and 7.

This phase includes the following steps:

• Generating the interface from DALClass according to the Table 7.

• Generating the Client-Stub and Server-Skeleton from the interface

• Creating the server program to manage DALClass objects and register in

the name registry

• Add Client-Stub to BL

• Add Server-Skeleton to DAL

It is worth noting that the Client_Stub and Sever_Skeleton are generated by

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

18 A. Khalilipour, et al.

Table 6. Input and output of the scanner for Phase 6.

Table 7. The Interface for accessing the data

the compiler and added into BL and DAL. The idea of stub and skeleton is adopted

from RPC which is used in many remoting mechanisms. Generally, stub and skeleton

are generated from the interface of the considered class and added to the code of

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 19

the client and server [16].

5. Experiment Process

5.1. Definition

In the following experiment, which is structured according to the principles of

conducting experiments in software engineering [44], we seek to answer the following

research question: Does the refactored code run more efficient than the legacy

version?

The goal is to show the efficiency of the proposed method. In this regard, our

objective is to evaluate the proposed method for software engineering schematic

metrics as well as to perform an experiment on a case study and review the results

before and after the change (layer separation).

5.2. Planning (Design of Experiment)

In order to test and answer the previous question, we first evaluate the proposed

method in terms of objectivist criteria. Evaluation of these criteria as well as the

outputs of the experiment indicates the correctness of the proposed method. Also,

in order to achieve the next goal, we define independent and dependent research

variables and by conducting an experiment on an information system in two modes

(monolithic and multilayer), we will see whether statistically better performance is

obtained from the proposed method at runtime. In this experiment, we first measure

the response time of the single-layer system (scanner input) before making changes

with a different number of requests. Then, after making changes by the scanner

on the original code, we perform the same test on the modified code (multilayer).

Details of the test conditions are given in Section 5.4. Also, the observations show

that some of the object-oriented metrics are also met on the new code, which we are

elaborated in the next section.

5.3. Object Oriented Metrics Investigated

A significant number of object-oriented metrics for evaluating object-oriented systems

have been introduced in the literature [45], and we benefit from some of the most

widely used ones in also evaluating our proposed method.

McCabe Cyclomatic Complexity (CC):

This metric indicates the maintainability of a code by measuring its complexity. To

measure complexity, in this study, the relation “connections - nodes + 2” is used, in

which nodes represent the instructions and connections represent the connection and

sequence between the instructions. The larger value of this relationship, the more

complex it is, resulting in lower maintainability. In the proposed method, due to the

separation of layers from each other, many commands and connections are separated

from each other and placed in separate modules, which makes the complexity of

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

20 A. Khalilipour, et al.

the resulting code (multi-layer) less than the original code (single layer) and its

maintenance improves.

Source Lines of Code (SLOC):

This metric indicates the number of physical lines of the program without blanks

and comments. In our proposed method, since the functionality of the software is

not affected before and after the change, as a result, we will not see a significant

difference in the number of lines after the change, because our method is more about

moving codes than adding new codes. Of course, after extracting the new layers, a

number of commands will be added to establish communication between the layers,

which will be very small compared to the main lines of the program.

Weighted Method per Class (WMC):

This metric is a cumulative measure of the complexity of methods within the

classroom. If we examine the complexities of methods by metric CC, then the

complexity of the class is: Sum(CC). In the proposed method, the complexity of the

classes after conversion is less than before because the complexity of the methods

has decreased.

Coupling between Objects (CBO):

The idea of this metrics is that an object is coupled to another object if two object

act upon each other. A class is coupled with another if the methods of one class

use the methods or attributes of the other class. An increase of CBO indicates the

reusability of a class will decrease. Thus, the CBO values for each class should be

kept as low as possible. CBO metric measure the required effort to test the class.

In our proposed method, the entanglement of objects and classes will be reduced

by finding related modules (business and data access) and moving them to a

separate layer. So that the business layers and data access (according to the layered

architecture) are minimally coupled.

Response for a Class (RFC):

RFC is the number of methods that can be invoked in response to a message in

a class. According to Pressman [46], since RFC increases, the effort required for

testing also increases because the test sequence grows. If RFC increases, the overall

design complexity of the class increases and becomes hard to understand. On the

other hand, lower values indicate greater polymorphism.

In our proposed method, it is obvious that due to the separation of layers, the

number of requests to one layer (compared to the monolithic architecture where all

requests reach one layer) will be significantly reduced. The result is that less effort

is required in the testing phase.

Lack of Cohesion in Methods (LCOM):

This metric indicates the degree of dependence of the members of a class. Obviously,

the higher the degree, the better the classroom design. In the proposed method, by

separating the layers, this goal, which is one of the goals of the layered architecture,

will be achieved.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 21

5.4. Performance Evaluation

Another outcome of the new approach is the performance improvement of the

system which is realized with the distributed-ness of the software. This addresses the

research question defined at the beginning of the experiment. With the separation

of layers and distributing them over nodes, the response time decreases and in result

the performance increases. Achieved results in our study also support the previous

efforts (e.g. [47]) in which the general assessment of the layered architecture was

realized, and the effectiveness of this architecture was approved.

In this experiment, we have used a case study that is related to an educational

system in which business and data access layers are implemented monolithically.

The results of the experiment show a significant improvement in efficiency after

separation of the layers. These results can be generalized to any other more complex

system, as the proposed scanner is not limited to a specific pattern, but can accept

the rules of any other system as input and recognize and distinguish layers based on

them.

In this section, the generated code using the proposed approach is analyzed. To this

end, we consider the research variables as follows:

Dependent variable: average response time

Independent variables: connection time, number of layers, execution time of business

codes, execution time of data access codes, number of requests (clients), time slice

• BLtrans: BL’s transaction time

• DALtrans: DAL’s transaction time

• tConnection: Connection time of two nodes

• nClients: Input rate or number of clients

• ts: the size of time slice

First, we consider the original code (without separation) where there is a single

layer in the software architecture including DAL and BL layers. In this case, when a

request arrives to this blended layer, the response time or return time for this single

request will be approximately the sum of the process time for both layers. So,

Response_T ime ≈ BLtrans+DALtrans

When we consider a higher request rate or increase in the number of clients

(nClients = n), the response time will be:

Response_T ime ≈ n ∗ (BLtrans+DALtrans)

As the requests are processed one by one (because there is a single layer to

process them), all requests will not finish at the same time. So, this response time is

not true for all the requests and the average response time for original code needs

to be calculated.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

22 A. Khalilipour, et al.

If a CPU scheduler such as RoundRobin is used, clearly the requests will be

finished in their entering order and the last request will be finished in the last round

using the last time slice (ts). The previous requests will be finished earlier than the

last one. If we have n requests, in the minimum case, the request n-1 will be finished

one ts earlier than the last one. So, we will have:

Request n: the last request will use the last ts and will finish n-n=0 ts earlier

Request n-1: the one before the last request will finish n-(n-1)=1 ts before the

response time

Request n-2: the second before the last request will finish n-(n-2)=2 ts before

the response time

. . .

Request 1: the first request will finish n-(1)= n-1 ts earlier than response time

So, the difference between return time of each request with the (total) response

time is (n− i)∗ ts for request i. As result, the average response time can be calculated

using the response time and these difference times as in equation (1).

On the other hand, when the separated code is generated with our approach,

there are two different layers, DAL and BL, which are loaded on two different nodes.

Therefore, a connection time will be added to the response time for a single request.

So,

Response_T ime ≈ BLtrans+DALtarns+ tConnection

As the separated layers (DAL and BL) are running on two different nodes in

parallel, the total response time decreases by half. So, for n clients, the response

time includes (n*(BLtrans+DALtrans))/2 in addition to tConnection for each client

to connect to the server. As result, in the similar way with equation (1), the average

response time for the separated code is equation (2).

∑
n

i=1
(n ∗ (BLTrans+DALTrans))− ((n− i) ∗ ts)

n
(1)

∑
n

i=1
(1
2
∗ (n ∗ (BLTrans+DALTrans)))− ((n− i) ∗ ts) + tConnection

n
(2)

In conclusion, the evaluation conducted in this study is generic and is based on

the behavior of the separation algorithm introduced in Section 5. To this end, the

following parameters are used for both the single layered and the separated layered

system: the number of clients, the time for executing BL and DAL layers, time slice,

and connection time. As the output, we calculate the response time of the system.

Considering the parameters, the times for executing BL and DAL layers are specific

for a code/software, the time slice is specific for the operating system, and the

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 23

connection time is a specific feature of the communication network. Therefore, these

parameters are considered as the constant values for the evaluation. However, the

number of clients can vary for a code/software (in both single layer and multi-layer).

To illustrate the impact of the code (or layer) separation, the average response

times are calculated based on the number of incoming requests (represented by the

number of clients as the size of input) for the original (monolithic or single layer)

code and separated code using some arbitrary number of clients. Elapsed times are

listed in Table 8. This table includes the calculated times based on the equations 1

and 2, the experimental times for a thin client as well as a fat client.

Table 8. The results of response times (in msec) for both the original and separated code

The results are used in Figure 6 to make the comparison easier. As it can be seen

in Figure 6, in the case of having layer separation, the performance of the system is

significantly increased, while the average response time is decreased.

5.5. Experimental Results

In this section, an experimental evaluation is realized to assess the performance of

the proposed algorithm in a real case study. In this experiment, a part of educational

system software is used. This software is programmed in Java and uses an Oracle

database to store the data. The software is originally implemented in a single

layer (blended layer). Its layers are separated (BL and DAL) using the proposed

transformation algorithm, as a new version of the software. Also, the configuration

of the platform on which the experiment was conducted is:

• The machine running the Business and Data Access Layers: Java 9, MS-

Windows 10

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

24 A. Khalilipour, et al.

Figure 6. Average response time for both the blended and separated layers based on theoretical
conditions

• Server: Windows Server 2016, Oracle 10g

• Network: fast Ethernet, IEEE 802.3u

The two versions of the software are run with 13 different number of clients and

the response times are recorded for each of them.

It is worth indicating that the single layer version is run on a single machine

while the separated layer version is distributed over two machines (one for each

layer).

The entire experiment is repeated twice, one for a thin task with light computation

in each client (called thin client) and another for a fat task with heavier computation

in each client (called fat client). These experiments exhibit the impact of work load in

the result of the proposed transformation algorithm. The results for the experiment

with thin clients and fat clients are shown in Figure 7 and Figure 8 respectively.

According to results shown in these diagrams, in the experiment with thin clients,

the response times of the separated layer software is slightly better than the single

layer software. This is justifiable because separation of small tasks into different

layers will not give much gain when they are run in parallel.

In contrary, in the experiment with fat clients, the response times of separated

software is far better than ones for the single layer software (due to the parallelizing

the big chunks of the main heavy task). This is specially true when the number of

clients increases.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 25

Figure 7. Average response time for both the blended and separated layers based on the experimental
results with thin clients

Figure 8. Average response time for both the blended and separated layers based on the experimental

results with fat clients

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

26 A. Khalilipour, et al.

In conclusion, the results of the experiments show that the software with its

layers separated using the proposed algorithm has a better performance regarding

its response times, as its layers can be run in parallel. The improvement of the per-

formance is noticeable when the clients have heavy computational tasks. This result

conforms to the theoretical results previously given in Figure 6. Finally, the achieved

results also confirm that applying our method significantly improves the execution

of the code and hence answer the research question of the study affirmatively.

A lab-package including the source code of the evaluation case study be-

fore and after refactoring as well as all the experiment data is available on-

line for the interested readers at: https://github.com/alirezakhalilipour/

Code-Refactoring-Legacy-to-Layered.

5.6. Threats to the Validity

As it is the case in any experimental study, there can be some risks and threats

to the validity of this study. The threats can be originated from different validity

types including internal validity, external validity, construction validity, and conclu-

sion/statistical validity [44]. Internal validity relates to a causal relationship between

treatment and the outcome. External validity concerns the ability to generalize the

results of the study. Construct validity refers to what extent the operational measures

that are studied really represent what the researcher have in mind and what is

investigated according to the research questions. Conclusion/statistical validity is

concerned with the relationship between the treatment and the outcome. In fact, it

is the degree to which the relationship of conclusions and data are reasonable.

According to the independent and dependent variables that we introduced in the

design subsection, some threats may exist in this study. In the proposed approach,

the tConnection, BLTrans, and DALTrans times, used in the formal calculations,

are independent variables of the study and Response/Return time is the dependent

variable.

Considering the internal threats to the validity, if the tConnection is not in the

reasonable range comparing to BLTrans and DALTrans times, the response time can

be increased. In other words, if tConnection < BLTrans+DALTrans is not true, the

vertical distribution of the layers is not beneficial anymore. Of course, this condition

is not usual, but it is possible. Also, even under this condition, the proposed approach

still benefits from the other advantages such as OO metrics.

For the threats to external validity, generalization of the achieved results should be

considered. In our case study, the input code for the scanner uses JDBC technology

to work with data. A possible threat is the scanner is limited with this technology.

If the threat becomes true, the scanner and the code transformer cannot be used for

the other systems. However, this threat is not serious, as all the other data access

models such as ADO.NET, ADO, DAO, ODBC, and RDBC use a similar approach

(with JDBC) to handle data and also, they have similar steps to work with data [6].

The only difference between them is the patterns of their instructions. To mitigate

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 27

this threat these patterns can be introduced to the scanner to scan the new types

of code with the new patterns (but with the same structure and procedure) and

generate the separated code. Finally, the patterns are intended as scanner inputs and

the scanner is customizable for any new pattern. Therefore, the designed scanner is

not limited to a specific pattern and can be customized for other patterns.

Regarding the construct validity, this study uses the response time measures of

the system for evaluating the performance of the generated multi-layer architecture

comparing to the monolithic structure. A threat seems to be not considering the

turn-around time of the data access technology such as JDBC and the data base,

such as Oracle. These times may have impact in the total performance of the system.

However, to mitigate this threat, we have considered these times as part of the total

response time. As we have used the same setup for both monolithic and multi-layer

systems, the data access technology and the database used in this study have the

same impact in both scenarios. As a result, this threat has no affect in evaluating

our approach.

Finally, for the conclusion threat to the validity, we have assessed some results

from the data collected by the experiment. Furthermore, these results were already

validated using the formulas developed for the response time. Therefore, the rela-

tion between the collected data and the conclusions are reasonable, based on the

mathematical formulas and this resolves the conclusion threat.

6. Conclusion and Future Work

Most of the information systems were designed with two or three-layer software archi-

tectures in the previous two decades. In these architectures, codes for Process/Logic

and DALs locate in a single layer called BL which leads to a bottleneck or system

crash when the process load or number of the user increases. One possible approach

to tackle with this problem is re-designing the systems with a new architecture

and separating these layers. However, this solution is very costly, with the cost of

developing the system from scratch. Another approach is to modify the available

system and separate the layers. Although this approach is less costly, it is complex

and time consuming when applied manually, due to the blended codes of two layers

in a single layer. To address these problems, a solution can be the use of compiler

techniques and make the process of this separation automatic, in a way that a tool

can detect the bottleneck points and resolve them automatically. In this way, it

can be possible to separate the codes for Process/Logic and DALs in the legacy

information systems with classical two or three layer architectures.

In this regard, the separation of software layers in an information system has

been discussed in this paper and a code scanner has been introduced which can scan

the middle layer of the legacy/traditional software and make some modifications on

the parts of the program which access the data to pave the way for the separation of

BL and DAL. The initial codes, a combination of the data access and the business

process codes, are separated automatically and placed in two different layers. In this

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

28 A. Khalilipour, et al.

way, it is possible to run these separated layers in different nodes and balance the

processing load. This approach brings the following advantages: the possibility of

rapid modifications on software, the increase in the development speed, the increase

of the performance and the scalability, and easier software maintenance. According

to the quantitative evaluation results, the average response time can decrease to

half, especially for the larger number of clients.

Considering the execution time of the separated layers, the only cost which is

brought by adding the new layer is the time of function/method calls between layers.

Since the code in the new layer comes from the original code, the additional time

required for these calls is only the time needed for the connection between two layers.

If the layers generated by the scanner are placed in the same node, the calls will

be local, and the connection time would be trivial. But if the layers are located on

different nodes, the connection time will be longer (due to a remote call). However, as

the BL and the DAL run in parallel, the connection time is ignorable considering the

time of running the layers. Taking into account the memory consumption, the only

additional memory would be the creation of a few objects to make the connection

between two layers. The number and the size of these objects are very limited, and

they are destructed as soon as the call is realized. So, the new approach will not

bring a significant memory overhead.

As a future work, the remote procedure calls can be transformed from synchronous

to asynchronous to increase the performance. In this way, after a method call, the

client will not wait for the termination of the method and can continue its task, if

it does not need for the result of the method. So, the system will not waste time

waiting for termination of a method; instead, the Business codes can be executed

in concurrent with Data Access codes. This will lead to the parallel execution of

different parts of the application on different nodes which increases the performance

of the system.

As another possible study, the separation mechanism can be performed with the

use of domain-specific languages and model transformations as we experienced (e.g.

in [48], [49], [50], [51]) for software agent architecture models. In this way the model

of the layered architecture can be generated and re-used in later extensions. Also,

the high-level validation and verification can be performed on the system model

[52].

Acknowledgments

Mehmet Onat, Hale Gezgen and Geylani Kardas are funded by KocSistem Informa-

tion and Communication Services Inc. and the Scientific and Technological Research

Council of Turkey (TUBITAK) under European Union EUREKA ITEA labelled

(ITEA project no: 14014) R&D project ASSUME (TUBITAK Grant no: 9150181).

Alireza Khalilipour and Moharram Challenger would also like to thank KocSistem

Information and Communication Services Inc for their funding and supporting

the study. Finally, Alireza Khalilipour would like to thank "Sama Technical and

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 29

Vocational Training College" for their support during this study.

Bibliography

[1] A. Sharma, M. Kumar and S. Agarwal, A complete survey on software architectural
styles and patterns, Procedia Computer Science 70 (2015) 16–28.

[2] M. Challenger, F. Erata, M. Onat, H. Gezgen and G. Kardas, A model-driven
engineering technique for developing composite content applications, in 5th Symposium
on Languages, Applications and Technologies (SLATE’16), Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik2016.

[3] C. Pahl, P. Jamshidi and O. Zimmermann, Architectural principles for cloud software,
ACM Transactions on Internet Technology (TOIT) 18(2) (2018) p. 17.

[4] R. Wang, S. Ying and X. Jia, Log Data Modeling and Acquisition in Supporting SaaS
Software Performance Issue Diagnosis, International Journal of Software Engineering
and Knowledge Engineering 29(9) (2019) 1245–1277.

[5] O. Vogel, I. Arnold, A. Chughtai and T. Kehrer, Software architecture: a comprehensive
framework and guide for practitioners (Springer Science & Business Media, 2011).

[6] A. A. B. Baqais and M. Alshayeb, Automatic software refactoring: a systematic
literature review, Software Quality Journal (2019) 1–44.

[7] Y. Wang, H. Yu, Z. Zhu, W. Zhang and Y. Zhao, Automatic software refactoring
via weighted clustering in method-level networks, IEEE Transactions on Software
Engineering 44(3) (2017) 202–236.

[8] H. K. A. Bakar, R. Razali and D. I. Jambari, Implementation phases in modernisation
of legacy systems, in 2019 6th International Conference on Research and Innovation
in Information Systems (ICRIIS), IEEE2019, pp. 1–6.

[9] J. Kazanavičius and D. Mažeika, Migrating legacy software to microservices archi-
tecture, in 2019 Open Conference of Electrical, Electronic and Information Sciences
(eStream), IEEE2019, pp. 1–5.

[10] R. Chen, S. Li and Z. Li, From monolith to microservices: a dataflow-driven approach,
in 2017 24th Asia-Pacific Software Engineering Conference (APSEC), IEEE2017, pp.
466–475.

[11] L. Carvalho, A. Garcia, W. K. Assunção, R. Bonifácio, L. P. Tizzei and T. E. Colanzi,
Extraction of configurable and reusable microservices from legacy systems: An ex-
ploratory study, in Proceedings of the 23rd International Systems and Software Product
Line Conference-Volume A, 2019, pp. 26–31.

[12] W. K. Assunção, R. E. Lopez-Herrejon, L. Linsbauer, S. R. Vergilio and A. Egyed,
Reengineering legacy applications into software product lines: a systematic mapping,
Empirical Software Engineering 22(6) (2017) 2972–3016.

[13] M. Wyrich and J. Bogner, Towards an autonomous bot for automatic source code
refactoring, in 2019 IEEE/ACM 1st International Workshop on Bots in Software
Engineering (BotSE), IEEE2019, pp. 24–28.

[14] M. Richards, Software architecture patterns (O’Reilly Media, Incorporated 1005 Graven-
stein Highway North, Sebastopol, CA . . . , 2015).

[15] R. Grycuk, M. Gabryel, R. Scherer and S. Voloshynovskiy, Multi-layer architecture for
storing visual data based on wcf and microsoft sql server database, in International
Conference on Artificial Intelligence and Soft Computing , Springer2015, pp. 715–726.

[16] U. K. Roy, Advanced Java Programming (Oxford University Press India, 2015).
[17] A. S. Ganesan and T. Chithralekha, A survey on survey of migration of legacy systems,

in Proceedings of the International Conference on Informatics and Analytics, ICIA-16,
(ACM, New York, NY, USA, 2016), pp. 72:1–72:10.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

30 A. Khalilipour, et al.

[18] Á. Vathy-Fogarassy and T. Hugyák, Uniform data access platform for sql and nosql
database systems, Information Systems 69 (2017) 93–105.

[19] S. Parsa and O. Bushehrian, Performance-driven object-oriented program re-
modularisation, IET software 2(4) (2008) 362–378.

[20] M. F. Dolz, D. D. R. Astorga, J. Fernández, J. D. García and J. Carretero, Towards
automatic parallelization of stream processing applications, IEEE Access 6 (2018)
39944–39961.

[21] K. Alsubhi, F. Alsolami, A. Algarni, K. Jambi, F. Eassa and M. Khemakhem, An
architecture for translating sequential code to parallel, in Proceedings of the 2nd
International Conference on Information System and Data Mining, ACM2018, pp.
88–92.

[22] S. Parsa and O. Bushehrian, Automatic translation of serial to distributed code using
corba event channels, in International Symposium on Computer and Information
Sciences, Springer2005, pp. 152–161.

[23] S. Muhammad, O. Maqbool and A. Q. Abbasi, Evaluating relationship categories for
clustering object-oriented software systems, IET software 6(3) (2012) 260–274.

[24] M. Alkhalid, M. Alshayeb and S. A. Mahmoud, Software refactoring at the package
level using clustering techniques, Software 5(3) (2011) 276–284.

[25] R. C. Millham, Data reengineering of legacy systems, in Enterprise Information
Systems: Concepts, Methodologies, Tools and Applications, (IGI Global, 2011) pp.
181–188.

[26] B. Andreopoulos, A. An, V. Tzerpos and X. Wang, Multiple layer clustering of large
software systems, in 12th Working Conference on Reverse Engineering (WCRE’05),
IEEE2005, pp. 10–pp.

[27] S. Bobde and R. Phalnikar, Restructuring of object-oriented software system using
clustering techniques, in Proceeding of International Conference on Computational
Science and Applications, Springer2020, pp. 419–425.

[28] B. M. Santos, I. G.-R. de Guzmán, V. V. de Camargo, M. Piattini and C. Ebert,
Software refactoring for system modernization, IEEE Software 35(6) (2018) 62–67.

[29] M. Wahler, U. Drofenik and W. Snipes, Improving code maintainability: A case study
on the impact of refactoring, in 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), IEEE2016, pp. 493–501.

[30] O. Zimmermann, Architectural refactoring: A task-centric view on software evolution,
IEEE Software 32(2) (2015) 26–29.

[31] P. Kandukuri, Software modernization through model transformations, in First Inter-
national Conference on Artificial Intelligence and Cognitive Computing , Springer2019,
pp. 165–174.

[32] U. Zdun, M. Voelter and M. Kircher, Design and implementation of an asynchronous
invocation framework for web services, in International Conference on Web Services,
Springer2003, pp. 64–78.

[33] A. Khalilipour and M. Challenger, Automatic conversion of remote invocations in
optimization of distributed codes, Journal of Academic and Applied Studies 2(4) (2012)
22–33.

[34] A. Khalilipour and M. Challenger, An event-based approach on automatic synchronous-
to-asynchronous transformation of web service invocations, in 2019 9th International
Conference on Computer and Knowledge Engineering (ICCKE), IEEE2019, pp. 162–
169.

[35] M. Chavan, R. Guravannavar, K. Ramachandra and S. Sudarshan, Program trans-
formations for asynchronous query submission, in 2011 IEEE 27th International
Conference on Data Engineering , IEEE2011, pp. 375–386.

October 15, 2020 7:56 WSPC/INSTRUCTION FILE output

Refactoring Legacy Software for Layer Separation 31

[36] B. Baliś, M. Bubak and M. Wegiel, A solution for adapting legacy code as web services,
in Component Models and Systems for Grid Applications, (Springer, 2005) pp. 57–75.

[37] R. Khadka, A. Saeidi, S. Jansen, J. Hage and G. P. Haas, Migrating a large scale legacy
application to soa: Challenges and lessons learned, in 2013 20th Working Conference
on Reverse Engineering (WCRE), IEEE2013, pp. 425–432.

[38] M. A. Al Sheikh, H. A. Aboalsamh and A. Albarrak, Migration of legacy applica-
tions and services to service-oriented architecture (soa), in The 2011 International
Conference and Workshop on Current Trends in Information Technology (CTIT 11),
IEEE2011, pp. 137–142.

[39] P. Bjeljac, B. Perišić, I. Zečević and D. Venus, Refactoring legacy enterprise information
systems to service oriented architecture-the faculty of technical sciences case study
(2014).

[40] H. M. Sneed et al., Wrapping legacy software for reuse in a soa, in Multikonferenz
Wirtschaftsinformatik , 22006, pp. 345–360.

[41] K. Avila, P. Sanmartin, D. Jabba and M. Jimeno, Applications based on service-
oriented architecture (soa) in the field of home healthcare, Sensors 17(8) (2017).

[42] Ó. M. Pereira, R. L. Aguiar and M. Y. Santos, Reusable business tier architecture
driven by a wide typed service, in 2013 IEEE/ACIS 12th International Conference on
Computer and Information Science (ICIS), IEEE2013, pp. 135–141.

[43] R. Heckel, R. Correia, C. Matos, M. El-Ramly, G. Koutsoukos and L. Andrade,
Architectural transformations: From legacy to three-tier and services, in Software
Evolution, (Springer, 2008) pp. 139–170.

[44] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell and A. Wesslén, Experi-
mentation in software engineering (Springer Science & Business Media, 2012).

[45] C. Jones, Applied software measurement: global analysis of productivity and quality
(McGraw-Hill Education Group, 2008).

[46] R. S. Pressman, Software engineering: a practitioner’s approach (McGraw-Hill Educa-
tion, 2019).

[47] S. Duttagupta and M. Nambiar, Maximum throughput computation of an applica-
tion in a multi-tier environment, in 2012 International Symposium on Performance
Evaluation of Computer & Telecommunication Systems (SPECTS), IEEE2012, pp.
1–7.

[48] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas and T. Kosar, On the
use of a domain-specific modeling language in the development of multiagent systems,
Engineering Applications of Artificial Intelligence 28 (2014) 111–141.

[49] G. Kardas, E. Bircan and M. Challenger, Supporting the platform extensibility for the
model-driven development of agent systems by the interoperability between domain-
specific modeling languages of multi-agent systems, Computer Science and Information
Systems 14(3) (2017) 875–912.

[50] G. Kardas, Z. Demirezen and M. Challenger, Towards a DSML for semantic web
enabled multi-agent systems, in Proceedings of the International Workshop on For-
malization of Modeling Languages, 2010, pp. 1–5.

[51] M. Challenger, B. Tezel, O. Alaca, B. Tekinerdogan and G. Kardas, Development
of semantic web-enabled BDI multi-agent systems using SEA_ML: An electronic
bartering case study, Applied Sciences 8(5) (2018) p. 688.

[52] M. Challenger, G. Kardas and B. Tekinerdogan, A systematic approach to evaluating
domain-specific modeling language environments for multi-agent systems, Software
Quality Journal 24(3) (2016) 755–795.

	Introduction
	Background
	Related Work
	Parallelizing the Legacy Software and Software Clustering
	Software Modernization and Refactoring
	Legacy to SOA

	The Architecture of the Code Scanner
	Experiment Process
	Definition
	Planning (Design of Experiment)
	Object Oriented Metrics Investigated
	Performance Evaluation
	Experimental Results
	Threats to the Validity

	Conclusion and Future Work

