
1

SPECIFYING REQUIREMENTS FOR MODERN SOFTWARE

DEVELOPMENT: A TEST-ORIENTED METHODOLOGY

Alejandro Miguel Güemes Esperón*, Francisco Maciá Pérez†, José Vicente Berna Martínez‡,

Martha Dunia Delgado Dapena§, Iren Lorenzo Fonseca**

*, § Department of Software Engineering

Technological University of Havana (CUJAE)

114th St. No. 11901 b/ Ciclovía and Rotonda, Marianao

Havana 19390, Cuba

†, ‡,** Department of Informatics Technology and Computation

University of Alicante
Carretera San Vicente del Raspeig s/n, 03690 San Vicente del Raspeig

Alicante 03690, Spain

*aguemes@tesla.cujae.edu.cu
 †pmacia@dtic.ua.es

‡jvberna@ua.es
§marta@ceis.cujae.edu.cu

**iren.fonseca@ua.es

Most modern computer systems operate in distributed environments. To develop and test such

applications, services and systems, it is necessary to consider the physical devices, architectures,

communication, security and deployment mechanisms involved. However, the requirements

specification process still replicates that of traditional applications: details remain implicit and are

hidden in the description. As a result, specifications are difficult to identify and, ultimately, tests are

designed in the traditional way: they overlook constraints and fail to achieve the desired effects. Our

objective is to design a methodology for specifying requirements in both traditional software and

applications deployed in distributed environments. We present an iterative and incremental

requirements specification methodology. This methodology allows us to describe functional

requirements and incorporate non-functional or quality constraints, which is the main contribution of

this proposal. To ensure that quality requirements are specified during the design phase, the

methodology proposes a series of phases, stages and artefacts that ensure the discovery and

consideration of these requirements. In order to find out the strengths and weaknesses of our

methodology, we have carried out a comparative study with other similar proposals in the literature.

To this end, evaluation criteria were defined by considering standards and good practices in

Requirements Engineering. The results of the comparative study show that our methodology

constitutes a solid procedure for a detailed requirements specification from the beginning of the

software development cycle. This represents an advance over the rest of the proposals studied. Our

methodology contributes to the simplification of the design and execution phases of software testing,

enabling traceability between the specified requirements and the designed test cases.

‡ Corresponding author.

This is a previous version of the article published in International Journal of Software Engineering and Knowledge Engineering. 2023. https://doi.org/10.1142/S0218194023500407

mailto:aguemes@tesla.cujae.edu.cu
https://doi.org/10.1142/S0218194023500407

Keywords: Software Requirements Specification; Distributed Systems; Software Testing; Quality

Requirements.

1. Introduction

The application industry has forged ahead relentlessly, marked by intense competition. A

key factor in the sector is therefore software quality [1]. Managing and executing software

development is a challenging task in which the system Functional Requirements (FRs),

Quality Requirements (QRs) or non-functional requirements must be clearly established

from the start. A software testing strategy must be based on the analysis of requirements

as it needs to detect as many deficiencies as possible, thus contributing to quality assurance.

Today, the software industry focuses on delivering quality software in order to satisfy

customers and end users. Yet FRs tend to be favoured over QRs, leaving QRs insufficiently

specified and documented [2]. Recent research on Requirements Engineering (RE) has

revealed the need to specify all requirements at an early stage of development. It also

illustrates how, in the absence of a complete specification, a technical gap can lead to a

project setback, increased maintenance costs, and the hindering of the testing process [3].

Several proposals for RE methodologies, methods, strategies, and artifacts have been

advanced but they do not describe concrete mechanisms for specifying QRs in detail and

establishing relationships with FRs. Quality aspects – such as security, availability,

confidentiality, usability, integration, deployment, communication, and performance –

often fail to be addressed due to insufficient requirements specification [4]. This leads to

the overlooking of certain elements when designing the system architecture, when defining

an appropriate testing strategy, in the design of the initial tests, and during the

implementation of the system functionalities. The effects of undervaluing QR in the case

of systems deployed in distributed environments are even worse – given their heterogeneity

[5].

According to Sommerville [6], requirements can be defined as the description of what

software should do, what services it will offer, and the restrictions that apply to the

operations. Requirements reflect what customers need from the software: the software

serves a particular purpose that can be characterised as FRs or QRs. FRs are statements of

necessary system functions, of how the system should react to specific inputs, how it should

behave in certain situations, and, in some cases, what the system should not do. For their

part, QRs are not directly related to the specific functions provided by the system: they

may be related to properties such as reliability, response time, storage space or deployment

architecture features [6]. These requirements are often as important and critical as FRs [7].

Failing to consider a QR can lead to system interruptions and result in high costs to correct

faults [8].

Requirements Engineering (RE) is a crucial stage to ensure that any software project is

successful. It is divided into several phases: elicitation, analysis, specification, and

validation of requirements [6]. Errors or deficiencies during the capture and specification

phase of the requirements make the development process less productive and therefore

increase the needed investments. Including adequate RE in the software lifecycle makes it

less likely that such errors will occur [9]. RE plays a key role in measuring the quality of a

computer system: it is the starting point of the definition of the test cases, guaranteeing that

the system meets the established requirements and, therefore, that the system is valid and

functionally appropriate.

Although agile-methodology RE differs from traditional-methodology RE, it is

essential in both to use tools and mechanisms that allow capturing customer needs and

feedback. It is also important to integrate and establish adequate requirement traceability

throughout the development phase. Agile software development promotes minimal

documentation and often prioritises FRs over QRs. A minimal emphasis on documentation

can help to reduce software time to market. Nevertheless, poor documentation can be

counterproductive because the QRs are difficult to specify and no proof is provided of their

correct monitoring and implementation [10].

As systems become increasingly distributed and hyperconnected, environments

become more complex, interdependent, and therefore more intricate to specify. Distributed

Systems (DSs) are a series of independent systems that operate transparently, acting as a

single entity. The purpose of DSs is to decentralise information storage and processing,

which also provides benefits such as more efficiency, greater fault tolerance, scalability,

higher speed, and distributed processing [5].

According to [5], a DS consists of hardware and software components, located in

networked computers. These components communicate and coordinate their actions simply

by sending messages to each other, they are connected over a network, and can be separated

by any distance: on separate continents, in the same building, or in the same room. Given

their heterogeneity, DSs generate new problems that rarely occurred in traditional

applications, e.g., concurrency problems, independent component failures, communication

and integration issues, etc. The construction of systems in distributed environments poses

multiple challenges linked to heterogeneity, safety, availability, scalability, fault detection,

and appearance [5, 11].

Taking these elements into account in the requirements specification, using the

identified functionalities would largely benefit the design, implementation, deployment,

and testing phases. That is why several authors address the need to strengthen the formal

QR specification during the initial phases.

Recent requirements specification proposals are based on the use of User Stories (US),

UML artifacts, the IEEE standard 830-1998, and self-defined patterns or artifacts [2].

These existing specification mechanisms and artifacts are not always applicable to all

requirements. This is especially the case when a functionality involves several tasks and

some of them depend on others – because no mechanism reflects how those relationships

take place in detail [3].

The works studied suggest that QRs should be kept in mind and that they are important

during the software development process. There are several proposals, e.g. the NFR

method, QUPER, quality models and i*, which consider QR but as a separate process from

FR specification [12]. A common practice in agile development is the design of test cases

in early phases, which then guide software development [6]. However, existing proposals

are not directly focused on the testing phase, so the requirements descriptions that are

obtained miss important elements, negatively impacting implementation, deployment, and

testing.

In this work, we set out an iterative and incremental requirements specification

methodology based on the results of our review of Requirements Engineering (RE)

proposals. The methodology includes aspects of both agile and traditional software

development. Its major contribution is a standardised procedure that ensures the definition

at an early QR stage with all that this entails for the generation of acceptance criteria,

scenarios and test cases.

The present article is structured as follows: Section 2 introduces the proposed

methodology; Section 3 details the results of a comparative analysis of the present

methodology with other similar proposals in the literature; Section 4 focuses on the results

analysis; Section 5 shows an example of application of the methodology; and lastly,

Section 6 presents the conclusions.

2. The Requirements Specification Methodology

The methodology is composed of three defined phases, as shown in Fig. 1:

• “User Requirements Specification” (P1): specifies the requirements in detail through

User Stories (US).

• “Detailed Specification of Functional Requirements” (P2): focuses on an intricate

specification of the Functional Requirements (FR) and identifying quality

characteristics related to FRs.

• “Detailed specification of Quality Requirements” (P3): specifies the Quality

Requirements (QR) in detail.

If the user makes new requirements requests after the three phases have been

completed, the methodological process is re-iterated starting from P1. The implementation

methodology generates the Requirements Specification File (RSF), containing the

requirements specifications organised by phases.

Each phase consists of three stages:

• Requirements description: focuses on documenting relevant aspects that represent a

source of information for the development, architecture, and testing of the system.

• Requirements analysis: centres on the semantic and functional analysis of the

requirements description. From the artefacts obtained in the previous stage, which

contain the requirements description, it is verified that the information requested is

complete, functional, and syntactically coherent. The quality of the analysis will

depend on the analyst's experience in software development and in working with the

proposed artefacts.

• Change management: manages all the changes that occur while the phases are

executed.

Fig. 1. Proposed methodology for requirements specification.

Since the requirements are subject to continuous improvement, each stage consists of

a set of activities that can be performed several times. The methodology should start to be

applied in the early stages of the system design or redesign. Requirements can, however,

be specified at any time. The execution of the activities planned for the requirements

description and requirements analysis stages varies depending on the phase. This is not the

case of the change management stage, in which the activities will be the same across all

phases.

The requirements specification process in each phase involves users, the software

analyst, and the software architect. The software analyst can consult developers whenever

appropriate, even if they do not directly take part in documenting the requirements. Given

that several actors are involved, it is necessary to establish a collaborative environment,

thus allowing to accomplish the activities of each stage more effectively.

The change management stage must ensure that the actions performed in the previous

stages are properly documented. All documentation generated throughout the

methodological cycle should remain accessible and available at any time to interested

parties. At this stage, it is necessary to work with the RSF: it stores the different versions

of the specifications as well as the respective change controls and records of the

improvements made to the requirements documentation.

To ensure maximum accuracy in the description of our methodology and to avoid

ambiguous definitions, we chose to define it using a Business Process Model (BPM) and

the Eriksson-Penker notation for BPM notation (BPMN), together with the Universal

Modeling Language (UML). This makes the methodology easier to understand and apply

in various software development contexts.

2.1. Phase 1: Detailed specification of user requirements

The "Detailed specification of user requirements" (P1) phase unfolds during the survey

requirements. This is when you interact for the first time with the customer, who is at that

moment lacking a solution or is exposing a series of needs. This step is essential to ensure

that the developed product meets the user’s outlined expectations.

It is important to understand the user's needs in any software development project.

Different techniques can be used to ensure this such as conducting interviews,

brainstorming, and administering questionnaires. Procedures and artifacts that allow

capturing and documenting the user-provided information should be used following the

principle that every single user need represents a requirement to be met by the system.

As shown in Fig. 2, this phase contains three stages: “Description of User

Requirements” (P1S1); “Analysis of User Requirements” (P1S2); and “User Requirements

Change Management” (P1S3).

Requests for user-provided requirements are met during the P1S1 stage. The User

Stories (US) are collected in a US document that describes the characteristics or functions

to be developed, the roles concerned, and the results – in accordance with the good

practices of the agile SCRUM methodology. In addition, Acceptance Criteria (AC) are

included: they will be defined by the user and verified by the analyst. The CAs will reflect

different scenarios associated with the requirement to be described in the US. The

description should contain the name of the AC, the context in which an event will occur,

the event itself and the expected outcome or behaviour after the occurrence of the event.

The result of P1S1 is the generation of the US.

In stage P1S2, the software analyst performs a semantic and functional analysis of the

information contained in the USs. The analyst must verify that the description is

inambiguous, coherent, complete, does not hide other user needs, and is not contradictory

from a functional perspective. Based on the experience gained in other development

projects, the analyst may suggest changes in the US. He or she may even propose new

acceptance criteria to the user. These criteria are defined in the final AC that determine the

development of the system. In this proposal, the analyst must include quality characteristics

that fit the needs raised by the user. These ACs will describe different requirement-based

scenarios which govern the development, deployment, testing and delivery of the system.

If contradictory elements are found, whether from a functional or syntactical perspective,

the user requirements description stage will be re-iterated. Once the detected conflicts are

solved, we proceed to identify possible system functionalities, classifying the user's FRs or

QRs, and identifying any possible dependencies among the USs.

Some QRs are not directly related to an FR but influence the system as a whole, such

as the availability, confidentiality and integrity of the information. In this case, the analyst

must explain what these QRs consist of to the user and guide the description of the user's

requirements, in order to obtain preliminary information. The latter will then allow to

specify the QRs in detail in Phase 3 with the software architect.

Fig. 2. UML 2.X activity diagram associated with Phase 1 “Detailed specification of user requirements”.

Upon completion of the first two stages, stage P1S3 is executed. At this stage, the

changes made in the previous stages are documented and the USs are incorporated into the

project’s Requirements Specification File. The phase is considered to be finalised when all

user requirements have been specified.

2.2. Phase 2: Detailed specification of functional requirements

The “Detailed specification of functional requirements” (P2) phase takes place after P1 is

completed. The software analyst also intervenes in this second phase, as he or she must

identify and describe the FR based on the US obtained in P1.

As shown in Fig. 3, P2 is divided into three stages: “Detailed description of functional

requirements” (P2S1), “Functional Requirements Analysis” (P2S2), and “Functional

Requirements Change Management” (P2S3).

Fig. 3. Activity diagram (1) UML 2.X associated with Phase 2 “Detailed specification of functional”.

In P2S1, the software analyst must include a description of the US information relating

to the Functional Requirement (FR) to be described in the Functional Requirements

Specification (FRS) document. It must also contain the attributes and possible scenarios in

accordance with the acceptance criteria defined in P1. The data of the software analyst and

the developer in charge of implementing the functionalities can also be reflected in the

document. Once the prior FR elements have been described, the software analyst must

identify the quality constraints associated with this FR that can become QRs in P2S2.

The P2S2 stage centres on identifying the semantic and functional problems existing

in the FRS, verifying each element in the description. The emphasis should be placed on

describing the variable domains and constructing the conditions that make up the scenarios,

in the latter case verifying that relational operators are properly used. If conflicts are

detected in the description, P2S1 is re-iterated in order to correct the identified deficiencies.

Stage P2S3 documents all changes made to the FRs, including the conflict solutions found.

In addition, the detailed FR specifications must be annexed to the RSF.

This phase produces the definition of FRs and identifies the associated QRs, which will

be documented as a solution to the user requirements described in P1 through User Stories.

This enables to ensure the proper tracking via the historical record contained in the RSF.

The detailed FR description offers an overview of how to implement the functionalities,

since it allows to define specific programming tasks. In addition, using the study of the

variables and scenarios, it is possible to apply software engineering and artificial

intelligence techniques in order to design functional and unit test cases that cover each

scenario at the early stages, even before the implementation.

2.3. Phase 3: Detailed specification of quality requirements

The “Detailed specification of quality requirements” (P3) phase begins once P2 is

completed. The objective of P3 is to specify the QRs early and in detail, thus providing

important elements for the software development cycle of design, implementation and

testing. This phase involves the software analyst and software architect.

Fig. 4 shows the three stages of P3: “Detailed description of quality requirements”

(P3S1), “Quality Requirements Analysis” (P3S2) and “Quality Requirements Change

Management” (P3S3). The proposed procedure is illustrated in a graph below.

In P3S1, the analyst must obtain the Quality Requirements Specification (QRS). The

stage involves analysing the FRs and their quality characteristics. In addition, the QRs that

are not directly associated with a specific FR must be identified, because overlooking them

would affect the global functioning of the future system.

The QRs are typified according to the quality attributes present (availability, integrity,

confidentiality, legality, etc.). The elements to be included in the QR description must

provide information allowing to conceive an adequate deployment architecture and to

design test cases that enable the detection of defects associated with these QRs. Therefore,

QRs will present their own attributes and scenarios which need to be described.

Fig. 4. UML 2.X activity diagram associated with Phase 3 “Detailed specification of quality requirements”.

The “Analysis of quality requirements” (P3S2) stage takes place next. In this step,

contradictions or semantic and functional conflicts are identified, taking into account each

characteristic that must be specified in P3S1. As in the rest of the phases, these conflicts

must be solved, implying a re-iteration of P3S1. Once the QR analysis stage has been

completed and no conflicts and contradictions are found, P3S3 is executed. In this stage,

all changes made during the description and analysis of the quality requirements must be

documented and the QRS must be annexed to the Requirements Specification File.

3. Results

To evaluate the results, a comparative study was performed. The objective was to detect

strengths and weaknesses with respect to the other included proposals. To identify studies

similar to our proposal, a Systematic Mapping Study (SMS) [13] was conducted.

The SMS research question was: “Have any software requirements specification

methodologies been proposed in any other works?” To answer this question, a search chain

containing concepts of Population and Intervention was developed, in accordance with

Petersen [13].

The terms considered were “Requirements Engineering” for the Population, and

“methodology” for the Intervention. The final search string defined was (“software

requirement” OR “requirements engineering”) AND (methodology OR process OR

method) AND (elicitation OR analysis OR specification OR validation) NOT (“goal-

driven” OR goal OR driven OR “natural language processing” OR “machine learning” OR

“ontologies” OR “ontology”). The chain contained main terms, alternative terms, and terms

derived from the exclusion criteria.

The selected databases were IEEE Xplore, Scopus and Web of Science (WoS). The

inclusion criteria defined were:

• Type of study: conference proceedings and articles;

• Language: English;

• Publication date period: 2018-2022.

We decided to exclude works based on Natural Language Processing (NLP) and

Machine Learning (ML), since they did not contribute to answering the research question

of the designed SMS.

The consultation took place in December 2022. Applying the defined search chain to

answer the research question, a total of 718 initial studies were obtained, including 440

papers presented at conferences and 278 articles, as shown in Fig. 5.

Fig. 5. Evolution of the study selection process.

In a second step, the set of studies obtained was refined, excluding articles that had

been cited less than twice by articles belonging to the same database. As a result, an initial

set of studies was obtained, consisting of 147 conference papers in the field and 144

articles.

After reading the titles and abstracts of the preselected studies, 27 works were chosen, as

the rest did not focus on the subject of interest.

To perform the final selection, we read the proposals and the citation index of each in

Google Scholar in detail. As a result, we selected the 4 most cited proposals that established

concrete requirements specification procedures. Table 1 shows the 5 studies finally

selected.

Table 1. Studies selected to carry out the comparative analysis.

Stu-

dies

Data-

bases

Publica-

tion date

Citations

in Google

Scholar

Quartile of the journal in JCR Impact Factor /

Category

[14] Scopus 2020 22 Q1 (Computer Science, Software Engineering)

[15] WoS 2020 9 Q2 (Computer Science, Software Engineering)

[16] WoS 2021 9 Q3 (Computer Science, Theory & Methods,

Software Engineering)

[17] IEEE 2020 2 -

[18] Scopus 2017 1 -

In addition, we decided to include [18] because, despite being published in 2017, it

presents the result of our research and an antecedent of the methodology proposed here.

The evaluation criteria to perform the benchmarking study are shown in Table 2. They

were proposed by the authors, based on the study of similar proposals, Requirements

Engineering concepts, good practices and activities described in ISO/IEC/IEEE 29148

[19]. Table 3 shows the results of the comparative study.

4. Discussion

The 5 works selected for the comparative study present similarities and differences with

the methodology we propose in this article. The main contributions of each work are

summarised below.

The Requirements Specification for Developers (RSD) approach [14] proposes to

create Software Requirements Specifications (SRS) that provide necessary information for

developers. This approach does not include a mechanism for identifying and describing

dependencies that may exist between requirements, sometimes hindering the readability of

requirements descriptions. On the other hand, the findings showed that the practices used

to specify requirements using the RSD approach potentially produce a more objective SRS,

adapted to the development team.

ScrumScale [15] was developed based on the fundamental principles of the agile Scrum

method, complex adaptive systems theory, game theory, and object-oriented technology.

This new method incorporates a vision of the system and organisation scalability in the

early stages, reinforcing this quality characteristic in the defined requirements specification

process [20]. However, it does not provide tools that facilitate the specification of other

quality requirements.

The methodology proposed in [16] addresses a major emerging issue: the specification

of a new generation of health platforms capable of monitoring people’s quality of life,

given that older adults are expected to represent the majority population in the years to

come. This methodology supports the entire elicitation and requirements specification

process: from the initial phase of gathering clinical, technological and end user

requirements, to the choice of the most appropriate solution. The main limitation of this

proposal is that it is only applicable to the field of smart health.

A framework to solve the problem of converting informal ideas into well-structured

ideas – that make up the requirements specification document – is proposed and developed

in [17], based on automating the Software Requirements Specification (SRS) method. SRS

follows the requirements specification IEEE format and dedicates activities to describe the

FR and other requirements. It does not support the detailed specification of all types of

QRs, but does include some isolated elements related to user interface and communication.

The Model to automatically generate search-based early tests (MTest.search) is

presented in [18]. It is a result of our research group that constitutes a background to the

work we are presenting. The proposal includes activities to specify requirements through

User Stories (US), the generation of test cases, as well as the optimisation model – that

reduces the number of functional test cases considering scenario coverage criteria and

using heuristic search algorithms. The US contains information on variables and user-

defined scenarios. The methodology proposed in this paper will be integrated with

MTest.search for the generation of test cases.

As shown in the comparative study results, the selected proposals do not offer a

framework allowing for an automatic requirements specification process, with the

exception of [17] and [18].

The proposed procedures generally focus on a generic context of application, except

[16], which only applies to Smart Health Software and thus facilitates its execution. This

can cause, however, characteristic elements of certain application domains to be

overlooked in the requirements description. As can be seen in the comparative study and

especially in Table 3, our methodology does the same as the proposals studied. Moreover,

it incorporates the QR specification. Therefore, it is applicable to at least the same domains

as all of them..

Following the current trend of software development, the proposals analysed in the

comparative study include concepts, artifacts, and good practices of agile methods.

However, they do not propose activities that contribute to specifying USs, FRs and QRs in

detail, leading to a loss of relevant information that could be used in the design,

development and testing stages of software development. In addition, the way the

procedures are defined in these works do not ensure traceability among the requirements.

In our methodology we establish, from the artefacts built in each phase, the traceability

between US (with its acceptance criteria), FR and QR, showing the dependency

relationships between them.

The methodology exposed in this work constitutes a solid procedure to perform a

detailed requirements specification from the very beginning of the software development

cycle. This represents a step forward with respect to the rest of the proposals studied.

Table 2. Evaluation criteria.

Identifier Evaluation Criteria (EC)

C1 Automated Framework

C2 Type of proposed solution

C3 Context of application of the proposal

C4 Roles involved

C5 Requirements Specification Tools

C6 User Requirements (UR) Specification

C6.1 Definition of Acceptance Criteria (AC)

C6.2 Identification of dependencies between UR

C6.3 Identification of Functional Requirements (FR) based on UR

C6.4 Identification of Quality Requirements (QR) based on UR

C7 FR specification

C7.1 FR traceability with UR

C7.2 Attribute identification

C7.3 Domain description of the identified attributes

C7.4 Description of scenarios

C7.5 Identify QR associated to specified FR

C7.6 Identification of dependencies between FR

C8 QR specification

C8.1 Analysis of QR identified in FR

C8.2 Identification of QR that can affect the system in general

C8.3 QR typing

C8.4 Description attributes and scenarios

C9 Identification of conflicts and contradictions in requirements specifications

C10 Solution to the conflicts and contradictions identified in the requirements specifications

C11 Traceability between UR, FR and QR

C12 Management of changes in requirements

C13 Up-to-date requirements documentation accessible to all members of the development team

Table 3. Results of the comparative study.

EC Studies (Ss)

 Our

methodology

S1 [14] S2 [15] S3 [16] S4 [17] S5 [18]

C1 - - - - X X

C2 Methodology Approach Method Methodology Framework Model

C3 Generic and

Distributed

Systems

Generic Generic Smart Health

Software

Generic Generic

C4 User/Custo-

mer, Software
Analyst and

Analyst,

Product

Product

Owner,
Scrum

User/Customer User/Custo-

mer,

User/Custo-

mer,

Software

Architect

Owner and

Customer

Master,

Scalability

Expert

Software

Analyst

Software

Analyst

C5 User Stories Templates,

Mockup

User

Stories
User Stories Templates Templates,

User Stories

C6 X X X X X X

C6.1 X - X X - -

C6.2 X X - X - -

C6.3 X - X - - -

C6.4 X - Or - - -

C7 X X X X X X

C7.1 X X X X - X

C7.2 X X - - - X

C7.3 X - - - - X

C7.4 X - - - - X

C7.5 X - - - - -

C7.6 X - - X - -

C8 X Or Or Or Or -

C8.1 X - Or Or - -

C8.2 X - Or - Or -

C8.3 X - Or - Or -

C8.4 X - - - - -

C9 X - X X X -

C10 X - X X X -

C11 X Or Or - - -

C12 X - X - X X

C13 X X X X X X

-Legend-

X: Yes Or: Partially -: No

5. Example of application of the methodology

The proposed methodology was applied for the specification of requirements for the Safety

and Security System of an educational institution. In this project, students and specialists

integrate a multidisciplinary team to develop the system. The requirements specification

process involved the Users/Customers, the Software Analyst and the Software Architect,

each in their corresponding phase, keeping in mind the flow defined in the methodology.

As a result, 11 requirements were specified, including 8 FRs and 3 QRs.

The result of applying the methodology to the project is shown below. For this purpose,

the artefacts obtained during the specification of the requirement "Staff access control in

an educational institution" are shown.

Table 4 shows the US described, along Phase 1, by the person wishing to access the

educational institution. In addition, the ACs are included.

Table 4. Template for the specification US-0001.

US Identifier Priority Estimate (days) Creation date

US-0001 1 20 20-03-2023

US name Staff access control in an educational institution

User/Customer

name

Randy Orozco Vázquez

Rol AS a person

Characteristic/Fun

ctionality

I WANT access to the institution

Reason/Result TO develop or coordinate activities in the institution

Acceptance Criteria (AC)

AC name context Event Expected result/behaviour

Because I work in
the institution

When I present
my

identification

Access must then be authorized at the physical barrier, the date and
time of access must be recorded, my details as an employee must

be recorded and the security officer must be shown on the screen:

my photo, the area in which I work and my level of access.

Because I study at

the institution

When I present

my

identification

Access must then be authorized at the physical barrier, the date and

time of access must be recorded, my details as a student must be

recorded and the security officer must be shown on the screen: my
photo, the area in which I work and my level of access.

Because the person

does not have

authorised
identification

Whe he/she

presents

his/her
identification

Access should then not be authorised at the physical barrier and an

alarm should be indicated to the officer.

Table 5 shows the specification, made by the Software Analyst in Phase 2, of the FR

associated to US-0001. As shown in the template obtained, this FR has an associated

availability QR that was described in Phase 3 by the Software Analyst and the Software

Architect as shown in Table 6.

Table 5. Plantilla para la especificación del FR-0001

FR identifier US identifier FR name Creation date

FR-0001 US-0001 Entrada de personal 23-03-2023

Software Analyst Juan Pablo Gómez Estrada

Description Once the person arrives at the educational institution he/she should be allowed entry

or not depending on the role and the area to which he/she has access.

¿QRs

identificated?

 X Yes __ No

QRs associates __ Scalability __ Performance X Availability

__ Integrity __ Maintainability __ Portability

__ Legality __ Culture and politics __ Appearance
__ Reliability

Others: _____________________________

Variables

Nombre Tipo o Dominio Descripción

role of the

person

Enumerated The roles are: security officer, area manager, worker, visitor,

temporary and student.

person Object Each person's: ID, photo, name, age, area, gender and role
are known.

date Date Date of access to the educational institution

people Set Set of persons who have links with the institution

Scenarios

Name Condition Expected result

Worker entry IF you have identification
from the institution AND

you are a worker

Access must then be authorized at the physical barrier, the
date and time of access must be recorded, the worker's ID

must be recorded, and the security officer must be shown on

the screen: my photo, the area in which I work and the level
of access.

Student entry IF you have identification

from the institution AND

you are a student

Access must then be authorized at the physical barrier, the

date and time of access recorded, the student's ID recorded,
and the security officer shown on the screen: the student's

photo and the area where the student is studying.

Visitor entry

by
appointment

YES you have visitor

identification

You must then authorize access at the physical barrier,

record date and time of access, record appointment ID,
disable visitor ID for future entries, and show the security

officer on the screen: your photo, appointment area and

authorizer ID

Walk-in

visitor entry

If NO identification AND

authorized by an area

manage

Access should then be recorded with the following data:

date-time of access, reason for visit, identification of the

security officer who released the physical barrier, identifier
of the person authorizing access, area accessed and identifier

of the person gaining access.

Unauthorised

access
attempt

IF it has an ID that does

not correspond to its bearer

The officer then registers an incidence of attempted security

breach related to the last access at the physical barrier and
prevents the person from passing. The system issues an alert

to the security officer of the institution.

Access
attempt with

invalid

identifiction

IF you have an ID that is
not in the register of IDs

issued by the institution

Then the physical barrier is not released and sends an alert to
the security officer.

The methodology proposes a template for specifying QRs that contains variables and

scenarios as well as FRs, and includes a specific template for QRs associated with system

availability, such as the one identified in FR-0001. Tables 6 to 10 show the sections of the

detailed specification template for QR-Availability-0001.

 Table 6. Section "Header" of the QR-Availability-0001 detailed specification.

 RC-D Identifier RF identifier QR name Creation date

QR- Availability -0001 FR-0001 Availability of the system during staff

entry to the educational institution.

25-03-2023

Software Analyst Laura Fundora Padilla

Software Architect Kendry Mora Loos

Description The system has to be available for online consultation when scanning the

person's ID at the physical barrier and authorise access or not. In case of no
connection the barrier must function as an island and let authorised persons

through.

Number of device types 3 (physical barriers, security officer's mobile phone, server with the sensor
platform)

* In this paper only the description of physical barriers is shown.

Number of types of

services/systems

3 (online identity verification service, 1 SMS alarm notification service and 1
service for the operation of physical barriers in island mode)

Table 7. “Services/Systems" section of the detailed specification of the QR- Availability -0001.

Services / Systems

Type of Services / Systems Name Version Frecuencia de

ejecución

Online identity verification service Identity verification - By concurrency.
It is executed each time

an access attempt is

generated.
SMS alarm notification service Alarm notification to

security officer

- Whenever an

unauthorised access

attempt occurs
Service for the operation of

physical barriers in island mode

Updating of authorised

personnel identifications

- Every 12 hours

Table 8. “Other Attributes" section of the detailed specification of the QR- Availability -0001.

Attributes Name Type Unit of

measureme

nt

Maximu

m

Quantity

Minimu

m

Quantity

Packet filter - __Hardware

__Software

- - -

Connections/requests - - -

Bandwidth/throughput - - -

Mean time between failures - - -

Average recovery time minutes 3 2

Response time to a request seconds 3 2

Table 9. “Devices" section of the detailed specification of the QR- Availability -0001.

Dispositivo 1

Device identifier D-0001

Device name Physical barrier

Description Physical barrier for access control

Maximum Quantity 8

Minimum Quantity 4

Number of deployment zones 3

Deployment areas

Deployment area 1

Attributes Name Maximum

Quantity

Minimum

Quantity

Country Cuba

Province La Habana

Location Main entrance 1 of the institution

Devices in the area 2 1

Users in the area 2000 30

Deployment area 2

Attributes Name Maximum

Quantity

Minimum

Quantity

Country Cuba

Province La Habana

Location Main entrance 2 of the institution

Devices in the area 4 2

Users in the area 2000 30

Deployment area 3

Attributes Name Maximum

Quantity

Minimum

Quantity

Country Cuba

Province La Habana

Location Service entrance

Devices in the area 2 1

Users in the area 1500 10

Table 10. Section "Scenarios" of the detailed specification of QR-Availability-0001.

Scenarios

Name of the

scenario

Conditions Expected result

Normal

operating
mode

IF connection is

available

Then, queries are made to the sensorisation layer, responses

are generated to authorize or deny access and the
information for island mode operation is updated according

to the established periods.

Island mode
of operation

IF the connection is
interrupted

Then, an alarm is emitted, it switches to island mode and
keeps checking the status of the connection.

Re-

establishing
the

connection

IF it was operating in

island mode AND the
connection is re-

established.

Then, the sensorisation layer is notified of events occurring

during island mode execution and normal operation mode is
activated.

Further attributes of QR-Availability-0001 are described in Table 8. As shown there are

several elements that in the conditions of this project it does not make sense to describe

them. If relevant, each one is described. As specified in Table 6 the physical barriers must

function as an island when there is no connection. This characteristic is described by the

attribute Average Recovery Time, which refers to the time it takes for a physical barrier to

start operating in island mode. The devices should be described as shown in Table 9, with

emphasis on the zones where they will be located. In addition, it is important to define the

scenarios in which the system should be available. For the case analyzed in this section,

three scenarios were identified, as shown in Table 10, and in each case conditions and

expected results were specified.

The information contained in the templates will directly assist in the design of test cases.

In this way we have scenarios, user-defined acceptance criteria and variable descriptions

from which test value combinations can be generated.

6. Conclusions

The requirements specification process in software development, both traditional and agile,

contemplates descriptions in natural language, UML artefacts, user stories, among others,

in which elements associated with quality requirements are generally implicit. So much so

that, in complex environments such as distributed systems, the requirements specifications

do not favour the design of validation tests applicable to all the aspects involved in this

type of system.

The requirements specification methodology presented in this work is flexible and

especially designed to develop applications and services in large distributed systems. The

methodology places the specification of both functional and quality requirements on an

equal footing. It contributes to the understanding of Requirements Engineering, especially

the requirements specification process, reducing the problems relating to the terminology

used and the activities involved in each phase.

Our methodology addresses the necessary procedures to obtain a clear interpretation of

the specified requirements. It also fills documentation gaps from the moment users first

describe their needs, by proposing to reflect technical aspects and establishing a

correspondence between User Stories, Functional Requirements and Quality

Requirements.

The main advantage of the methodology is that through the stages and documentation

(artefacts) to be completed, it forces the analyst to fully and systematically detail the QRs,

whereas in other methodologies they are not worked out in detail. It is important to keep in

mind that if the analyst does not have sufficient knowledge, details of both QR and FR will

be missed. We hope that our methodology will facilitate better testing, or at least that

sufficient information is now available to do so.

The medium-term objective of our work is to create a tool that automates the activities

included in the methodology. Indeed, a manual execution may require substantial efforts

in the case of systems with large quantities of requirements. We are currently working on

identifying important elements to consider in the description of requirements. We are also

designing a standard template to specify quality requirements associated with availability,

a distinctive feature of Distributed Systems. This will simplify the requirements

specification process when applying the proposed methodology and will allow obtaining

relevant information. In the long term, we will focus on early test generation, which is the

true goal of the whole methodology: i.e., being able to dispense with implementation when

performing tests thanks to a complete system specification that embraces all viewpoints.

References

[1] W. Behutiye, P. Karhapää, L. López, X. Burgués, S. Martínez-Fernández, A. M. Vollmer and

M. Oivo. (2020). Management of quality requirements in agile and rapid software development:

A systematic mapping study. Information and Software Technology, 12.

https://doi.org/10.1016/j.infsof.2019.106225

[2] L. Montgomery, D. Fucci, A. Bouraffa, L. Scholz and W. Maalej. (2022). Empirical research

on requirements quality: A systematic mapping study. Requirements Engineering, 27(2), 183-

209. https://doi.org/10.1007/s00766-021-00367-z

[3] C. Ebert. (2019). Systematisches Requirements Engineering: Anforderungen ermitteln,

dokumentieren, analysieren und verwalten. dpunkt. verlag.

[4] A. Ahmad, J. L. B. Justo, C. Feng and A. Khan. (2020). The impact of controlled vocabularies

on requirements engineering activities: A systematic mapping study. Applied Sciences

(Switzerland), 10(21), 1-29. https://doi.org/10.3390/app10217749

[5] G. Coulouris and J. Dollimore. (2012). Distributed systems - concepts and design. (5th Ed.).

Addison-Wesley, Pearson.

[6] I. Sommerville. (2016). Software Engineering. (10th Ed.). Harlow, England: Pearson

Education.

[7] B. Lawrence, K. Wiegers and C. Ebert. (2001). The top risk of requirements engineering. IEEE

Software, 18(6), 62-63. https://doi.org/10.1109/52.965804

[8] J. Nikolic, N. Jubatyrov and E. Pournaras. (2021). Self-healing dilemmas in distributed

systems: Fault correction vs. fault tolerance. IEEE Transactions on Network and Service

Management, 18(3), 2728-2741. https://doi.org/10.1109/TNSM.2021.3092939

[9] M. Dadkhah, S. Araban and S. Paydar. (2020). A systematic literature review on semantic web

enabled software testing. Journal of Systems and Software, 162.

https://doi.org/10.1016/j.jss.2019.110485

[10] W. Behutiye, P. Rodríguez, M. Oivo, S. Aaramaa, J. Partanen and A. Abhervé. (2022). Towards

optimal quality requirement documentation in agile software development: A multiple case

study. Journal of Systems and Software, 183. https://doi.org/10.1016/j.jss.2021.111112

[11] M. Lahami and M. Krichen. (2021). A survey on runtime testing of dynamically adaptable and

distributed systems. Software Quality Journal, 29(2), 555-593. https://doi.org/10.1007/s11219-

021-09558-x

[12] T. Olsson, S. Sentilles and E. Papatheocharous. (2022). A systematic literature review of

empirical research on quality requirements. Requirements Eng 27, 249–271.

https://doi.org/10.1007/s00766-022-00373-9

[13] K. Petersen, S. Vakkalanka and L. Kuzniarz. (2015). Guidelines for Conducting Systematic

Mapping Studies in Software Engineering: An Update. Information and Software Technology,

64, 1–18. https://doi.org/10.1016/j.infsof.2015.03.007

[14] J. Medeiros, A. Vasconcelos, C. Silva and M. Goulão. (2020). Requirements specification for

developers in agile projects: Evaluation by two industrial case studies. Information and

Software Technology, 117, 106194. https://doi.org/10.1016/j.infsof.2019.106194

[15] G. Brataas, G. K. Hanssen, N. Herbst and A. Van-Hoorn. (2020). Agile scalability engineering:

The ScrumScale method. IEEE Software, 37(5), 77-84.

https://doi.org/10.1109/MS.2019.2923184

[16] V. Bellandi, P. Ceravolo, A. Cristiano, E. Damiani, A. Sanna and D. Trojaniello. (2021). A

design methodology for matching smart health requirements. Concurrency and Computation:

Practice and Experience, 33(22), e6062. https://doi.org/10.1002/cpe.6062

[17] M. Duggal, N. Saxena and M. Gurve. (2020). SRS Automator-An Attempt to Simplify Software

Development Lifecycle. 6th International Conference on Signal Processing and

Communication (ICSC), IEEE, 278-283. https://doi.org/10.1109/ICSC48311.2020.9182768

[18] M. D. Dapena, A. M. Rojas, D. L. Uribazo, S. V. Marcos and P. B. Oliva. (2017). Model for

Automatic Generation of Search-Based Early Tests. Computación y Sistemas, 21(3), 503-513.

https://doi.org/10.13053/CyS-21-3-2716

[19] ISO/IEC/IEEE. (2018). ISO/IEC/IEEE 29148:2018 Systems and Software Engineering — Life

Cycle Processes — Requirements Engineering. In ISO (2nd ed.).

https://www.iso.org/standard/72089.html

[20] H. Edison, X. Wang and K. Conboy. (2022). Comparing methods for large-scale agile software

development: A systematic literature review. IEEE Transactions on Software Engineering,

48(8), 2709-2731. https://doi.org/10.1109/TSE.2021.3069039

https://doi.org/10.1007/s11219-021-09558-x
https://doi.org/10.1007/s11219-021-09558-x

