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The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS) in 1986 to encourage the NASA

Johnson Space Center [JSC) and local industry to actively support research
in the computing and informaUon sciences. As part of thls endeavor, UHCL

proposed a partnership with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beglnning in May 1986, to jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities arc shared by the two institutions to
conduct the research.

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to
serve the needs of the govemment, industry, community and academlau
RICIS combines resources of UHCL and Its gateway affiliates to research and

develop materlals, prototypes and publications on topics of mutual interest
to its sponsors and researchers. Within UHCL, the mission is being

implemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sclcnces.

RICIS also collaborates with industry in a companion program. This program

is focused on serving the research and advanced development needs of

industry,

Moreover, UHCL established relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources ofexpertlse to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oVersoe RICIS research ant education programs, while other research

organizations are involved via the "gateway" concepL

A major role of RICiS then is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-
tion sciences. RICIS, working Jointly with its sponsors, advises on research
needs, recornmcnds principals for conducting the research, provides tech-

nical and administrative support to coordinate the research and integrates
technical results into the goals of UHCL, NASA/JSC and industry.
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This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. David Eichmann of West Virginia

University. Dr. E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA
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should not be interpreted as representative of the official policies, either express or
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Abstract

Three sample information retrieval systems, archie, autoLib, and

WAIS, are compared as to their expressiveness and usefulness, fu'st

in the general context of information retrieval, and then as prospec-

tive software reuse repositories. While the representational capabil-

ities of these systems are limited, they provide a useful foundation

for future repository efforts, particularly from the perspective of re-

pository distribution and coherent user interface design.
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1 - Introduction
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As information becomes an increasingly important sector of the global economy, the way in

which we access that information - and thereby the way in which we access and structure knowl-

edge - becomes a critical concern. The engineering of knowledge is quickly becoming an area of

research in its own fight, independent of its parent disciplines of artificial intelligence, database

systems, and information retrieval; consider the title of the journal that you now hold in your hands.

Wegner recognized the value of knowledge engineering in his landmark article on the role of cap-

ital in software development:

"Knowledge engineering is a body of techniques for managing the complexity of knowledge.., it is

capital-intensive in the sense that reusability is a primary consideration in the development of books,

expert systems, and other structures for the management and use of knowledge." [10, p. 33]

Just as Wegner observed that the products of software engineering are capital, so are the products

of knowledge engineering a form of capital. Identification, structure, and locatability are critical to

the enabling of this knowledge capital. Innovation in this area is driven from two diverse perspec-

tives, the traditional perspective of researchers and a not-so-traditional perspective of what might

be referred to as an information underground.

L_

w

The goal of this information underground is not necessarily an extension of the state of the art,

but a rather more pragmatic development of an informational infrastructure [4]. The prototypes re-

suiting from this type of work propagate quickly over the Internet, immediately generating large

numbers of users. Even while still experimental, systems that provide distinct benefit frequently

need to limit access in order to maintain reasonable system performance for other users of the un-

derlying platforms. ,,

My reference to this community as an underground is calculated, for even within the computer

science community (let alone the academic or commercial communities as a whole), only a small

percentage of individuals are aware of such information systems. This article was spurred by my

interest in software repositories, a number of conversations that I've had in recent months, and the

1



benefitI think canbegainedby wideningtheforumfor suchsystemsto alargeraudience.

In lJarticular,it is interestingto evaluatethesesystemsasanenablingtechnologyfor software

reuserepositories.Repositories,andby implication,informationretrievalmechanisms,play acrit-

icalrole in successfulreuse.Thisstatementdisagreeswith theconventionalwisdom[9], thatreuse

is asocialandmanagerialissue,andnotatechnicalone.A closer examination of the conventional

wisdom leads to a recognition that without a repository with substantial representational capability

many of the social and managerial requirements cannot be supported.
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This paper surveys a number of interesting information server projects, with an eye towards

enabling technologies. Section 2 lays down a typical scenario in which such systems are used.

Sample sessions for three systems appear in section 3, and an analysis appears in section 4. I con-

clude with remarks on the potential of future systems.

2 - A Scenario and User Prof'lle

Consider a programmer involved in a research project in some reasonably sized university. I

choose this context not only for its personal familiarity, but also because

• such projects typically take place in facilities with rich local and wide area network connectiv-

ity;

• programmers typically have a personal workstation with substantial display capabilities (e.g.,

X-Windows); and

• there are strong incentives in avoiding the redevelopment of capabilities available from other

projects, either local or remote.

In effect, the development environment is one which is typical, or will be within the next few years.

In addition, the social infrastructure and equipment infrastructure for a successful reuse program

are present, if not an explicit charter for reuse, or a true repository.

: _ ?

Our programmer is now faced with a dilemma-- aware that there is a strong likelihood that a
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needed tool or component already exists somewhere out on the network, but uncertain as to where

to begin the search in the thousands of systems that currently make up the Internet, or even how to

identify the needed artifact. Until recently the only choices included asking acquaintances for ad-

vice (although the study by Schwartz and Wood [7] demonstrated the amazing potential for even

ad hoc mechanisms such as this), poring over intermittently posted electronic digest news articles

for likely sounding names, or manually searching a few sites maintained by volunteers and acces-

sible through anonymous ftp. Obviously, our programmer is ripe for recruitment as a client of the

services provided by the information underground.

3 - Example Repositories

Early in the evolution of the Internet, system administrators began adapting file transfer facil-

ities into what today is referred to as anonymous ftp, comprised of publicly accessible accounts, a

limited file space, and a restricted command set. These facilities, while amazingly popular as a dis-

semination tool, presume a fair amount of user knowledge, not the least of which being where to

look for the sought-after artifact. This section describes three information systems, archie, WAIS,

and autoLib. Each of these systems has a distinct design focus, anonymous ftp access in archie,

document retrieval/display in WAIS, and a limited form of electronic library in autoLib. However,

the resulting systems have much in common, and their look and feel has several similarities. These

systems were selected for discussion because they were designed primarily as information retriev-

al systems, rather than as software repository systems.

3.1 - archie

The archie system is "an on-line resource directory service foran internetworked environment"

[3]. While archie isn't truly a repository per se, since it doesn't actually contain the artifacts that it

classifies, when treated as a whole with the diverse anonymous ftp sites that it references, it does

fit into our discussion. Archie grew out of the efforts of Emtage and Deutsch to automate the cre-

ation and referencing of previously hand-maintained lists of anonymous ftp sites. A demon peri-

3
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Figure 1: archie screen upon entry

odically sweeps through a list of known ft-p sites, creating a list of artifacts accessible at each of

them. This list of artifacts is then indexed for access by clients throughout the Internet seeking a

site for some particular item.

I describe the xarchie user interface here, developed by Ferguson for the X-windows system

from the ASCII user interface developed by Kehoe and the Prospero system developed by Neuman

[5]. Xarchie and archie together form an example of a client/server application architecture, where

the client application (xarchie) provides user-local support for commands, information display, and

communication to the server application (archie), which provides access to a remove facility, in

thiscase the archie databasel Fi_e 1 shows xarchie's screen at entry. The series of buttons across

the top of the window control the activity of the user's xarchie client and its interaction with an

archie server and the ftp sites which the server indexes. Figure 2 shows the xarchie settings panel,

including in particular the mode of search (exact, substring, regular expression, etc.), the order that

hits are presented (sorted by name, modification date, etc.), and the archie server host to interro-

gate, in this case archie.sura.net.

Entering a search term for an artifact, say xarchie, tar. Z, a compressed Unix tar file of the xarch-

ie source directory, and clicking the query button initiates the search, as shown in figure 3. As the

search progresses, xarchie updates the status line, indicating establishment of connection, progress,

and completion.
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Figure 4: archie search results,

Figure 4 shows the results of the search as a list of sites in the left scrolling region in the middle

of the window. Selecting a particular site by clicking on it results in figure 5, with the location, size,

and so on for this artifact on this site. A single instance of a match at the selected site automatically

selects the middle scrolling region (corresponding to the directories) and the right scrolling region



Figure 5: Se[eca'on of a site and copy_
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Figure 6: WAIS main window

(corresponding to the files). Multiple matches (typical with inexact matches) require the selection

of both a directory and a file for the lower fields to be filled in. Clicking the ftp button establishes

an anonymous ftp session to the archive site and retrieves a selected artifact into the local directory

shown in the settings panel (shown in figure 2 as '.', the current directory).

3.2 - WAIS

The Wide Area Ini;o-rmation Service (WAiS) is an experiment in text-based distributed infor-

mation systems by Thinking Machines and a number of collaborators [4]. WAIS supports the no-

tion of multiple sources of information; a user selects one or more sources to respond to a question,

phrased as a string of words which are deemed relevant to the question. Figure 6 shows the main

window, containing a list of previously phrased questions and a list of already known sources.
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Figure 7: Source window for SoRReL archive

Opening a source displays a window containing information concerning the nature and location of

that source, as shown in figure 7 for the Ada archive that the SoRReL group maintains. This infor-

mation includes the Internet address and service port that the server for the source listens to, as well

as unit and cost fields (as yet unused) and a textual description of the source. A single server can

support multiple sources, each separately indexed and independently accessible. A distinguished

source, maintained by Thinking Machines, acts as a directory to other sources by indexing source

definitions such as the one shown in figure 7. These source definitions are retrievable using the

same question mechanism employed for other questions. The sole distinction is in the saving of

results; saving a source definition places it in the directory containing the user's known sources,

making it accessible for subsequent questioning.

Figure 8 shows the question window following a successful search of the SoRReL source. Us-

ers select one or more already known sources to be consulted for this question by clicking the add

source button and selecting from the resulting display of sources;The "Tell me about:" field ac-

cepts a collection of words to be used as a specification of the question. WAIS uses relevance feed-

back as its search mechanism; documents which match one or more of the words contained in the

"Tell me about:" field are added to the collection of matching documents, and then presented to the

user in the "Resulting Documents:" field ranked by a relevance metric, an indication of the fit to

7
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Figure 9: Viewing the streams document

the words occurring in the query string. Relevance feedback has been shown to be more effective

than boolean expression as a search mechanism for textual information (a report of one such study

appears in [6]).

Selecting a result document for viewing retrieves the document from its server and displays it

in a window such as that shown in figure 9, which contains a portion of a document describing an

Ada implementation of a stream package. The find key button scrolls the window and highlights

in turn each occurrence of search words in the document. WAIS lets users specify an arbitrary pro-

gram on the user's machine as the viewer to be invoked for a given class of documents, with the

class defined using the suffix of the document's file name (for example, xgif is typically used to

display images whose names end in '.gif').
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Iterative refinement of a search that results in documents viewed with the text viewer is accom-

plished by selecting a salient portion of the document and clicking the add section button. An in-

dication of the text selected is added to the "Similar to" field in the question window. Subsequent

searches then append these refinements to the primary search phrase.

3.3 - autoLib

r

q J,

The autoLib system, under development by Barrios Technology and NASA's lohnson Space

Center, is a monolithic application supported by a commercial relational database system (com-

prising the recta-information) and a UNIX file system (comprising the objects themselves). The

structure of information provided by archie and WAIS is flat in the sense that there is little structure

provided other that an indexing mechanism. The autoLib system, on the other hand, supports both

a flexible single inheritance mechanism for definition of meta-information, and the definition of

heterogenous collections of objects drawn from the inheritance scheme [1]. Figure 10 shows the

main window for autoLib, including the topmost collection and its immediate sub-collections.

Clicking on an entry in the list moves the u._-r down the hierarchy of collections to the corre-

sponding subcollection, and that collection's subcollections are then displayed. The three buttons

at the bottom of the window allow the user to step back up one level in the collection hierarchy, to

move directly to the top of the hierarchy, or to view the objects associated with the current collec-

tion, respectively.

Figure 11 shows the object browser window, displaying the contents of one such collection.

The three columns of information include the object's identifier, its filename, and a .short rifle.

The object viewer window for object 2446 appears in figure i'2. AutoLib employs a commer-

cial relational database package for information storage, but the user model for autoLib is object-

oriented, defined not only as a hierarchy of class definitions, where superclass names are prefixes

of subclass names, but also as a hierarchy of collections, as mentioned earlier. AutoLib maps each
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Figure 12: autoLib object viewer

concept (collection, class, object, etc.) into a corresponding database relation and maps each field

in an autoLib _'ndow (e.g., the object filename, O0(0)0101.GI_F, for object 2446) to an attribute in

the corresponding relation. The system derives _e interpretation for a given object in the generic

object relation from the field def'mitions stored by autoLib in the class field relation. While this is
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autolJb 3.0: Browser

Select Function PageUp PageOn Help Close _---_Hat.Lang.
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PACIFIC OCEAN
PACIFIC OCEAN
PACIFIC OCEAN
PACIFIC OCEAN
CHILE

CHILE
CHILE
CHILE
CHILE
CHILE
ARGENTINA

ARGENTINA
ARGENTINA
ARGENTINA
ARGENTINA
ARGENTINA
ARGENTINA
ARGENTINA
ARGENTINA
ARGENTINA

ARGENTINA
ARGENTINA

page 1 o¢ 211

Figure 11: autoLib object browser

not a true object-oriented database, it provides much of the flexibility and rich structural mecha-

nisms of a object-oriented database. The integration of objects and relations has been carried much

further in work on extensible database systems such as POSTGRES [8].

In addition to the collection browsing mechanism described here, autoLib supports traditional

boolean expression retrieval and a form of relevance feedback. Each object class has associated

with it a tool, which is used to view the object itself, as opposed to the metadata characterizing that

object, i.e., the fields presented in the object view window. Unlike WAIS, where tool execution

occurred on the user workstation, tool execution in autoLib occurs on the autoLib server- the user

workstation merely acts as an X-windows display. "

4 - A Brief Comparison

Viewing these three systems as potential software repositories is interesting, and at the same

time somewhat unfair to their designers, as none were created with that purpose in mind. However,

11



systems such as these are frequently called into service in such contexts, and the flexibility and

adaptab.ility exhibited provides interesting concepts and features for inclusion into systems specif-

ically intended as repositories. Table 1 summarizes major aspects of the three systems. The Impu-

Table 1: Systems Synopsis

architcctttre

# server sites

interfaces"

retrieval mechanisms

information domain

inf-nfo_ation stored

archie

client/server

-i0

X -Windows,

ASCII

pauern-matching (on
name only)

material available by
anonymous ftp

name,

location,

file attributes

archiving [1 decentralizedresponsibility

indexing
responsibility

support required
(archive)

support required
(indexing)

centralized

none

moderate

WAIS

client/server

-100

X -Windows,
ASCII

relevance feedback

textual information

wold occurrence,

headline,

full text

decentra_.xt

decengaliz_

moderate

low

autoLib

monolithic

X-Windows
(ASCII under development)

browsing,
boolean expression,
relevance feedback (on
abstract only, not full texO

NASA flight center library
materials

full text / image,
index terms,
meta-information
(administrator-defined)

centralized

centralized

high

promise as a poor limited
repository

availability public public private

high

a potential framework

larity of at'chic stems not from its rich representation scheme or novel search mechanisms, but

rather from the low levels of effort required on the part of archive administrators and users to em-

ploy the system. It is an excellent example of how a limited purpose system implemented by vol-

unteers can provide a valuable resource. Referring to archie as a software repository, however,

stretches the definition of repository perhaps a little too far. Consideration of an artifact at a site as

a candidate component requires that the user knows both the name and the purpose of that artifact,

and the retrieval of the complete artifact (irrespective of the total size) before further consideration

can be made.
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The display facilities of WAIS alleviate the limitations of archie by presenting the user with a

flexible means of query specification (without requiring classification by the archivist) and the op-

portunity to select from a variety of candidates and view portions of them prior to retrieving the

complete text of the final selection. WAIS further increases flexibility in the nature of repositories

by supporting interrogation of multiple sources for a given query and the generation of both public

and private sources. (Note, however, that there is no technical impediment to doing this with archie

as well - the archie designers simply chose global indexing rather than regional or local indexing.)

The principle virtue of WAIS, its treatment of all material as text to be indexed, is also its principle

falling from our perspective - there is no discrimination between code, supporting documents, and

so forth - resulting in slightly more cumbersome search behavior.

The use of an administrator-defined set of collection and class definitions provides autoLib a

great deal of flexibility in organizing the information. In addition to the ability to organize the glo-

bal structure of the information base, this definitional facility supports recta-descriptions of arti-

facts, a useful feature in our chosen context.

The structuring, classification, and retrieval mechanisms of autoLib are by far the richest of the

three systems compared here. Much of this power obviously stems from the fact that autoLib is a

proprietary system, whereas arehie is a volunteer effort and WAIS is a research project. However,

autoLib's look and feel suffers dramatically in our sample context. Unlike archie and WAIS, which

use a client/server paradigm, autoLib executes solely on the server platform. In wide-area domains

like the one in which our programmer operates, this results in slow display and update of windows,

and an inability for a user to select alternative viewing tools without the intervention of the repos-

itory administrator. ,.

5 - Conclusions

This paper reviewed three example information retrieval systems currently in use by a broad

diversity of users. I focussed on computer-supported repositories for software artifacts (i.e., com-

13



ponents,documents,testsuites,executableimages,etc.)ratherthanaddressingthemorebroadly-

scopednotionof aninformationrepository,whichcouldeasilyencompassentitiessuchaspublic

libraries.

While thesesystemswerenotexplicitlydesignedassoftwarerepositories,theydoeachprovide

someaspectof repositoryrequirements.Eachisa legitimatestepforwardin utility from earlytech-

niquesfor wide distributionof software.This analysisleadsto thefollowing proposalfor perceiv-

ing thecurrentstateof softwarerepositoryefforts from thestandpointof informationsystems.

Generation 1 - Program Libraries

This includes not only traditional compiler libraries, but also more distributed mechanisms

such as the Ada Software Repository [2] and the various archives for news groups such as

comp.sources.unix.

Generation 2 - Information Servers

Examples of this generation include archie, autoLib, and WAIS. The emphasis here is on the

indexing and retrieval mechanisms, rather than upon deep representation.

Generation 3 - Componen t Bases

Fine-grain characterization of components and interrelationships distinguishes this generation.

The nature of reuse in this generation is compositional, and is typified by the Department of

Defense STARs efforts and the Japanese Software Factory projects.

Generation 4 - Software Knowledge Bases

This generation provides deep knowledge about representation, generation, and composition

of components and design schemes and the process of softwa_-e development.

My separation criteria for repository generations involves the nature and accessibility of the

knowledge of each artifact that comprises the repository. Generations one and two provide wide

access to artifacts, but little supporting infrastructure (although it might be argued that autoLib
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could throughtheproperconfigurationeffortsof arepositoryadministratorbe turnedintoarudi-

mentarygeneration3 system).Generationsthreeandfourprovideincreasinglyrich information

concerningthenatureof theartifactscontainedwithin them.However,with this richnesscomes

increasingspecializationof domain,andincreasingdifficulty in supportinginteroperabilitybe-

tweenrepositories.Thecomponentbaseservicesof todayandthesoftwareknowledgebaseservic-

esof tomorrowshouldnot loosesightof thedesigngoalsof today'ssuccessfulinformationservers.
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