NASA-CR-190630

Assessing Repository Technology
Where Do We Go From Here?

- : TO)I 1S

-2 -cre

N507 )

e David Eichmann

West Virginia University Research Corporation ,6 ) 9;2
. 2/28/92
o
f
N ~ I
- n o
™ m o
1 — "
~ 3 -
o} o -
z > o)
o~ Cooperative Agreement NCC 9-16
E Reseatch Activity No. SE.43
™M
© - NASA Johnson Space Center
e Information Systems Directorate
x le Information Technology Division
o
C
+
W o
Qo C
Z W :
— T
wxL R
[¥5] Q-  EIETRTE s
u) (.
v > o
ne o
4D n
-~
x

- FiCis

Research Institute for Computing and Information Systems

e University of Houston-Clear Lake

Comnuting and Information Systems)
D

REPASITORY TECHNILOGY.
22

(NASA-CR-190630)
GO FROM HERE?

'“"TECHN!CAL REPORT




The RICIS Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information Systems (RICIS} in 1986 to encourage the NASA
Johnson Space Center (JSC) and local industry to actively support research
in the compiiting and information sciences. As part of this endeavor, UHCL
proposed a partnership with JSC to Jointly define and manage an integrated
program of research in advanced data processing technology needed for JSC's
main missions, including administrative, engineering and science responsi-
bilities. JSC agreed and entered into a continuing cooperative agreement
with UHCL beginning in May 1986, to jointly plan and execute such rescarch
through RICIS. Additionally, under Cooperative Agreement NCC 9-16,
computing and educational facilities are shared by the two institutions to
conduct the research. _

The UHCL/RICIS mission is to conduct, coordinate, and disseminate research
and professional level education in computing and information systems to
serve the needs of the government, industry, community and academia.
RICIS combines resources of UHCL and its gateway affiliates to research and
develop materials, prototypes and publications on topics of mutual interest

16 its sponsors and researchers. Within UHCL, the mission is being

tmplemented through interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-
tion, Human Sciences and Humanities, and Natural and Applied Sciences.
RICIS also collaborates with industry in a companion program. This program
is focused on serving the research and advanced development needs of
industry.

Moreover, UHCL established relationships with other universities and re-
search organizations, having common research interests, to provide addi-
tional sources of expertise to conduct needed research. For example, UHCL
has entered into a special partnership with Texas A&M University to help
oversee RICIS research ani education programs, while other research
organizations are involved via the “gateway” concept.

A major role of RICIS then is to find the best match of sponsors, researchers
and research objectives to advance knowledge in the computingand informa-
tion sciences. RICIS, working jointly with its sponsors, advises on research
needs, recommends principals for conducting the research, provides tech-
nical and administrative support to coordinate the rescarch and integrates
technical results into the goals of UHCL, NASA/JSC and industry.

bt

Kl .

i

|
]

K. .

SR

L}

IL\

L.. Koo

L

[



[ O I |

(D

SRR (A

(s

Assessing Repository Technology
Where Do We Go From Here?






I

{l LI

I

( TR MR R ( n

(!

RICIS Preface

This research was conducted under auspices of the Research Insfitute for
Computing and Information Systems by Dr. David Eichmann of West Virginia
University. Dr. E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the Information Technology Division, Information
Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between
NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA
technical monitor for this activity was Ernest M. Fridge, III of the Information
Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the author and
should not be interpreted as representative of the official policies, either express or
implied, of UHCL, RICIS, NASA or the United States Government.






([ |

{

{ q |

¢

!

i

1R A N (A

] ,"n
i
oy

LT}

SoRReLL

West Virginia University
Software Reuse Repository Lab

Deparmment of Statistics and Computer Science
West Virginia University

Morgantown, WV 26506

(304) 293-3607 email: sorrel@cs.wvu.wvnet.edu

Assessing Repository Technolo
Where Do We Go From Here

David Eichmann

February 28, 1992

gy



I

(f ]

N ]

I




1

i

{

-—

t o { (I

¢!

gl

Assessing Repository Technology:
Where Do We Go From Here?"

David Eichmann'

Software Reuse Repository Lab (SoRReL)
Dept. of Statistics and Computer Science
West Virginia University

Send correspondence to:
David Eichmann
SoRReL
Dept. of Statistics and Computer Science
West Virginia University
Morgantown, WV 26506
email: eichmann@cs.wvu.wvnet.edu

* to appear in the International Journal of Software Engineering and Knowledge Engineering.

¥ This work was supported in part by NASA as part of the Repository Based Software Engineering project,
cooperative agreement NCC-9-16, project no. RICIS SE.43, subcontract no. 089 and in part by a grant from
MountainNet Inc.



Abstract

Three sample information retrieval systems, aréhieI éut&Lib, and
WALIS, are compared as to their expressiveness and usefulness, first
in the general context of information retrieval, and then as prospec-
tive software reuse repositories. While the representational capabil-
ities of these systems are limited, they provide a useful foundation
for future repository efforts, particularly from the perspective of re-
pository distribution and coherent user interface design.

R

qg

L



! l {

1 - Introduction

As information becomes an increasingly important sector of the global economy, the way in
which we access that information — and thereby the way in which we access and structure know!-
edge — becomes a critical concern. The cnginecdng of knowledge is quickly becoming an area of
research in its own right, independent of its pareht disciplines of artificial intelligence, database
systems, and information retrieval; consider the title of the journal that you now hold in your hands.
Wegner recognized the value of knowledge engineering in his‘landmark article on the role of cap-
ital in software development:

“Knowledge engineering is a body of techniques for managing the complexity of knowledge... itis

capital-intensive in the sense that reusability is a primary consideration in the development of books,
expert systems, and other structures for the management and use of knowledge.” [10, p. 33]

Just as Wegner observed that the products of software engineering are capital, so are the products
of knowledge engineering a form of capital. Identification, structure, and locatability are critical to
the enabling of this knowledge capital. Innovation in this area is driven from two diverse perspec-
tives, the traditional perspective of researchers and a not-so-traditional perspective of what might

be referred to as an information underground.

The goal of this information underground is not necessarily an extension of the state of the art,
but a rather more pragmatic development of an informational infrastructure [4]. The prototypes re-
sulting from this type of work propagate quickly over the Internet, immediately generating large
numbers of users. Even while still experimental, systems that provide distinct benefit frequently
need to limit access in order to maintain reasonable system performance for other users of the un-

derlying platforms.

My reference to this community as an underground is calculated, for even within the computer
science community (let alone the academic or commercial communities as a whole), only a small
percentage of individuals are aware of such information systems. This article was spurred by my

interest in software repositories, a number of conversations that I’ve had in recent months, and the

1



benefit I think can be gained by widening the forum for such systems to a larger audience.

In particular, it is interesting to evaluate these systems as an enabling technology for software
reuse repositories. Repositories, and by implication, information retrieval mechanisms, play a crit-
ical role in successful reuse. This statemcrit disagrées with the conventional wisdom [9], that reuse
is a social and managerial issue, and not a technical one. A closer examination of the conventional
wisdom leads to a recognition that without a repository with substantial representational capability

many of the social and managerial requirements cannot be supported.

This paper surveys a number of interesting information server projects, with an eye towards
enabling technologies. Section 2 lays down a typical scenario in which such systems are used.
Sample sessions for three systems appear in section 3, and an analysis appears in section 4. I con-

clude with remarks on the potential of future systems.
2 — A Scenario and User Profile

Consider a programmer involved in a research project in some reasonably sized university. I
choose this context not only for its personal familiarity, but also because

. such projects typically take place in facilities with rich local and wide area network connectiv-
ity; |

« programmers typically have a personal workstation with substantial display capabilities (e.g.,
X-Windows); and | B

« there are strong incentives in avoiding the redevelopment of capabilities available from other

_projects, either local or remote.
In effect, the development environment is one which is typical, or will be within the next few years.
In addition, the social infrastructure and equipment infrastructure for a successful reuse program

are present, if not an explicit charter for reuse, or a true repository.

Our programmer is now faced with a dilemma — aware that there is a strong likelihood that a

R &9 s 0 @ s wm s W



{

it

{l

{

("

{

needed tool or component already exists somewhere out on the network, but uncertain as to where
to begin the search in the thousands of systems that currently make up the Internet, or even how to
identify the needed artifact. Until recently the only choices included asking acquaintances for ad-
vice (although the study by Schwartz and Wood [7] demonstrated the amazing potential for even
ad hoc mechanisms such as this), poring over intermittently posted electronic digest news articles
for likely sounding names, or manually searching a few sites maintained by volunteers and acces-
sible through anonymous ftp. Obviously, our programmer is ripe for recruitment as a client of the

services provided by the information underground.
3 — Example Repositories

Early in the evolution of the Internet, system administrators began adapting file transfer facil-
ities into what today is referred to as anonymous ftp, comprised of publicly accessible accounts, a
limited file space, and a restricted command set. These facilities, while amazingly popular as a dis-
semination tool, presume a fair amount of user knowledge, not the least of which being where to
look for the sought-after artifact. This section describes three information systems, archie, WAIS,
and autoLib. Each of these systems has a distinct design focus, anonymous ftp access in archie,
document retrieval/display in WAIS, and a limited form of electronic library in autoLib. However,
the resulting systems have much in common, and their look and feel has several similarities. These
systems were selected for discussion because they were designed primarily as information retriev-

al systems, rather than as software repository systems.
3.1 - archie

The archie system is “an on-line resource directory service for an internetworked environment”
[3]. While archie isn’t truly a repository per se, since it doesn’t actually contain the artifacts that it
classifies, when treated as a whole with the diverse anonymous ftp sites that it references, it does
fit into our discussion. Archie grew out of the efforts of Emtage and Deutsch to automate the cre-

ation and referencing of previously hand-maintained lists of anonymous ftp sites. A demon peri-

3



(e (@] (o) [ 7] searet ype] [Soet Typa] [ice Tovet] [Sevtiogs-.]

Status: Helcome to xarchie 1.3

e [ Jowe: [

Figure 1: archie screen upon entry
odically sweeps through a list of known ftp sites, creating a list of artifacts accessible at each of

them. This list of artifacts is then indexed for access by clients throughout the Internet seeking a

site for some particular item.

I describe £hc xarchie user interface here, dcvelc;pcd by Ferguson forthc X-windows systeth
from the ASCII user interface developed by Kehoe and the Prospero system developed by Neuman
[5]. Xarchie and archie together form an example of a client/server application architecture, where
the client application (xarchie) provides user-local support for commands, information display, and
communication to the server apphcauon (archie), which provides access to a remove facility, in
this case the archie databasc Flgurc 1 shows xarchxe s screen at entry The series of buttons across
the top of the window control the activity of the user’s xarchie client and its interaction with an
archie server and the fti);;és Wthh the server mdcxes Flgure 2 shows the xarchie settings panel
including in particular the mode of search (exact, substring, regular expression, etc.), the order that

hits are presented (sorted by name, modification date, etc.), and the archie server host to interro-

gate, in this case archie.sura.net.

Entering a search term for an artifact, say xarchie.tar.Z, a compressed Unix tar file of the xarch-
ie source directory, and clicking the query button initiates the search, as shown in figure 3. As the
search progresses, xarchie updates the status line, indicating establishment of connection, progress,

and completion.

ar €1 Q0 W g I A |

a8

L

b

L

& e e



I

{l

(I

[ Xarciie Bettings Pancl M. B
[mame | I\ppl'(”n.f-llt’

(St e et
[Sart Fode:] dfaute
- rd:lo aura,net

Max Hits: 99

Initial Timsout: 4
Botries: 3

[Rice tavel:]0

Local Ftp Directory: .
Ftp Transfer Type: binery

Figure 2: archie settings window

(5 [osary] [ahore] save] rep) sasech zype] [sovt type] i Lot ] [seteimge-..]
Status: Comnected to 128,167 .254.179

| 1]

Search Term: [xarchie.ter.Z

| Mode: | | Bate: |

Figure 3: Initiating an archie search

Size: | Hode: | ] ate: |

Figure 4: archie search results-
Figure 4 shows the results of the search as a list of sites in the left scrolling region in the middle

of the window. Selecting a particular site by clicking on it results in figure 5, with the location, size,

1]

N i}

{!

and so on for this artifact on this site. A single instance of a match at the selected site automatically

selects the middle scrolling region (corresponding to the directories) and the right scrolling region



| forwiss, uni-passau,
“qxc]ah sen,rain,con

w6

Search Ters: [Rxe.w.z
Host: qulcli.lw.nin.m
tocation:  |/pub/X11

File: [xarchie,tar.

Size:

163431 Hode: [rrer—— — JBete: [ct 20 22118

Figure 5: Selection of a site and copy

R ] — VWW :ﬂ |

Questions:

connection machine
dsontic

netnews_servers

Sources:

PEVOSTEYT

wrul-adn—uclnvn st
supTene-ct. sxc

[Fev] (Gpen] (e102]

[Help][ouit] staus:

Flgure 6: WAIS main window

(corresponding to the files). Multiple matches (typical with inexact matches) require the selection
of both a directory and a file for the lower fields to be filled in. Clicking the ftp button establishes
an anonymous ftp session to the archive site and retrieves a selected artifact into the local directory

shown in the settings panel (shown in figure 2 as ‘., the curfent directory).

3.2 - WAIS

The Wide Area Information Service (WAIS) is an experiment in text-based distributed infor-
mation systems by Thinking Machines and a number of collaborators [4]. WAIS supports the no-
tion of mﬁltiple sources of information; a user selects one 6r more sources to respénd to a question,
phrased as a string of words which are deemed relevant to thé question. Figure 6 shows the main

window, containing a list of previously phrased questions and a list of already known sources.

6

o0 @ em @i e W[



(| ("

{

{

i e —————

Source Idit
Wane: [sorrel-ada-archives. src
Server: |129.71.11.2
Service: [210
Database: [sorrel
Cost: o
Units: [ free
Naintairec: [reuseth.cs. vou. wonet. edu
Description:

Server created vith WAIS rolease 8 h3 on Sep 20 14:59: 46 1991 by reuseéb.cs. wwvu. vonet. edu
arently-To: wais-directory-of-servers . think. ¢

UL

The files of type taxt used in the index wers:
fusr06/reuse/sintel. ada
/Just06/reuse/stars/tapel
fuscr06/reuse/stars/tape2

This database is the full source for the Softwars Reuse Repository Lab
(SoRReL) mirror of the SINTEL20 Ada Software Repository and cur copy
of recent deposits to the DARPA STARS project.

Gl eent]
Figure 7: Source window for SORReL archive

Opening a source displays a window containing information concerning the nature and location of

that source, as shown in figure 7 for the Ada archive that the SoORReL group maintains. This infor-
mation includes the Internet address and service port that the server for the source listens to, as well
as unit and cost fields (as yet unused) and a textual description of the source. A single server can
support multiple sources, each separately indexed and independently accessible. A distinguished
source, maintained by Thinking Machines, acts as a directory to other sources by indexing source
definitions such as the one shown in figure 7. These source definitions are retrievable using the
same question mechanism employed for other questions. The sole distinction is in the saving of
results; saving a source definition places it in the directory containing the user’s known sources,

making it accessible for subsequent questioning.

Figure 8 shows the question window following a successful search of the SoRReL source. Us-
ers select one or more already known sources to be consulted for this question by clicking the add
source button and selecting from the resulting display of sources. The “Tell me about:” field ac-
cepts a collection of words to be used as a specification of the question. WAIS uses relevance feed-
back as its search mechanism; documents which match one or more of the words contained in the
“Tell me about:” field are added to the collection of matching documents, and then presented to the

user in the “Resulting Documents:” field ranked by a relevance metric, an indication of the fit to



X WAS Question: sorrst 5
Tell ne about:
e =

In Sources: Sinilar to:
I sorrel-ada-archives. st

[2dd souzce][Delste Sourcs|[add Document][Dalsts Document][Help][Done]

Resulting 1000 18. 7% codegsnb. ada  /fusr06/reuse/stars/tapel/cta-eda2/
documents: 638 164.6R otremm.doc  Ausc06/reuss/stars/tapel/cta-sda2/
401 8.6K codegens.ads  Ausr06/reuse/stars/tapel/cta-eda2/

307 505. 0K piwge83l.svc  /usr06/reuse/sintel. ada/benchaarks/
307 671.4K piwgeSL.src  fusrl6/reuse/sintel. ada/benchaarks/
260 149.6x dguide.lst  /usr06/reuse/stars/tapel/cta-sls2/

status: [lound 40 documents. === 41

&m;l.dnc Tosr S Trousaletars tape 1/cta —s0a 2/ I 1|

- fo 1-#
“pl. Introduction"$

iThe ADA streams software is a reusable set of generic packages
for the crestion and manipulation of stream objects.
Conceptuslly, streams may bs viewsd as a ralization of
ssquentisl “data structures such as arrays, inked lists wand
sequential Files. Any sequence or flov of & data type and
manipulations on that flov can be rspresented by = strean.
Represen these flowe as stremms will erhance the modularity
and reusability of ADA program components.  Progrums constructed
using streaas may be sasily reconfigured for new lications by
subsituting stresa sources (or feeders), by processing
modulss or by rerouting stresm flows. Streams  support
*programming in the large” bzl hiding the details of the
rocedural contrel flow and by highlighting the data that flows
stwesn systam components.

The stremms softwsrs corsists of two packages for creating and
nanipulating streams. Thess two packages (Safe_streans and

[8d section][?ind Key][Next][Previous][Save To rile][oone]

status: [ ] |
Figure 9: Viewing the streams document o

the words occurring in the query string. Relevance feedback has been shown to be more effective

than boolean expression as a search mechanism for textual information (a report of one such study

appears in [6]).

Selecting a result document for viewing retrieves the document from its server and displays it
in a window such as that shown in figure 9, which contains a portion of a document describing an
Ada imﬁlémentation of a stream paéi(ége. The find key button scsolls the window and highlights
in turn each occurrence of search wq@s in the document. WALIS lets users specify an arbitrary pro-
gram on the user’s machine as the viewer to be invoked for a given class of documents, with the
class defined using the suffix of the document’s file name (for example, xgif is typically used to

display images whose names end in *.gif’).

Qi @ en «mo oW ey e e 4 (

A e i eW



l

i |

Tterative refinement of a search that results in documents viewed with the text viewer is accom-
plished by selecting a salient portion of the document and clicking the add section button. An in-

dication of the text selected is added to the “Similar to” field in the question window. Subsequent

searches then append these refinements to the primary search phrase.

3.3 - autoLib

The autoLib system, under development by Barrios Technology and NASA'’s Johnson Space
Center, is a monolithic application supported by a commercial relational database system (com-
prising the meta-information) and a UNIX file system (comprising the objects themselves). The
structure of information provided by archie and WAIS is flat in the sense that there is little structure
provided other that an indexing mechanism. The autoLib system, on the other hand, supports both
a flexible single inheritance mechanism for definition of meta-information, and the definition of
heterogenous collections of objects drawn from the inheritance scheme [1]. Figure 10 shows the

main window for autoLib, including the topmost collection and its immediate sub-collections.

Clicking on an entry in the list moves the user down the hierarchy of collections to the corre-
sponding subcollection, and that collection’s subcollections are then displayed. The three buttons
at the bottom of the window allow the user to step back up one level in the collection hierarchy, to

move directly to the top of the hierarchy, or to view the objects associated with the current collec-

tion, respectively.

Figure 11 shows the object browser window, displaying the contents of one such collection.

The three columns of information include the object’s identifier, its filename, and a .short title.

The object viewer window for object 2446 appears in figure 12. AutoLib employs a commer-
cial relational database package for information storage, but the user model for autoLib is object-
oriented, defined not only as a hierarchy of class definitions, where superclass names are prefixes

of subclass names, but also as a hierarchy of collections, as mentioned earlier. AutoLib maps each



T LpFrent Subtect: 5 avtolib Hetuorek,

Space Shuttle Program
Demonstration and Test
Johnson Space Center
Ames Research Center
Lewis Research Center
NASA Headguarters
Space Station Program

A e a s s e

[ Back || Top } | Objects | All

anure 10: autole mam wmdow

.0: Object Viewer I
Obe etadata reer

Author | Abstract | Keyuords | View Next | Prev | Copy | Help | Close

UNIQUE OBJECT 1D 3 2446
OBJECT NAME H 00000101, GIF
T¥PE 10 H GD
TYPE NAME H Planetary Image
RADORESS H /al/carthimeges
VERSION H Hone
LIBRARY ENTRY DATE: 02-0CT-91
TITLE H

PACIFIC OCEAN
FORMAT T Gif i

Subclass >>Planetary Image{{ Data [———
[File 2ad6 te g of ]

Figure 12: autoLib object viewer
concept (collectmn class, object, etc.) into a corresponding database relation and maps each field

thc object ﬁlename, 00000101 GIF for ochct 2446) to an att:nbute in

inan autoberwmdow (e.g.t

thc correspondmg relation. The system dcnves the mterpretanon for a given ObJCCt in the generic

object relation from the field definitions stored by autoLib in the class field relation. While this is

10

gl €. € L

il

Vg

il

ol w4«

L1



(

Object Browser

[Select] Function| PageUp| PageDn]| Help | Close | { Tools [Nat.Lang.

2446 00000101 .GIF PACIFIC OCEAN
4980 00000101,GIF PACIFIC OCERN
43881 00000102.GIF PACIFIC OCEAN
2447 00000102.GIF PACIFIC OCERN
2448 00000103.GIF PACIFIC OCEAN .
49682 00000103 .GIF PACIFIC OCEAN .
4983 00000104 .GIF PACIFIC OCEARN .
2449 00000104.GIF PACIFIC OCEAN
2450 00000105.GIF PACIFIC OCEAN
4984 00000105.GIF PACIFIC OCEAN
4985 00000106.GIF PACIFIC OCEAN
2451 00000106.GIF PACIFIC OCEAN
2452 00000107 .GIF PACIFIC OCEAN
4986 00000107 ,GIF PACIFIC OCEAN
4987 00000108,GIF CHILE T
2453 00000108.GIF CHILE

2454 00000109.GIF CHILE

4988 00000109,GIF CHILE

4989 00000110,GIF CHILE

2455 00000110.GIF CHILE

2456 00000111 ,GIF ARGENTINA
4990 00000111 .GIF ARGENTINA
4991 00000112.GIF ARGENTINA
2457 00000112.GIF ARGENTINA
2458 00000113,GIF ARGENTINA .
4992 00000113.GIF ARGENTINA -
4993 00000114 .GIF ARGENTINA
2459 00000114 .GIF ARGENTINA
2460 00000115.GIF ARGENTINA
4994 00000115,GIF ARGENTINA
4995 00000116.GIF ARGENTINA
2461 00000116.GIF ARGENTINA

“ e s e e e

“ e 0 4 e s

page 1 of 211°

Figure 11: autoLib object browser
not a true object-oriented database, it provides much of the flexibility and rich structural mecha-

nisms of a object-oriented database. The integration of objects and relations has been carried much

further in work on extensible database systems such as POSTGRES [8].

In addition to the collection browsing mechanism described here, autoLib supports traditional
boolean expression retrieval and a form of relevance feedback. Each object class has associated
with it a tool, which is used to view the object itself, as opposed to the metadata characterizing that
object, i.e., the fields presented in the object view window. Unlike WAIS, where tool execution
occurred on the user workstation, tool execution in autoLib occurs on the autoLib server — the user

workstation merely acts as an X-windows display. -
4 — A Brief Comparison

Viewing these three systems as potential software repositories is interesting, and at the same
time somewhat unfair to their designers, as none were created with that purpose in mind. However,

11



systems such as these are frequently called into service in such contexts, and the flexibility and

adaptability exhibited provides interesting concepts and features for inclusion into systems specif-

ically intended as repositoriici:;.i TaBlé 1 Vsirlrrnrmérrizcs majorﬂz;SpééiS of the three systems. The popu-

Table 1: Systems Synopsis

I archie WAIS autoLib

architecture “client/server client/server monolithic
# server sites ~10 ~100 ] 1
interfaces X-Windows, X-Windows, X-Windows

ASCIH ASCI (ASCII under development)
retrieval mechanisms || pattern-matching (on | relevance feedback browsing,

name only) boolean expression,

relevance feedback (on
abstract only, not full text)

information domain material available by | textual information NASA flight center library

anonymous ftp materials
information stored name, word occurrence, full text / image,

location, headline, index terms,

file attributes full text meta-information

) ] . (administrator-defined)

archiving decentralized decentralized centralized
responsibility
indexing - centralized decentralized centralized
responsibility
support required none moderate high
(archive) H
support required moderate low high
(indexing)
promise as a poor limited a potential framework
repository
availability public public private

il an el

g1

larity of archie stems not from its rich representation scheme or novel search mechanisms, but
rather from the low levels of effort required on the part of archive administrators and users to em-
ploy the system. It is an excellent example of how a limited purposc system implemented by vol-
unteers can provide a valuable resource. Referring to archie as a software repository, however,
stretches the definition of repository perhaps a little too far. Consi‘(.ieration of an artifact at a site as
a candidate component requires that the user knows both the name and the purpose of that artifact,

and the retrieval of the complete artifact (irrespective of the total size) before further consideration

sl i

can be made.

12



{

(I

i1
i

(!

”| ! ‘
"

)

{ {

{

The display facilities of WAIS alleviate the limitations of archie by presenting the user with a
flexible means of query specification (without requiring classification by the archivist) and the op-
portunity to select from a variety of candidates and view portions of them prior to retrieving the
complete text of the final selection. WAIS further increases flexibility in the nature of repositories
by supporting interrogation of multiple sources for a given query and the generation of both public
and private sources. (Note, however, that there is no technical impediment to doing this with archie
as well — the archie designers simply chose global indexing rather than regional or local indexing.)
The principle virtue of WALIS, its treatment of all material as text to be indexed, is also its principle
failing from our perspective — there is no discrimination between code, supporting documents, and

so forth — resulting in slightly more cumbersome search behavior.

The use of an administrator-defined set of collection and class definitions provides autoLib a
greai deal of flexibility in organizing the information. In addition to the ability to organize the glo-
bal structure of the information base, this definitional facility supports meta-descriptions of arti-

facts, a useful feature in our chosen context.

The structuring, classification, and retrieval mechanisms of autoLib are by far the richest of the
three systems compared here. Much of this power obviously stems from the fact that autoLib is a
proprietary system, whereas archie is a volunteer effort and WALIS is a research project. However,
autoLib’s look and feel suffers dramatically in our sample context. Unlike archie and WAIS, which
use a client/server paradigm, autoLib executes solely on the server platform. In wide-area domains
like the one in which our programmer operates, this results in slow display and update of windows,
and an inability for a user to select alternative viewing tools without the intervention of the repos-

itory administrator. -
5 - Conclusions

This paper reviewed three example information retrieval systems currently in use by a broad

diversity of users. I focussed on computer-supported repositories for software artifacts (i.e., com-

13



ponents, documents, test suites, executable images, etc.) rather than addressing the more broadly-

scoped notion of an information repository, which could easily encompass entities such as public

libraries.

While these systems were not explicitly designed as software repositories, they do each provide
some aspect of repository requirements. Each is a legitimate step forward in utility from early tech-
niques for wide distribution of software. This analysis leads to the following proposal for perceiv-

ing the current state of software repository efforts from the standpoint of information systems.

Generation 1 - Program Libraries
This includes not only traditional compiler libraries, but also more distributed mechanisms
such as the Ada Software Repository [2] and the various archives for news groups such as

comp.sources.unix.

Generation 2 — Information Servers
Examples of this generation include archie, autoLib, and WAIS. The emphasis here is on the

indexing and retrieval mechanisms, rather than upon deep representation.

Generation 3 — Component Bases
Fine-grain characterization of components and interrelationships distinguishes this generation.
The nature of reuse in this generation is compositional, and is typified by the Department of

Defense STARs efforts and the Japanese Software Factory projects.

Generation 4 — Software Knowledge Bases
This generation provides deep knowledge about representation, generation, and composition

of components and design schemes and the process of software development.

My separation criteria for repository generations involves the nature and accessibility of the
knowledge of each artifact that comprises the repository. Generations one and two provide wide

access to artifacts, but little supporting infrastructure (although it might be argued that autoLib

14

L [ 1

€

|

€W i &0 0 &0 €Nl g @



U

|

LN

{1

{

could through the proper configuration efforts of a repository administrator be turned into a rudi-
mentary generation 3 system). Generations three and four provide increasingly rich information
concerning the nature of the artifacts contained within them. However, with this richness comes
increasing specialization of domain, and increasing difficulty in supporting interoperability be-
tween repositories. The component base services of today and the software knowledge base servic-

es of tomorrow should not loose sight of the design goals of today’s successful information servers.

15



References

10.

BarriosrTechﬁolTogry», dutbLib Automated Online Library Vérsion 3 Product Overview, March
1990.

R. Conn, “The Ada Software Repository and Software Reusability,” Proceedings of the Fifth
Annual Joint Conference on Ada Technology and Washington Ada Symposium, 1987, 45-53.
(Also appears in Tutorial: Software Reuse: Emerging Technology, W. Tracz (ed.), IEEE
Press, 1988, 238-246.)

A. Emtage and P. Deutsch, “archie — An Electronic Directory Service for the Internet,” Pro-
ceedings of USENIX, San Francisco, CA, January 1992, 93-110.

B. Kahle, Wide Area Information Server Concepts, Thinking Machines Inc., November 1989.

C. Neuman, The Virtual System Model for Large Distributed Operating Systems, The Univer-
sity of Washington, 1989.

S. E. Robertson and K. Sparck Jones, “Relevance Weighting of Search Terms,” Journal of
the American Society for Information Science, 27 (1976), 129-146.

M. F. Schwartz and D. C. M. Wood, “A Measurement Study of Organizational Properties in
the Global Electronic Mail Community,” Technical Report CU-CS-482-90, University of
Colorado, Boulder, August 1990. :

M. Stonebraker, L. A. Rowe, and M. Hirohama, “The Implementation of POSTGRES,” JEEE
Transactions on Knowledge and Data Engineering, 2, 1 (1990), 125-142.

W. Tracz, “Software Reuse Myths,” ACM SIGSOFT Software Engineering Notes 13, 1(1988)
17-21. ‘

P. Wegner, “Capital-Intensive Software Technology,” IEEE Software 1, 3 (1984) 7-45.

-

16

I Gl @ | Wl e e

Wil

®i @ @ @l



