Enriching Software Process Support by
K nowledge-based Techniques

Barbara Dellen, Frank Mauteliigen Miinch, Martin ¥rlagé

Fachbereich Informatik, Uwaeérsitat Kaiserslautern, Poasth 3049, 67653 Kaiserslautern, Gergnan
{verlage, dellen, mauremuench}@informatik.uni-kl.de

Abstract. Repesentations of activities dealing with thevelepment or maintenance of softevare called
softwae piocess models. Becess models allow for communicatioeasoning guidance improvement,
and automation. Wo appoades for loilding, instantiating and manging piocesses, namely CoMo-Kit
and MVP-E, ae combined toudld a moe powerful oneCoMo-Kit is based on AI/KE teoolayy; it was
developed for supporting complalesign pocesses and is not specialized to sofendwelopment pr-
cesses. MVP-E is agress-sensitive softweaengineering eironment for modeling and analyzing soft-
ware development prcesses, and guides softeaeelopes. Additionally it provides services to establish
and run meas@ment pogrammes in softwar olganizations. Because both appthes wee developed
completely independently major igtation eforts are to be made to combine their both advgeta This
paper concenttes on theasulting languge concepts and their oparonalization necessary foubding
automated prcess support.

1 Introduction

Processes are present whamaenformation is created, transformed, or communicated. Although we dis-
tinguish between diérent types of processes (e.gisimess processes, decision processes, andaseftw
development processes) these types share common properties. Understanding commonalities-and dif
ences between process types igaflctor for better process support. Process support includesviedpro
communication, detailed reasoning about process features, guiding people when performing process
improving both processes itself and their results, and automating process steps in @itedétegminis-

tic process behdor [10, 33]. These purposes requingpéicit process representations (i.ptpcess mod-

els).

The \ariety of &isting process support systems, frample process-sens#i software engineering &n
ronments or wrkflow management systems, corresponds to @niety of process types. In this paper we
focus on software deelopment processes and saite processes. Softwae deselopment prcessis a
(sub-)set of the technical agties to huild a softwae product Maintenance tasks are subsumed by this
phrase. Asoftwae piocessincludes all soft@re deelopment processes and alganizational processes
needed to dve the project (e.g., managerial processes). The addition &eftimay be omitted in this
paper for the sak of brevity. Interpretation of deelopment process models, performed bpracess
engine is calledenactmento emphasize the necessity of user participation for process performance [13].

Process-sensite software engineering @ironments use process models tovie sophisticated support
for both softvare deelopers and managerial oganizational role§l5]. Enaction updates the represented
process state toelkep track on the realesld process. This @arks quite well if the process betes as
"This work is supported by the Deutscherfchungsgemeinschaft as part of the Sonderforschungsbereich 5@lotibeent of Lage Systems

with generic Methods”. See also theknation in the appendix.
* In alphabetical order

planned. Neertheless, from time to timevents may occur which are not considered when modeling the
process. The realavld process and its model do not matcih lmger Process enginess the part of pro-
cess support eironments which is responsible for process enactment, shouldl@rmechanisms for
replanning a project under enaction. This addresses the problemwcets eolution[24]. Without these
featureslsuch ananonment is not applicable in realend projects. Unfortunatelynly limited solutions

do «ist.

Providing such a pwerful ervironment is one goal of ourask. Two already risting approaches from
knowledge engineering and sofive engineering domains are synthesized. The Conceptual Model Con-
struction Kit (CoMo-Kit) was deeloped for supporting compledesign processes (e.g., city planning).
The Multi-View Process Brironment (MVP-E) supports modeling and analyzing safemdeelopment
processes, and guides sadte deelopers. Additionally it preides services to establish and run measure-
ment programmes in sofame oganizations. Both research prototypes weneetiped completely inde-
pendently Suitability of both approaches to real problemssvdemonstratg@0,28]. By studying the
approaches, relating their underlying assumptions, and synthesizing theamveelgetter understanding
about the principles of process suppostimments. The aim is to prale knavledge based technology

for software engineering problems. The synthesized approach showldt@lpyescribe deslopment pro-
cesses without hindering creaty. Necessary restrictions and rules delineate human process performance.
It is intrinsic to softvare deelopment processes that atyaime in the project the ne steps can be
described precisely whereas the latter steps do na& &asharp shape. Process suppoviremments
should preide mechanisms to adjust the project plan from time to time. Merezapturing dependencies
during product eolution allovs goal-directed backtracking in order to bring the project back to the right
track. Although this vision is still to be achesl, promising results of synthesizing CoMo-Kit and MVP-E
already eist. They concentrate primarily on technical issues rather thariging support for project man-
agers (e.g., resource scheduling).

As a first step of inggration a careful analysiswealed commonalities and fiifences of CoMo-Kit and
MVP-E. This was used to define requirements for process-senstftware engineering @ronments

from our particular perspewd [37]. The intgration of CoMo-Kit and MVP-E requires the recognition of
similar concepts. It is interesting that on the one hand the concepts of CoMo-Kit are a subset of thos
present in MVP-L; this is a hint that both approaches contain concepts that are intrinsic to processes
general. On the other hand, the functionality of the CoMo-Kit process engieeds MVP-S by alternat-

ing modeling, planning, and enaction and supporting change processes.

The net two steps of intgration, the definition of a common process representation schema or language
and the implementation of a prototypical process engine, are discussed in thi pamare of the e
language, which is callddodeling Languge and Opeational Support for SoftwarProcesse$MILOS),

is enactable a common process engines. Special attention is paid to the traceability of the requiremen
The way of collaboration between CoMo-Kit and MVP-E is illustrated by use of a scenario which
describes replanning a process under enactment:

The scenario embodies a model of a standard implementation processxasifgealescribed ifi8]. A
modules design is complete and source code is to be created. In parallel test data is et eitdeer by
analyzing the code (in the case of a later structural or white-box testing) or by eliciting the data out of th:
requirements document (in the case of a later functional or black-box test). The choice of selecting the fir
or second alternat of test data destion depends on the modueontrol flev compleity. If complex-

ity is high then structural testing is applied else functional testing should be selected. Because the module
complity is not knavn prior to its design or implementation (depending on the coityplmeasure)

there cart be assigned resources to the datavdioin process. As soon as theue is measured, project
management instantiates the corresponding process and schedulebopedeesponsible for it. Please
note that although this could be described as a simple if-then-else situation in a process script, the task

1-...there is much further researctork to be carried out in the area of safter processwelution. Understanding and
managing softare processwelution seems to be one of the mosfidifit challenges that the sofane engineering com-
munity is facing today ([24], p. 1126)

a process management system is much mdiieutlif Planning ma&s statements - sometimes inagwe
manner - about future objects. The more the project proceeds the more concrete such statements coulc
made. In the ab@ example, either devation of test data for functional or structural testing iswaid to

be instantiated. Otherwise resources for both processes are scheduled. Other situations to be manage
the process engine must be a refinement of already instantiated processes (e.g., insert a refinement of ¢
vation of test data for functional testing which includes\ejance or boundary analysis) and retracting
decisions already made (e.g., the sysseme'sign is modified and the module is split into modules).

We understand theark presented in this paper as aarmaple of hav knowvledge-based techniques can be
used to address one of the major problems in the area of automated support for managirey cidéivw
opment processes.

The paper is ganized as folles: The concepts implemented in MVP-E and CoMo-Kit areeyex in
Section® and3. Sectiord identifies requirements for process suppovirenments. Thg are dened
from a comparison of both approaches in [37]. Thegnation is described in the Sectidh8: Section 5
explains the intgrated system architecture, Secttmliscusses concepts of the greted language,
Section7 gives an rample, and SectioB outlines the operationalization of the language concepts. In
Section9 we compare our findings to related researctkwrinally, SectionlO summarizes the paper

2 MVP-E

The MVP project aims at support for management of softvwd@elopment processes from a saite
engineering perspeed. Properties of such processes are,Xample:

» Many people are wolved in a project and perform madifferent types of processes
* The processes last long, sometimeg&sd months or years.
* Not all process steps are kmoin adance when planning the project.

* Erroneous performance or bad process models require repeated performance, probably also of other
cesses than thaifed one.

The MVP project bgan at the Uniersity of Maryland and continues at Marsitat Kaiserslautern, Ger-
mary. Its goal is to preide MVP-E, an evironment as an instance of the ideasgettgped in the AME
project[6]. Special attention is paid to measurementvies which are essential when thevieonment
should be used by all roles of the project and tlgarozation[23]. MVP-E supports modeling, planning,
simulation, enactment, measurement, recording, and packaging oarsoftwgineering processes. The
main idea is to split descriptions of sofite deelopment processes into wis. Eery view is generally
defined as a projection of a process model that focuses on selected features of thi8ptocess

The language MVP-L is used to describeedlepment processes. It distinguishes between processes, prod-
ucts, resources, and their attiés which correspond to measurable qualities of the objects; processes,
products, and resources are instantiated with respect to types and related by a prdfgctApkerond
notation is used to represent GQM trees which are specifications of measurement goals from a speci
viewpoint[5]. The discussion of GQM is pend the scope of this pap@&iVP-L has beenwaluated in
several industrial settings (e.d20]). The case studies’ feedback became input\Joluéon of MVP-L.
Table1l summarizes the main concepts of MVP-L.

Figurel shavs an &cerpt of an MVP-L gample from the scenario alm It stems from a formalized stan-
dard implementation process defined in the IEEE Standard 1047489%ince the implementation pro-
cess can be seen as a typical process in aaeftite gcle, it is used throughout the whole paper to
demonstrate the modeling styles of théedlént approachesoFthe purpose of a comprehensible illustra-
tion, minor diferences among the process descriptions in the standard and the agaptpls were
accepted.

process_model ImplementationProcess (eWEﬁortData) is

process_interface What is the process name?

exports
effort : ProcessEffortData; — What attributes exist?
product_flow
consume
cswreq: ComprehensiveSoftwareRequirements;
desdoc: DesignDocument;
valdoc: ValidationDocument;
external: External;
produce
codedoc: CodeDocument;
entry_exit_criteria
local_entry_criteria
desdoc.status = 'complete’ and cswreq.status = 'complete’;
local_invariant
effort<=eff 0, — what should ever be true?
local_exit_criteria
codedoc.status = 'complete’ or desdoc.status = 'faulty’;

end process_interface \

process_body)
refinement What must hold for starting
. and terminating the process?
objects
sc: SourceCode;
td: TestData; — What sub-products are created?
oc: ObjectCode;

od: OperatingDocumentation; What are the sub-processes?

isw: IntegratedSoftware;
create_sc: CreateSource; /

What products are accessed?

What is produced?

create_td1: CreateTestData_just_from_reqs;
create_td2: CreateTestData_using_sc;
gen_oc: GenerateObjectCode;
perf_ins: Performintegration_without_Stubs_n_Dirivers;
cod: CreateOperatingDocumentation;
object_relations What alternatives for
((create_sc & create_td1 & gen_oc & perf_ins & cod) process performance exist
| (create_sc & create_td2 & gen_oc & perf_ins & cod));
interface_refinement
codedoc = (sc & td & oc & od & isw);
interface_relations
create_sc(swdes_descr => desdoc.swdes_descr, sc => codedoc.sc);
create_td1(swr => cswreq.swr, tregs => valdoc.tregs,
tplinf => valdoc.tplinf, td => codedoc.td);
create_td2(swr => cswreq.swr, sc => codedoc.sc,
treqs => valdoc.tregs, tplinf => valdoc.tplinf,
td => codedoc.td);

How is the abstract product build?

What is the product
flow between processes?

attribute_mappings
effort := create_sc.effort + create_td1l.effort + create td2.effort +
gen_oc.effort + perf_ins.effort + cod.effort;

end process_body \

Fig. 1: MVP-L e xample of an implementation pr ocess with tw o alternatives

How are abstract attributes computed?

MVP-E’s process engine MVP-S uses a project plan and process models (typéd)ite twn represen-

tation of a real-wrld project[23]. The process engine is used to manage project data and to gulbpde

ers in their vork. Processes can be enacted ifythee enabled(i.e., their entry criteria are true). The
agents, represented as resources assigned to processes, are responsibierigrtaelgeals specified in

the «it criteria without ivalidating the processvariants. Throughout enactment, measurement data are
taken which are used by all project roles (e.g., testers, managers) to reason about the project and to trigi
actions. The follwing assumptions (labeled @gvVii) were made during thev@ution of the MVP-E

Concept Explanation

Process Activities which create, modifyor use a product.

Product Software artibict describing the system to be deted.

Resource Human agent or tool.

Attribute Measurable characteristic of a process, product, or resource.

Criteria (entry invariant, | Expression which must be true when starting, enacting, or terminating a processvedgpecti
exit)

Refinement Breaking davn the structure of a process, product, or resource into less copapts.

Instantiation Creating an instance of a process type, product type, or resource type\adithgpractual
parameters.

Product Flav Relationship between processes and products. It is distinguished between reading, |writing,
and modifying access.

Resource Allocation Assigning personnel to processes in order to perform the processes.

Process Model, ProductType descriptions of processes, products, and resources reslgettie nameéviodel might

Model, Resource Model be misleading in this conte because their instances are models of realdwprocesses
too.

Table 1: Concepts of MVP-L

approach and are madepécit to allow the comparison of the underlying matiions and goals of the tw
different approaches later on:

AM1. The concepts implemented in MVP-L are suitedxpress a single we on a particular softare
process and are madepécit to allov to compare the goals and nvation of diferent approaches.

AM?2: Attributes of processes, products, and resources digentffor all measurement purposes.
AM 3. Developers are guided by enacting understandable process models.

AMA4. All project roles are supported by using a common representation of a project. The roles get o
views on the project which are tailored to their specific needs.

AMS5: Products are represented without storing their contents. Direct access to the product is not su
ported. Only product models are accessed.

AMG6: The steps of modeling, planning and enaction are sequential. Project plans remain uncreanged o
the project lifetime.

AMT7: Planning preides parameters which adapt process modelsfereiit contgts.
AMS8: Plan deiations are not considered. No support for modifying the prgjstite is pnaded.

Several other approaches for supporting safevdeelopment processesvebeen deesloped[1, 10, 33].

In general, we can distinguish between languages for modeling fine-grain processes (i.e., uggdto inte
tools, hence being similar to programming languages) and coarse-grain processes (i.e., used to guide s
ware deelopers and to coordinate their tasks, hence being similar to specification languages). Current)
the community focuses on the latter kind of processesxamgle is the wlution of the Marel Stratgy
Language, which as first designed for use in a single-user system amcumpports distribted teamg§7].

MVP-L belongs to the second cgtey of languages. Another classification of saftevprocess languages

can be made with respect to thewdeof abstraction. Granularity ranges from abstragglgwith rich
semantics of the concepts (e.g., MVP-Liviiato detailed leels which preide paverful mechanisms to

build ones avn process hilding blocks (e.g., APPL/A34)).

Not all languages a@r an equal set of aspects of saiftevdeelopment processes. Mostthe languages
provide a solution for a particular problem and support only a limited set of[Bedor example, the
language SLANG focuses on capturing the dynamic aspects of a J@jcéd¥P-L addresses process

-5-

interfaces, rule-based specification ofeglepment processes and measurement aspects. Quality consider-
ations hae become more and more important within safevdeelopment. Hwever measurement
aspects hae not been tadn into account in most of the process suppasir@mments. Approaches to sup-
port measurement actiies within softwvare deelopment alreadyxest [22]. MVP-E is an ewironment

which includes measurement support.

3 CoMo-Kit

The CoMo-Kit project at Unersitat Kaiserslautern aims at support for planning, enacting, and controlling
complex workflows in design processes from a wihedge engineering perspai25]. Properties of such
workflows are:

» They are too compbeto be planned in detail before enactment starts. Results wtiastare needed to
plan later steps. Planning and enacting must alternate during the whole project.

* Decisions are made during enactment which rely on assumptions that can be Yaliddaftervards.
When old decisions change, users must be supported in reacting tevtbguagion (i.e., backtracking
must be supported).

The CoMo-Kit system consists of a tool which aioto model compbeworkflows and a wrkflow man-
agement system, the CoMo-Kit Schedulehich enacts and controls the modelextkilows. To describe
comple design processes, the CoMo-Kit methodology uses four basic concepts: tasks, methods, concep
and agents.able2 contains anwervien and short descriptions of the terms. Using these concepts generic
software process models and concrete project plans can be describedxtldueeson to be answered is

how to enact these plan.

The enactment of design processes is supported byilddlaorkflow management system, the CoMo-Kit
Schedulerin Table 3 concepts of the Scheduler aqgl@ned. The main features of the Schedulerare:

* The Scheduler allgs alternate planning and enactment ofedl@oment processes.

» Based on the information flobetween tasks, causal dependencies are acquired during enactment. The
underlying assumption is that the inputs of a task influence the outputeiefy task a set of logical
implications is created; the implications relate the assignmenalogw (i.e., products) to the input
parameters of a task with the assignmentadiies to the output parameters. Wheme¢he assignment of
an input parameter becomesahd, the assignments of the output parameters becorakditoo. The
causal dependencies impeothe traceability of design decisions and support the users in reacting to
changes.

* Additionally, the scheduler manages dependencitaaable from the task decomposition. Wheatea
task becomes valid because of a replanning of the project, the Scheduler notifies team memithkers w
ing on subtasks that thean stop wrking on them.

» To handle dependenciediefently, reason maintenance techniques are used [30,31]xéended. The
Scheduler uses the acquired justification structures to support depeddented backtracking.

The following assumptions (labeled A€i) were made during ther@ution of the CoMo-Kit approach:

AC1l: Modeling, planning, and enacting design processes cannot be separaydia/€he alternate.

AC2: Project plans hae to be modified and refined during project lifetime.

1.The techniques which are used to get these featuresyamedothe scope of this pap&or a detailed description see
[27,26]. For a description from a sofawe engineering point of wesee [11].

-6 -

Concept Explanation

Task(Process) A description of the goal which should be reached by anigcti

Input Variables Information which is needed toork on a task.

Output \ariables Information which is the outcome oforking on a task.

Method A description of har a tasks goal can be reachedrfevery task a set of alternaéi methods car
be described.

Atomic Method Atomic methods assigralues to the outputaviables of the related task.

Complex Method Complex methods decompose a task into subtasks.

Information Flav A complex method is described by an informationaflgraph which consists of (sub-) tasks gnd
variables. The information graph st®the input/output relations of tasks.

Concept Class A description of the structure of the information (product structure) which is produced during
enactment.

Slot Stores part of product information.

Concept Instance Concrete information, for instance a product (such as requirements document) which is qutcome
of using a method to saha task.

Agent An actor who wrks on tasks. Agents apply methods to sadésks.

Table 2: The CoMo-Kit modeling frame work
AC3:. The Scheduler manages the state of the project. Therefore, it sheellddeass to all products and
manage them.

AC4. Users must be supported irdping track about where the result of theirkvis used and what
information thg need in producing their results.

AC5: Changing old decisions is inherently needed in coxpiejects.

ACG6: Causal dependencies are the basis for ameasttification mechanism which informs users about
relevant changes in the project state.

ACT7. Only processes performed by imdiuals are modeled in order tedp track of dependencies.

AC8: The same formalism can be used to describe generic process models and concrete project plans.

Concept Explanation
Decision To sole a task (i.e., to reach the goal) an agent has to decide which method should be applied.
Assignment Applying atomic methods to tasks results in the assignmertioés to the outputaviables of tasks|

Task Decomposition| Applying complex methods to tasks results in a set of subtasks which are included into an agenda.
This agenda stores a list of all tasks which must beeddtv finish the project.
Dependeng From the information fl a set of causal dependencies iswdeti We assume that there is a causal
dependengfrom the inputs of a task to its outputs. The Scheduler manages these dependengies.
Decision Retraction | During project enactment decisions can be found erroneous which results in an inconsistent project
state. Then, at least one decision must be retracted and replaced by anvalternati

Table 3: Concepts of the CoMo-Kit Sc heduler

Figure2 shavs a part of the process decomposition from our scenario modeled in CoMo-Kit. The informa-
tion flow within the method “Implementation with Structurasiing” is shavn in Figure3.

Several other approaches for supportingrikflows have been deeloped. In [16] anervienw on current
workflow management techniques is@i. The authors shothat current technology assumes that the pro-
cess model is defined before process enactment. The CoMo-Kit apprasateeloped for application
domains where planning and enactment alternatexémnple design processes (e.g., city planning). Some
workflow management systems support object-oriented data structar@sstance in [29] an innative
approach is described which igtates Petri nets with semantic data models. CoMo-Kit also supports
object-oriented data structures. Furfl@Mo-Kit supports reacting to decision changes.

-7-

CoMoKit File Edit View Language ||
: | . Process
Create Operating Documentation T
erform Integration :) MethOd
: ——p» Process Decompositio

Create Test Data using Source Code]
- — 9 Alternative Method

Create Source
Generate Object Code

Generate Ohject Code
Create Test Data just from Requirements]

1 tion with Structural Testi
Jdmp\EmEl’\td‘tIE\n with Structural Testing &
‘

!I

<

reate Source
erform Integration
NCreate Operating Documentation]

k)
Ylmp\ementaticwn with Functional Testing |

Fig. 2: Process decomposition in CoMo-Kit
CoMoKit File Edit View Language
v —
/Cumprehensive Software |:| PI’OCGSS
Requirements
Product

— p Product Flav: In/Out
— — = Product Flev: Modify

Design Document

Create Operating
Documentation
Suum :
" :
i’

Create Source

External
7 =
. S
— \
Perform Integration e -—---- oo ———— —--+{ Code Document

Fig. 3: Product flo w in CoMo-Kit

4 Requirements

Section2 and Sectio® presented assumptions which guided tlheludion of two process support
approaches. The assumptions can baroceed as requirements for a process-seastiftvare engineering
ervironment. The follwing list of requirements for process supporviemments reformulates the
assumptions made in both approaches. Incompatibilities causedféserdifassumptions in the aw
approaches are rewed (as shon in [37]), so that the requirements represent a unifiad. \her each
requirement (labeled &) the related assumption(s) (AMr ACi) are gven. The set of requirements is
not to be understood as athaustve list of features a process-sensitsoftware engineering @ronment
should hae. The requirements were defined from the persmscaf both systems CoMo-Kit and MVP-E,
nevertheless the are mandatory for each vronment to support real delopment processes. Some
aspects are not discussed in this paper (e.g., resource scheduling, time plaigetiy)dp).

R1: The main concepts of softveaderelopment pycesses should begurded. (AM1, AC7, AC8) Algo-
rithms for planning, analyses, or enactment need tovkhe semantics of basic entities (e.g., processes,

-8-

products, product fl). It is important to tailor the concepts’ representation to human and machine under-
standing.

R2: Organizational pocesses should be supportédiM4) Specific interdces to aganizational processes
are required. Further delopment in the area of multiple wie on a project representation is needed in
order to @in role-specific representatiof3s].

R3: Both short-term planning (detailedviel) and long-term-planning (absict level) are supported
(AM7, AC1). It is desirable to plan agtiies early in a project,ui it is not practical in\ery case. Mecha-
nisms are needed on the one hand for planning abstract and general processes and on the other han
planning concrete and state-dependent ones.

R4: Allow for alternating modelingplanning and enactiofAM6, AC1, AC2) Information for planning is
incomplete when launching the project. Required information may be produced during the project. Late
planning steps refine the models or the original plan.

R5: Document decisions(AC4, AC6) Mary decisions about products and processes need to be
documented34]. The decisionsxplain hawv products eolve and processes are performed. The decisions
are used to recognizewdations and to signal inconsistencies to the system. Dependencies between deci
sions can be used for backtracking and also for reasoning about pfadiicts

R6: Reactions onltanging decisionAC5) When an ivalid state is reached after retracting a decision,
backtracking should be performed in order to reach a branch where an akeraatbe chosen.

R7: Manage the poducts wheneer possible(AM5, AC3) Inconsistencies between the realdd project
and the representation managed by thir@enment must bevaided.

R8: Support measement activities(AM2) Quantitatve data from processes and products are needed in
order to deelop softvare systematicalliB3]. MeasurementMvaluation, and storage of data is needed.

R9: Softwae derelopes need to be guidedAM3, AC4) Process modelx@ain what actiities to per-
form next and what their goals are.

R10: Softwae developes’ tasks need to be cabnated.(AM4, AC6) Process models are used to relate
tasks of softwre deelopers. In the case a result becomealid, coordination means notifying others to
interrupt their vork.

R11: Execution of pmcess fagments.Process programs are used to automate process steps. It must be
ensured that the dependencies established during a vochton are captured and documented in the
ervironments repository

The first ten requirements describe features of either CoMo-Kit or MVP-E. Autorratiat®n of pro-
cess programs is necessdmt a straightfonard to realize nda step. Commerciallyvailable process-sen-
sitive software engineering @ironments (e.g. Process eéadfer[14]) have already demonstrated the
suitability of a shell-lile language for the definition of process programs. Building a system which fulfills
all mentioned requirements is the challenge ofgirttng CoMo-Kit and MVP-E. Neertheless, there are
still open problems which are not tackled by the synthesis of both approaches:

P1. State ManipulationWhen a project deates from the plan it might be necessary to shift the whole
project state by a “brute-force” manipulation of stad@iables instead of performing backtracking. The
problem is hw to modify the models according to theanstate of the real-orld project and to presesv
existing dependencies.

P2: Type-Instance CoaspondenceDirect manipulation of instances results in a project trace which can-
not be described by the plarmprocess types. This is also true when types ofeaptbcesses are modified.
Mechanisms are needed to establish correspondence between instances and types.

P3: Existing Poducts and Measament DataBacktracking and choosing an altermatshould not mean
throwing awvay the results already produced. Mechanisms for reuse within a project are needed. At thi

-9-

moment it is not clear o to handle measurement data in the case of backtraclongx&mple, efort
data should bedpt hut statements about products (e.g., subjectiassification of comptey) might
become imalid.

Although the requirements listed in this section present a unifi@dofidoth approaches this does not
mean that a particular user has to manage such a tool in its entirexaigm§$leme features might be inter-
esting for only some roles (e.g., a project planner is interested intRtinR9) and some functionality
should be kpt completelyway from users (e.gR10).

5 Thelntegrated System Architecture

Within the CoMo-Kit project of the Uuersity of Kaiserslautern techniques, methods, and systems were
developed which support planning and enacting cormgistributed cooperate design process§zs,12].

This system is the basis for the prototypical implementation of agratesl system, called the MILOS
environment, which fulfills requirements R1-R11.

Figure 4 shws the system architecture of MILOS. It consists of three main parts:

Project Planning < Experience
(Modeler) reuse Base
~ plan plan
interpretatio change :
packaging
of project
experiences
—>

Fig. 4: The Ar chitecture of the MILOS System

* TheModelerallows to plan and replan a project.
* TheSdedulersupports the enactment of a project and manages the information produced.
* TheExperience Basstores generic (reusable) project plans, products etc.

The current project plan is used by the MILOS Scheduler which supports project enactrerat. clie
ents are implemented taovk on subtasks of the process. The Scheduler magglcsiend messages to the
clients, i.e. the systenxinds the typical client seswarchitecture twards an agent-oriented structure.

Building the eperience base is a future topic of ouorkv and the results are too preliminary to be
described here. @will follow the line of vork described if4]. This paper concentrates on the concepts
behind the Modeler and the Scheduler

6 MILOS: A Languagefor Project Planning

Project planning meansadoping a model of he the project should be performed. At theipaing of a

new project, a first step createsiaitial projectplan. This plan contains descriptions of process types, def-
initions of products to be created and a list of the team membeigad in the deelopment process oF
large-scale projects, a detailed plan cannot veldped before the enactment staris fdanning and>ee-

cution steps must be alternated (R4): Starting with the initial plan the first processes are enacted. Based
the results, the plan is refined and/xteaded (see scenario in Section 1).

To model cooperate development processes, our approach uses four basic notions (fulfillingiadgss
Types Methods ProductsandResouces In the follaving, these terms are defined asds it is necessary

-10 -

to understand this paper omitting syntactical details of our project planning language. Later on ir
Section7, our modeling language MILOS is illustrated by aareple.

Process Types

A process type describes an waityi which must be carried out during process enactment to reach the goals
of the project. The description of a process type consistvefadgarts:

Goal. A (textual, informal) description of the goal of the &it$i which will be accessed by the process
performers during enactment. The goal guideidg@ers by eplicitly stating what should be aclexd
by enacting a process.

Product Rirametes. A product parameter will store input, output and modified products during enact-
ment. Inputs are consumed during process enactment to produce the outputs ofithePaciimeters

which can be changed during enactment are stored in the modified parameter list. In the project plan, v
are only able to state which type of information is used or must be producesiefy input the fIag’s
mentioned in @ble 4 are defined. Outputs of a task may be optional or required.

Flag Name Meaning

necessary for planning The input must bevailable before the planning
of the process starts. Planning here means
defining a method or choosing on of the pre-
defined methods.

necessary fonecution The input is not needed for planningt it must
be available before thexecution starts. Eecu-
tion here means applying the method.
optional The input is neither needed for planning nor for
execution (lit it may be helpful to he).

Table 4: Parameter Fla gs

Context information.A list of references to information which is not changed by the process enactment
(e.g. a file containing the coding standards of the coynpaa reference to manuals).

Precondition.A formal, boolean condition using process and product até&sbwhich must hold before
the process enactment may start. Preconditions arexdonpde, used to check if the inputs fulfil a
given requirements.

Invariant. A formal, boolean condition using process and product atésbwhich must hold during
process enactment. Anvariant, for @ample, may check that the time for the process staysvleelo
given limit.

Postcondition.A formal, boolean condition using process and product atésbwhich must be true
after the process enactment has finished. Postconditions anearfgple, used to check if the output of
a task has a desired quality

Agent bindingsFor every process type, the planner may state criteria which must be fulfilled by agents
to be alleved to work on the process during enactmerdr Bxample, an agent must\Jeskills in
Smalltalk-80 programming and belong to departnZéiE 153 We distinguish tw types of agent bind-

ings: Process performer and process supporter performer is responsible for theseution of the
process and has to produce the outputs. He may be supporteddgljseher agents.

Attributes.An attribute describes a feature of the process type, e.g. the time needed for its enactment.

Methods.A list of alternatve courses of action which can be used to reach the goal. The process type
describesvhatshall be done, methods descritmevit can be done.

1.The flags are mutuallyxelusive.

-11 -

Products

To model products which are created in the course of project enactment, a standard object-center
approach is used. As usual, we distinguish between types and instances(tdrisakty, we will use the

term “product” for “product instance”).ypes define a set of slots to structure the produ@ryEsiot is
associated with its typeypes may be basic types (e.g., STRING, REAL, ...) or defined andjatggdy

the modelerDuring process enactment we represent product instanceduas which are assigned to
parameters. The type of a parameter is specified by a product class. Using other product types as type ¢
slot creates compteobject structures. A slot contains a part of the product whereas antattfdscribes a
feature of it, e.g. the compigy of a module.

Methods

A method describeBow the goal of a process can be acbee For every process type, the project plan
may contain a set of (predefined) altevetnethod

Methods areecuted by agents (see bg)o Not every agent who may be responsible for a process may
have the abilities to usevery method (Br example, an implementation process may be enacted by the
methods “Implement in C++” or “Implement in Smalltalk”). Therefore, wevallo describe additional
agent bindings fonery method.

We distinguish between atomic and compjer composed) methods.

The application of atomic methods assign products to paramBtecess scriptslescribe ha a given

task can be sobd by a humarProcess pogramsare specified in a formal language so that computers can
solve a task automatically without human interactioor. & atomic method it is possible to specify what
(software engineering) tools are used during enactment.

Complex methods describe the decomposition of a process imwadesubprocessesoiFevery (sub)pro-

cess type, its cardinality iswgin which determines omary instances of this process shall be created
during enactment. It maps the output parameters of one subprocess to the input of another resulting ir
horizontal product flw between subprocesses (product imtesf relations). Additionallyit maps the
parameters of the superprocess to parameters of the subprocesses resultiegidal goroduct flav
between a process and its parts (product mapping). In Figure 5 the relation between a process type, «
method and the subprocesses is illustrated.

Finally, a method describes Wwaattributes of the subprocesses can be used to computeltasriaf the
superprocess (attuibe mapping).

Resources: Agents & Tools

Resources are used for project planning and process enactmentantioa.Agentsare actre entities
which use (pasege) toolsfor their work.

Processes are either performedabjors (= human agents) or byiadines The first case is called ,enact-
ment“, the second y@cution®.

For every process type, the project plan defines the properties an agent weust hark on it. Further
our system stores information about the propertiesearfyeagent. br actors, we distinguish three kinds of
properties: qualifications (q), roles (r), andamization (0).

Example: In a project plan, it is defined that the process type “implement usexcatesiiould bexe-
cuted by an actor which has skills in using theuellvorks Interfice Builder (q), is a programmer (r), and

1.For example, reusable methods may B&a&cted from old project traces and stored in ttgedence base. Then the
can be incorporated into the current project plan.

-12 -

|
l
|
I
Subprocess ‘ =
PT-1.2 @ * IS
Subprocess @ Subprocess .
PT-1.1 @ PT-1.4
\ @ Subprocess @
\ "‘
o PT1.3 y

T~
-
?x/

T T Method-1 for PT1
Q Parameter —— = Input/Output
I:I Process jIpe - — — — - Parameter Mapping

Fig. 5: Vertical and horizontal mapping of parameter s

works
in departmenZFE 153(0).

During task gecution, our system compares the required properties of a task with the properties an agel
possesses. This alls to compute the set of agents which is able tcesble task.

Having sketched our language for project planning (which is basicallemgion of MVP-L with meth-
ods and object-oriented data modelliragilities), we nw will give an &le of its use before we
explain hav the enactment of plans is supported.

7 A MILOSExample

Figure6 shavs the reference process as part of a MILOS adaption of the scenario mentioreedrabo
intended representation for modeling in MILOS is graphioal.tke purpose of a compact description the
example here is gén in a t&tual representation.

To perform the implementation processotalternatve methods are fd@red. Depending on a decision
which can be influenced by measured data one of these methods can be applied, e. g., implementation v
structural testing (see Fig@). This method is compteand it refines the implementation process inte se

eral subprocesses.

8 Supporting Planning and Enactment: The MILOS Scheduler

Based on the requirements in Section 4 we implementeorktlaw engine, the MILOS Scheduldis
main features are:

* It provides the people wolved in the project with rel@nt plan, process and coxtténformation to opti-
mize their vork and to reduce the information procurement time. This includes the wlistnitof the
processes to the appropriate engpks and makingvailable information thg need for enactment such
as products and the process goal descriptions.

-13 -

process type Implementation Process
instatiation paraneters
eff0: Process Effort Data

What is the name of the task?

goal
Transformation of the Detailed Design representation of a
software product into a programming language realization
comment "\ Whatis the goal
IEEE Standard 5.3 to be reached?
attributes
effort: Process Effort Data What attributes exist?
product s
consune
cswreq: Comprehensive Software Requirements
desdoc: Design Document
valdoc: Validation Document — What products are
external: External accessed?
produce
' codedoc: Code Document What is produced?
nodi fy

criteria T No products are modified!
entry criteria
desdoc.status = ‘complete' and cswreq.status = ‘complete’

i nvari ant
effort <= eff0 What should be hold
exit criteria during process enactment?

codedoc.status = ‘complete’ or desdoc.status = ‘faulty’
agent bi ndi ngs

perforner ...
supporter ... —— Who handles the process? What must hold for starting
cont ext and terminating the process?
Coding Standards What aids support the process enaction?
nmet hods

Implementation with Structural Testing
Implementation with Functional Testing
end process type

\ What are alternative methods to solve the task?

Fig. 6: Excerpt of a MILOS e xample: Implementation pr ocess with tw o alternatives

conpl ex net hod Implementation with Structural Testing What is the name

conmment of the method?
Test Data is being produced using Source Code

refinement What are the
create_sc: Create Source (1) — sub-processes?
create_td: Create Test Data using Source Code (1)
gen_oc: Generate Object _Code Q) What is the product
perf_ins: Perform Integration (1) relationship between
cod: Create Operating Documentation (1) different levels of

product nappi ng abstraction?
create_sc (desdoc.sw_des_descr -> sw_des_descr, codedoc.sc -> sc)

product interface relations
create_sc.produce.source_code = create_td.consume.source_code

..... What is the product flow
attribute mapping between processes?

effort := create_sc.effort + create_td.effort + gen_oc.effort +

perf_ins.effort + cod.effort How are abstract

end conpl ex met hod attributes computed?

Fig. 7: Comple x method describing an alternative refinement

-14 -

* It reduces coordination feft of each team membdoy notifying the process performer oveats (for
example plan changes and modified products) hdestafl from.

* It allows to interene in the planning process during process enactment.
* It allows its users to reject (planning) decisions, andterel and to modify the initial plan.
* Process knwledge managed by the schedulenafido guide the project members in theinatés.

* It integrates process and measurement technologies.

8.1 Scheduler Support from the User Per spective

The scheduler as a central component of tkeprecess-sensite software engineering @ironment sup-
ports diferent roles in a softare deelopment project.

* Project planes are able to define meprocesses to be performed to reach the project's goal. mhg
access information about the current state of the project, the reasons which led to it, and dependenc
between processes. This informationaguable to change the project plan in the case of an undesired sit-
uation (e.g. product changesywneequirements from the customer).

* The Scheduler enabl@soject mangers to delgate processes to their team members and to supervise
their enactment. The Scheduler automatically notifies team members project changes and therefc
reduces the coordinationfeft of the manager

* For team memberthe Scheduler pvides a ©-Do agenda. When a team member accepts a proadss w
ing for execution, the Scheduler generatesakacontet which guides him in his aeities and allavs
him to access relant products and tools. The Scheduler informs him about product modifications which
are releant for his vork and notifies him if the process is rarad (by the project planner) from the cur-
rent project plan.

In the process model, we describe only the responsibility for a process by relating process performer co
ditions to it. Theole of the performer can be deduced from what he does during enactment: If he defines :
new method or selects a (comp)enethod, he refines the plan and can be called project plakerg the

role of a managehe delgates processes and supervises their enactment. If he produces the outputs of th
process, he can be called a team menibepending on the modelery person may assume these three
roles, perhaps all at once. So, we are able to describe hierarchasakation structures as well asxilde

project structures folleing the lean management approach.

8.2 Operationalizing the Project Plans

The most important entities managed by the scheduler are processes, methods, decisions for methods
products together with their states.

Processes

During eecution a process passes throughous states. Evy state is determined by the aities done

by the process performers and the dependencies to other processes and decisions. State changes happ
ground of process performer afties. A process is managed by the Scheduler as soon as it becomes par
of the actual plan.

Entry criteria. A process is enabled as long as all entry criteria @id.vOnly an enabled process can be
accepted and enacted.

-15 -

Delggation. Within a process definition an agent binding is specified. Durtegugion, this binding is
evaluated to obtain the set of agents permitteckézte the process. The set is determined by matching
the agent bindings with the abilities of the agents. The resulting set of authorized agents is further reduc
by the project managdfie delgates the process to a subset of potential process performer

Agent bindings and dedations can change. If an agent binding or gigien changes before the process
has been accepted, the set of authorized agents is adapted. Hadiatelehanges after a performer has
accepted the task, them@erformer taks wer the role of the old one without changing the process state.

Method selection andjection.In order to reach the process goal, the project planner selects an applicable
method. In Section 7 thenplementation Process knows the two methodsmplementation with Structural Test-

ing and Implementation with Functional Testing. The set of applicable methods is a subset of the methods
defined in the project plan. This set may be reduced depending on the current projgtt Seleteting a
method results in decision A valid decision is part of the actual project plan. The decision for a method
can be rejected lateBuch a change agily has consequences on other parts of the project because of
dependencies between processes, methods and products. Addjttbeathethod set can be modified by
adding or remaing methods from the process specification.

Process imariants. The process wariants hge to stay alid during the process performance. Ifythe
become imalid, the project planer has change the current project plan.

Exit criteria. After the work on a process is finished, itgtecriteria are chead. If this checkingdils an
exception &ent is forvarded to the process manager who has to regbig conflict, for gample by
replanning the process.

Methods

Applying comple methodsA complex method refines a process into a set of one or more subprocesses.
Applying a complg method, each subprocesses is instantiafett. Thex is determined by the cardinal-

ity of the subprocess. In the model, each subprocess has a defmitaatinality The cardinalityeo is
replaced during procesxexution by a definitealue. The consumed, produced and modified product
parameters of processes with a cardinality greater one are identified by a defirite inde

Applying atomic methodé&tomic methods produce products. In the project plan the name and type of the
products that hae to be produced are specified. If an atomic method is applied, the resulting products ar
assigned to the corresponding parametdditionally, a dependenycbetween the decision for the method
and the produced products is established: the rejection of the decision results in the retraction of the para
eter assignments.

Product mapping of comptemethods The product mapping of complenethods allws to exchange
products between the superprocess and its subprocesses. In Figure 7 one can see, thatsproduct
doc.sw_des_descr is mapped to produetv_des_descr. The mapping direction is\@n by the direction of

the arrov sign. W distinguish three kinds of mapping:

1. Mapping consumed pducts.If a consumed product of the superprocess is assigned to the correspond-
ing parameterthe product is also assigned to the parameter of the subprocess, specified in the mappir
rule. Therefore the product becomes automaticatilable for the subprocess.

2. Mapping poduced poducts.If within a method application of a subprocess a product is produced, it is
assigned to parameter of the higheelgrocess as specified in the mapping rule.

3. Mapping modified mducts.If within a subprocess a product is modified, the modified product is
assigned to parameter of the higheelerocess as specified in the mapping rule.

Product interface eélations.The product integce relations specify thex&ange of products between the
subprocesses of a complmethod. If a product parameter pair is specified in the aderfelations, the
product assigned to one of the parameters is automatically assigned to the other one, too.

-16 -

Agent bindingThe agent binding of methods is a subset of those specified in the corresponding proces:
Again, the set of attrites process performer and process supportes thafulfill to be authorized to

work on the process is matched with the abilities of the agent®(seesses This semantic leads to the
effect, that an agent who accepts a task may only apply a subset of the specified applicable methods.

Dependencies between Processes and Subprocesses

Complex methods decompose processes in a set of subprocesses. If an agent decides to apply a comy
method the subprocesses related to the method becomes part of the actual project plam @anteha
solved.

Therefore the alidity of the subprocesses depends on the decision for the correspondingkaneipled.

If the decision for the method is rejected, the rationale fordheity of the resulting subtasks is no longer
given. The subtasks & to become walid. Decisions, which ha& been taén within the subtasks, must
be retracted, too.

Product Flow Dependencies

As described ab@ a product assignment is dependent from decision for the corresponding atomic
method. The products produced by an atomic method enter in further decisions and constitute depende
cies. The dependencies become important for the progessatien, if product producing decisions are
rejected. Br details se§l1,27].

Blocked Process Goals

Applying a complg method, a process is refined into a set of subprocessay. $hbprocess has to be
solved by applying a method. If the set of applicable methods for one ore more subprocessestisedmpty
process goal can‘t be reached. This state is chleeled In this situation actities to sole this deadlock
have to be started.

8.3 Discussion of the Requirements

MILOS is based on the MVP-L approach. Therefore, the main concepts oamsoftwelopment proc-
esses are supported (R1). The MILOS Scheduler supports project planers and managers (R2, R3). Exte
ing, modifying, and changing the current project plan is supported by the MILOS Scheduler using
technigues from CoMo-Kit. Planning and enactment decisions are handled by the Scheduler (R5). Becau
the dependencies point to the cause of\amte the Scheduler is able to guide the user in reacting on
changes appropriately (R6). Alternating planning and enactment steps is supported (R4). Mili¥S pro

an object-centred product model and the Scheduler is able to store products (R7). Process and prod
attributes and the attritte mappings support measurementiédcts (R8). By using a arkflow engine, the
Schedulerteam members are guided and coordinated in theuiteegi Actvities for reacting onwents

may itself hae global efiects on the project planning angeeution. Because the Scheduler manages
dependencies, the performer is nedid from coordination aefities resulting from such changes (R9, 10).
The MILOS language is designated to automate process steps by using process programs (R11). Currer
this feature is not implemented by the Scheduléittwill be a future gtension.

9 Related Work

To validate the completeness of our gri@ion we compared it agst isting frameavorks and definitions

that were deeloped by Conradi, Fernstrom and Fuggetta [9], Feiler and Hugpnfl8} Lonchamgd21],

and Armitage and &lIner[2] (see BbleA.1 of the appendix). Eary framevork provides a consistent set

of concepts that embodies a particular understanding about aspects afespfivcesses. In contrast to the
concepts presented in this pgpespects of the meta-process (i.e., the process of process modeling) are
also described in some of themks [9,13,21]. The four definition franveorks are not formalizedub nat-

-17 -

ural language is used tamain the meaning of concepts. Because the terms weetoged in diferent
contets, one cannot assume a perfect match between them. Therefore, we see the termterfentn dif
frameworks as similarnot as equal. Under this assumption, MILOS implements most of the conoepts co
ered by the other fram@rks. A predefined type classifying all components of thereleld product (i.e.,

as proposed by Lonchamp) are not present in either approach. All other abstract coneepdshyothe
framavorks are considered in MILOS.

Process-sensite software engineering @ronments which supportvelution of enacted process models
are a focal point of current researctt the results are still immatuf24, 34]. In the remainder of this sec-
tion we discuss efronments releant for the work presented in this paper and point out the maferdif
ences to our approach. Important requirements not met by the related approaches atk (oheck
leaves open whether the other requirements are met). The unsatisfied requirementsem®yrark’.

The SRRADE ernvironment is a system for @eloping analyzing, and enacting process models described in
the language SLANG (Spade LANGuad@) Activitiesare modules with well-defined intades and a

Petri net specification as a boddctivity types may be changed during enactian they do not afflect
existing instances. When the type of an\afprocess is modified, S8BE prompts the user to prige a
transformation function. This is a solution for the problem P2 (i.e., type-state correspondence) which is nc
solved by our approach. SLANG pides only a small set of sofare deelopment process concepts
(-R1). Also the user must decide when to start procedsten. The system does not gide ary support

to decide which parts need to be chan@drb).

GRAPPLE is an operatdrased approach which supports planning and plan recogfitnThe opera-

tors encapsulate the functionality of both tools and processes performed by agents. Reason maintenal
techniques are used to manage dependencies between process steps; dependencies between produc
not maintained-R5). Our synthesized approachtends these techniques byp#citly representing
dependencies between products, so that a goal-directed reaction on changes of the product state is poss
GRAPPLE does not aNofor alternating planning and enactment (-R4).

The database-oriented EPOS Process Modeling System distinguishes between classes (templats
instances thereof, and information about the creation, change, argilston of classes and instances on a
meta-leel [19]. Feedback about correctness and performance of the enacted process model trigge
changes of classes and instances which are uatgon control. Classes and instances may be changed in
the case of inaate processes. The user is responsible for establishing congibiemeen classes and
instances. Thus the EPOS Process Modeling System tackles the problems P1 and P2. No dependen
between process fragments are managed (-R5) so it is not possible to determine what processes acces:
faulty product and might be enacted another time. Detectionv@dtides and recognition of a change’
impact are completely left to the user (=R6).

Redoingis an operation in the Hierarchical and Functional SaiwProcess (HFSP) approach thatvadlo
cancellation of erroneous agties and doing that part of the processiad35]. Softvare deelopment
processes are understood as functiogarozed in a hierargh(called an enaction tree). Redoing means
cutting a subtree out of the enaction tree and replacing it with another tree whiehlyi€nacted. The
decision to redo is specified in the process models. It can be seen as a sort of “goto” where results in t
subtree are discarded. In contrast to our approach, short-term planning is not supported (-R3), the proc:
models must be completely defined before interpretation (-R4), and the decisions for redoing are pre
defined, which means that criteria to detestiatéons from the plan must be specified within the models
(-R5).

10 Summary

This paper presents the igtation of two approaches, namely CoMo-Kit and MVP-E. ¥hmth were
developed completely independently to solarticular and isolated problems of automated process sup-
port. A recent comparisonwealed commonalities and flifences of both systerf37]. Requirements
were set up for process-senstsoftware engineering @ironments. Thg are addressed by thewlg cre-

-18 -

ated approach MILOS which is a synthesis of CoMo-Kit and MVP-E. The concepts of MILOS were illus-
trated by using a scenario of a standard implementation process. Relating MILOS tocokiseorwthe

one hand the uniqueness of this approaat shan but on the other hand potential futurenk was iden-

tified by pointing to solutions of problems not tackled by MILOS.

Roughly spokn, as an intermediate result of the synthesis M\éR:dncepts are used to describe sarféw
processes and the concepts of the CoMo-Kit process engine are used to enact the models. Using these &
elements, we are able to alternate modeling, planning, and enaction modes. @atetht@pproach pro-
vides a suicient set of concepts to capture rears processes. By irgeating knavledge based tech-
nigues a flrible process-sensitt software engineering @ironment will be created which manages
dependencies between project information and supports backtracking.

Acknowledgments:. Sigrid Goldmann did careful avk comparing CoMo-Kit and MVP-L. The authors
would like to thank the members of botlorking groups who contrilied to may ideas presented in this
paper

References

[1] P.Armenise, SBandinelli, C.Ghezzi, and AMorzenti. Software process languages: Survey and assessnferacéed-
ings of the Fourth Conference on Software Engineering and Knowledge Engin€zaprg Italy, June 1992,

[2] JamedV. Armitage and Mart. Kellner. A conceptual schema for process definitions and models. In De®aeary,
editor,Proceedings of the Third International Conference on the Software Prpeggs 153—-165. IEEE Computer Society
Press, October 1994.

[3] SergioC. Bandinelli, Alfonso Fuggetta, and Carlo Ghezzi. Software process model evolution in the SPADE environment.
IEEE Transactions on Software Engineerit§(12):1128-1144, December 1993.

[4] Victor R. Basili, Gianluigi Caldiera, and Hieter Rombach. Experience Factory. In JdhNarciniak, editorEncyclope-
dia of Software Engineeringolumel, pages 469-476. John Wiley & Sons, 1994.

[5] Victor R. Basili, Gianluigi Caldiera, and Hieter Rombach. Goal Question Metric Paradigm. In Joiarciniak, editor,
Encyclopedia of Software Engineerjinglumel, pages 528-532. John Wiley & Sons, 1994.

[6] Victor R. Basiliand HDieter Rombach. The TAME Project: Towards improvement—oriented software environfaERs.
Transactions on Software Engineerji8E-14(6):758—-773, June 1988.

[7] IsraelZ. Ben-Shaul, Gait. Kaiser, and Geordge Heineman. An architecture for multi-user software development envi-
ronments. In HWeber, editorProceedings of the Fifth ACM SIGSOFT/SIGPLAN Symposium on Software Development
Environmentspages 149-158, 1992. Appeared as ACM SIGSOFT Software Engineering Notes 17(5), December 1992.

[8] Alfred Brockers, Christophevl. Lott, H. Dieter Rombach, and Martin Verlage. MVP-L language report version 2. Tech-
nical Report 265/95, Department of Computer Science, University of Kaisers-lautern, 67653 Kaiserslautern, Germany
1995.

[9] Reidar Conradi, Christer Fernstrom, and Alfonso Fuggetta. A conceptual framework for evolving software pACbsses.
SIGSOFT Software Engineering Nqt&8(4):26—-35, October 1993.

[10] Bill Curtis, Marcl. Kellner, and Jim Over. Process modeli@pmmunications of the AGN35(9):75-90, September 1992.

[11] Barbara Dellen, Kirstin Kohler, and Frank Maurer. Design rationales and software process models. SFB-Bericht
SFB501-01-95, Fachbereich Informatik, Universitat Kaisers-lautern, 67653 Kaisers-lautern, November 1995.

[12] Barbara Dellen and Frank Maurer. Integrating planning and execution in software development prodesseedings
of the Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICEEBEE)CS Press,
June 1996. (to appear).

[13] PeterH. Feiler and WattS. Humphrey. Software process development and enactment: Concepts and definiBoms. In
ceedings of the Second International Conference on the Software Ppamss28-40. IEEE Computer Society Press, Feb-
ruary 1993.

-19 -

[14] Christer Fernstrom. Process WEAVER: Adding process support to UNPtokeedings of the Second International Con-
ference on the Software Procepages 12—-26. IEEE Computer Society Press, February 1993.

[15] PankajK. Garg and Mehdi JazayeHRrocess-centered Software Engineering Environm#&aEE Computer Society Press,
1996.

[16] D. Georgakopoulos, Mdornick, and ASheth. An overview of workflow management: From process modeling to work-
flow automation infrastructurd®istributed & Parallel Databases3:119-153, 1995. Kluwer Academic Press, Boston.

[17] KarenErickson Huff.Plan-Based Intelligent Assistance: An Approach to Support the Software Development Ptobess
thesis, University of Massachusetts, September 1989.

[18] Institute of Electrical and Electronics Engine¢EEE Standard for Developing Software Life Cycle Proced$9?. IEEE
Std. 1074-1991.

[19] M. Letizia Jaccheri and Reidar Conradi. Techniques for process model evolution inlIEEBSransactions on Software
Engineering 19(12):1145-1156, December 1993.

[20] C.D. Klingler, M. Neviaser, AMarmor-Squires, OM. Lott, and H.D. Rombach. A case study in process representation
using MVP—-L. InProceedings of the Seventh Annual Conference on Computer Assurance (COMPp&$82)37—-146,
June 1992.

[21] Jaques Lonchamp. A structured conceptual and terminological framework for software process engineestcepdings
of the Second International Conference on the Software Progages 41-53. IEEE Computer Society Press, February
1993.

[22] ChristopheiM. Lott. Measurement support in software engineering environnlatgsnational Journal of Software Engi-
neering & Knowledge Engineering(3):409-426, September 1994,

[23] ChristophemM. Lott, Barbara Hoisl, and Hdieter Rombach. The use of roles and measurement to enact project plans in
MVP-S. In W.Schéfer, editorProceedings of the Fourth European Workshop on Software Process Techpalogy
30-48, Noordwijkerhout, The Netherlands, April 1995. Lecture Notes in Computer Science Nr. 913, Springer—Verlag.

[24] NazimH. Madhavji and Maridd. Penedo. Guest editor’'s introductidEEE Transactions on Software Engineering
19(12):1125-1127, December 1993. Special Section on the Evolution of Software Processes.

[25] Frank MaurerHypermedia-based Knowledge Engineering for distributed, knowledge-based SiptBrtisesis, Univer-
sitat Kaiserslautern, 1993. in German.

[26] Frank Maurer. Project coordination in design processd&deeedings of the Workshop on Enabling Technologies: Infra-
structure for Collaborative Enterprises (WET ICE '9BEE CS Press, June 1996. (to appear).

[27] Frank Maurer and Jurgen Paulokat. Operationalizing conceptual models based on a model of dependei@ibs, ledA.
itor, Proceedings of the 11th European Conference on Atrtificial Intelligelute Wiley & Sons, Ltd., 1994.

[28] Frank Maurer and Gerhard Pews. Supporting cooperative work in urban land—use plarPiogeéaings of COOP-96
1996. (to appear).

[29] Andreas Oberweis. Workflow management in software engineering projectdVibdBat, editorProceedings of the 2nd
International Conference on Concurrent Engineering and Electronic Design AutonEdiésh.

[30] Ch. PetriePlanning and Replanning with Reason Maintenate thesis, University of Texas, Austin, 1991.

[31] Charles Petrie. Context maintenanceRPtnceedings of the AAAI-91991.

[32] H. Dieter Rombach and Martin Verlage. How to assess a software process modeling formalism from a project member’
point of view. InProceedings of the Second International Conference on the Software Ppamgss 147-158, February

1993.

[33] H. Dieter Rombach and Martin Verlage. Directions in software process research. In Mafeikowitz, editor Advances
in Computers, vol1, pages 1-63. Academic Press, 1995.

-20 -

[34] StanleyM. Sutton, Jr., Dennis Heimbigner, and LebrOsterweil. Language constructs for managing change in proc-
ess—centered environmentsPFioceedings of the Fourth ACM SIGSOFT/SIGPLAN Symposium on Practical Software De-

velopment Environmentpages 206-217, 1990. Appeared as ACM SIGSOFT Software Engineering Notes 15(6),
December 1990.

[35] Masato Suzuki, Atsushi lwai, and Takuya Katayama. A formal model of re—execution in software processJirOseon

terweil, editor,Proceedings of the 2nd International Conference on the Software Prpesgs 84-99. IEEE, IEEE CS
Press, February 1993.

[36] Martin Verlage. Multi-view modeling of software processes. In BdamWwarboys, editoProceedings of the Third Euro-
pean Workshop on Software Process Technologges 123-127, Grenoble, France, 1994. Nr. 772, Springer—Verlag.

[37] Martin Verlage, Barbara Dellen, Frank Maurer, and Jurgen Minch. A synthesis of two process support apréaohes. In

ceedings of the 8th Software Engineering and Knowledge Engineering Conference (SBkito@#2dge Engineering In-
stitute, June 1996.

-21 -

Appendix

TableA.1 relates softare process terms defined byfeliént authors. The termgmain real-vorld con-
cepts. The definitionsgn in [2, 9, 13, 21] are in natural language and therefore lack fornfdigywer-
view presented indbleA.1 should not be understood as a precise comparison of termindlogyerms
differ slightly in their meaningsven when thg have the same name. The matchingsvperformed based
on careful lnt subjectre assessment. The reader is referred to the cited literature for a deqaldehton
of the terms. A table cell mvhigh means that the term corresponds t tevms of another framerk.
Empty cells mean that no term with an emqlent meaning to other terms of thatvres defined in the
approach discussed in the column.

. Armitageand Feiler Loncham Conradietal.
MILOS CoMo-Kit MVP-L P e?[Z] Humphre [13] | -1 P o]
Process Task Process Process (instance)] Process (Element) [Software — Pro-| Process
cess
Process ype Process Model Process (type) Process Definition Template
Production Process
Method Method Activity Process Step Activity
Activity Process Script
Description
Procedure Process Program
Atomic Method Atomic Method Elementary Pro- Process Step Activity
ces8
Task Task
Process Attribte Process Attribte Activity Staté
Complex Method || Complex Method | Refinement Decomposition
Criteria: Criteria Behavioral Process Constraint| Constraint
Precondition Information
Invariant
Postcondition
Project Plan Project Plan Process Plan
Project Plan Software Project
Product Concept Instance| Product Artif act (instance) Artifact Artifact (Input)
(Instance) Software Item (Out-
put)
Product Vpe Concept Class Product Model Artifact (type) Template
Product Slot Attribute Elementary Product
Software Product
Deliverable
Product Attritute Product Attrilute Artif act Statec
Product Flav Information flav Product Flav Artif act Flav
Ressource Resource Resource
Agent Agent Personnel Agent Agent Agent Agent
Tool Tool Tool
Property Resource Attribte Agent Statec
Attribute Attribute Attribute?
Model Process Definition| Process Definition | Generic Process| Template
Model

Table A.1: Relating Diff erent Frame works

aNot all process terms presented9n13, 21] are considered in the corresponding columns, becaugefiitham describe no concept
of software deelopment processesitideas of enaction (e.g., enactment statggrozational processes (e.g., monitoring), or proc-
ess characteristics (e.gvdhess).

b.Process which contains no refinement.

c.Predefined attrilites used by a process engine (interpretation machine) to managegahpooject state.

d.Attribute is eplained as “a teual description of information”. This general and abstract definition matches the other termswn the ro
only partially

-22 -

The Sonder for schungsbereich 501

The “Deutsche érschungsgemeinschaft (B’ is a major sponsor of basic researchvaats in Ger-
mary. Besides indiidual projects DFG sponsors long-term sgadeesearch adtities at German uwer-
sities. The most prestigious form of funding are so-called “Sonderforschungsbereiche (SFBs)”, 4
research institutes aimed at addressing fundamental research areas. Specific characteristics
include their diliation with a highly respected scientific department at a Germasensity, funding peri-
ods of 9 to 15 years (withgalar evaluations), and interdisciplinary collaboration.

The SFB 501 on “Deelopment of Lage Systems with Generic Methodsasvstarted at the Urarsity of
Kaiserslautern on January 01, 1995. It aims a¢lkd@ing and ealuating a set of techniques, methods af
tools for supporting theabt and reliable customization of comptibmain specific softare systems. The
emphasis is on techniques, methods and tools that support reuse of all kinds aresaftifzcts ranging
from system components to process fragments and other relateleége.

In the first stepxdsting techniques, methods and tools are bematuated for suitability within the domain
of process control - starting with the application scopauéling automation.

The mid-term goal of the SFB is to generalize the resulting techniques, methods and tools sugh tf
can be used within other application scopes and domains to establish similar reusevedsgaheet pro-
cesses.

The long-term goal of the SFB is to contrib to the science base for transforming safeandeelopment
from an art to an engineering discipline.

Within the SFB seeral research groups from the departments of Computer Science and Electrical
neering collaborate. Current emypoent count includes 8 professors, 17 full-time researchers and a|
the same number of part-time student assistants. Thaviiofjrojects hee been established:

« Application scope “Building Automation”: A project toviesticate requirements on such systems a
build simulation models for system/acceptance testing

« Software Engineering Laboratory: A project to support both the prototymdagement of a firstidld-
ing automation system and theakiation of &periments

« Experiment-Based modeling of sofive d@elopment processes/kntedge based planning and con|
trol of SE processes:wb projects to support the planning an@@ution of processes for sofive
development and>gerimentation based omisting knavledge

e Generic communication systems/Generic system sofvilvo projects to imesticate the possibilities
for generic modeling of system so#ive needed within the chosen application domain

- Formal description techniques: A project to select, modifiegrate and ealuate the appropriate
description techniques for generiovdpment

Additional projects will be proposed at thexn&FB review.

-23 -

