
Knowledge and Experience Reuse through

Communication among Competent (Peer) Agents

Francisco J. Mart��n, Enric Plaza, and Josep Llu��s Arcos

IIIA - Arti�cial Intelligence Research Institute
CSIC - Spanish Council for Scienti�c Research

Campus UAB, 08193 Bellaterra, Catalonia (Spain).
Vox: +34-3-5809570, Fax: +34-3-5809661

Email: fmartin,enric,arcosg@iiia.csic.es

WWW: http://www.iiia.csic.es/Projects/FedLearn/CoopCBR.html

Abstract

This article addresses an extension of the knowledge modelling ap-

proaches, namely to multi-agent systems where communication and coor-

dination are necessary. We propose the notion of competent agent and

de�ne the basic capabilities of these agents for the extension to be ef-

fective. An agent is competent when it is able to reason about its own

competence and that of the other agents with which it cooperates in a

given domain. In our framework, an agent has competence models of

itself and of its acquaintances from which it can decide, for a speci�c

problem to be solved, the type of cooperative activity it can request and

from which agent. In this paper we focus on societies of peer agents, i.

e. agents that are able to solve the same type of task but that may have

di�erent degrees of competence for speci�c problem ranges.

1 Introduction

Cooperative multi-agent systems (MAS) that are being designed around the

team metaphor tend to describe a MAS by the roles of the agents in the cooper-

ative activity they are engaged in while solving problems. This approach tends

to emphasize the view of agents as specialists in a team and lends it to develop

frameworks with a �xed division of labour|typically, each agent is responsible

for a subtask in a static task/agent assignment. Our research work in agents

that both cooperate and learn [22] has led us to focus on MAS where agents

need to dynamically choose, for a speci�c problem, which agent to cooperate

with for each (sub)task.

In this paper we will focus on the needs for knowledge sharing and reuse in

cooperative MAS with a
exible and dynamic task/agent assignment. We will

1

propose the notion of competent agent, and we will develop some agent coop-

eration strategies based on two assumptions: i) each agent has a competence

model of the other agents in the cooperative MAS, and ii) each agent is able

of dynamically decide with which agent to cooperate in order to solve a given

task. Moreover, we will illustrate our approach with CoDiT, a MAS wherein

agents use case-based reasoning (CBR) to recommend therapy for diabetic pa-

tients. This application domain allows us to exemplify the sharing and reuse of

problem solving knowledge and experiential knowledge (in the form of cases in

CBR) among agents that reside anywhere in a IP network.

The structure of the paper is as follows. Section 2 introduces the framework

of competent agents and CoDiT, our MAS diabetes therapy application. Then,

Section 3 presents the representation language the agents use to reasoning and

the agent communication scheme the agents use to share and reuse knowledge

and experience. Next, Section 4 presents two cooperation modes for MAS per-

forming CBR and how this is related to the representation and communication

languages. This section also explains some strategies (inside of a cooperation

mode) for using competence models and choosing with whom to cooperate. Sec-

tion 5 analyzes some related approaches, and �nally, the paper closes with our

current conclusions.

2 Competent Agents

A competent agent is an agent that: i) is re
ectively aware of its own compe-

tence, for a range of tasks, in solving problems , and ii) is aware of the compe-

tence of the other agents in a cooperative MAS. In our approach, we propose to

design a competent agent endowing it of competence models of itself and com-

petence models of acquaintance agents in the MAS. Moreover, a competence

model of an acquaintance agent has to exist for any speci�c task (upon which

cooperation will take e�ect) and only makes sense inside a given cooperation

mode.

Competent Agent A competent agent is a tuple AihM;A; C;Si with M =

M1; : : : ;Mn cooperation modes, A = A1; : : : ; Am acquaintance agents, compe-

tence models C = C1; : : : ; Ck, and re
ective competence models (or competence

self-models) S.

Competence Model A competence model C 2 C of agent Ai is a tuple

C = hA; T; P;M i where A 2 A, T is a task of A, P is a problem speci�cation,

and M 2 M is a cooperation mode. Moreover, a competence self-model S 2 S
is a tuple S = hT; P i.

Clearly, the competence model depends on the agent A to which a request is

done and also on the task T requested to that agent. Moreover, the competence

depends also on the type of request asked to A concerning T : this aspect is

modelled by the notion of cooperation mode. Two cooperation modes for CBR

2

are proposed in x4, DistCBR and ColCBR: in DistCBR experience in the form

of cases of A is shared by Ai but the problem solving knowledge used to solve

T belongs to A; conversely, in ColCBR experience in the form of cases of A is

shared by Ai and the problem solving knowledge used to solve T belongs to

Ai. Section 4 explains how these to cooperation modes are based two types of

requests, namely task delegation and mobile problem solving methods.

Problem Speci�cation Finally, a problem speci�cation P = (D;E) (of Ai

about A for T) consists basically of two models: a problem description D and an

agent performance evaluationE. A problem description D characterizes a range

of problems for which agent A is competent, and commonly a competence as-

sessment problem solving method can compare the current problem with D and

yield back a degree of con�dence for A's competence. On the other hand, model

E holds information about A's performance concerning mundane matters such

as response delay, unavailability frequency, etc. Since these aspects are quite

domain-dependent, we will not do into more details here; however, concerning

the knowledge acquisition work involved in acquiring those competence models,

it is worth to say that we are using inductive learning techniques as those of [7].

Regarding the notion of peer agents, let's say that we are interested here

not in specialist agents but in agents able to solve, in principle, all the tasks

an subtasks of a problem, but the degree of validity may vary along di�erent

ranges of problems. This setting may look strange at �rst, but it is tantamount

to assume that agents do not have perfect knowledge: in e�ect, what sense

would it make for a agent to cooperate inside a MAS if the agent already knows

all it needs? Another way to view our domain of interest is considering that

we are interested into MAS whose agents are able to learn from experience. In

what follows, then, we shall assume we are dealing with MAS that ful�l the

following assumptions.

Homogeneous Agents The representation languages of the involved agents are

the same. Consequently, communication among agents does not require a trans-

lation phase.

Peer Agents The involved agents are capable of solving the task in hand. In

other words, cooperating agents are not merely specialists at speci�c subtasks.

Instead, they are capable to solve the overall task by themselves (most of time,

at least). This condition implies a peer to peer communication form.

Learning Agents The agents solve the task based knowledge acquired by learn-

ing from their individual, usually divergent, experience in solving problems and

cooperating with other agents in solving problems.

We call this framework federated peer learning [22], an although this article

will say few about learning, it is relevant to understand the example system

in the next subsection where agents using Case-based Reasoning learn from

experience in a medical domain.

3

CBR-method

Retrieve Reuse

Identify Select

Construct
perspectives

Retrieve
using

perspectives

Rank
cases

Propose
therapy

Search

Identify&Select

Figure 1: Task decomposition of the case-based reasoning method for diabetes

therapy. The retrieve task will be augmented with communication capabilities

for searching cases solved by other agents.

2.1 Case-based Reasoning in Diabetes

We are developing CoDiT, a multi-agent system for therapy recommendation in

diabetic patients lying in the framework of the SMASH project1. This multi-

agent system consists of a group of agents that perform case-based reasoning

(CBR) and are able to communicate and cooperate for the purpose of recom-

mending a therapy. Each agent has a case base with data of the patients of a

speci�c M.D.; moreover, legal and deontological reasons prevents that patient

data could be centralized since only the patient's doctor is entitled to have that

data. Thus, this scenario �ts the MAS approach since resources are distributed

but some doctor (or her agent) could also be interested in the case of a patient

that is unknown to her but stored in some other doctors case base. The doc-

tors we are cooperating with have developed a common ontology to represent

the patients data|thus we can focus on the cooperation and communication

for the therapy task. Finally, remark that our diabetes therapy CBR agents

are peer agents in the MAS, since each agent is capable of solving the whole

task alone (recommending a therapy) using the resources available in its case

base. However, it is intuitively appealing the scenario in which they are able

to exchange patient data (maintaining anonymity for legal and deontological

reasons) in order to improve their performance.

The basic CBR task decomposition is that shown in Fig. 1: retrieve and reuse.

There is also an automatic retain task (not shown in the �gure) that incorporates

a solved problem into the agent's episodic memory. Summarily, the retrieve task

has a decomposition method with three subtasks: identify, search and select. The

1Systems of Multiagents for Medical Services in Hospitals, more information is available

at http://www.iiia.csic.es/Projects/smash/

4

identify task has a method that constructs a perspective2 on the patient; then

task search retrieves from the case-base those cases that are subsumed by that

perspective (i.e. those cases that satisfy the model built by the perspective).

Next, the select task has a method that constructs a preference model of the

retrieved cases from domain-speci�c knowledge. Finally, reuse is a task that

takes the most preferred case and adapts its solution (therapy) to the current

patient; the adaptation method uses domain-speci�c knowledge and if a most

preferred case cannot be adapted then tries to adapt the next-preferred case.

Section 4 explains how the methods used in the retrieve task can incorporate

communication and cooperation with other agents in order to �nd relevant cases

known for other agents. Moreover, section 4 will introduce some strategy, based

on competence models, needed to determine with which of the peer agents is

better to cooperate for solving a speci�c problem.

3 Representation and Communication

Current knowledge representation languages have been thought to develop iso-

lated applications and usually cannot provide such applications with the commu-

nication abilities required by agent-based systems. For instance, that is the case

of the knowledge representation language Noos [4]. Noos is an object-centered

language based on feature terms and developed in our institute which was spe-

cially designed to integrate problem solving and learning techniques. Nonethe-

less, although Noos can furnish applications with the reasoning abilities required

by intelligent agents, it lacks communication abilities except for a graphical user

interface. One of our aims is to promote Noos to an agent language and bene�t

from the research e�ort deployed in it. Thereby, we are developing Plural, a

seamless extension of Noos with agent-oriented capabilities [15]. Plural can be

thought as an extension of a knowledge representation language with an agent

communication language and an agent coordination language. Both of these

languages have been provided at the knowledge representation level by means

of a set of constructs with the same nature as the rest of Noos constructs. In the

following subsections we succinctly describe the Noos representation language

and present the communication abilities with which Plural provides Noos.

3.1 The Noos Language

Noos is a re
ective object-centered representation language designed to support

knowledge modelling of problem solving and learning [6]. Noos is based on the

task/method decomposition principle and the analysis of knowledge require-

ments for methods|and it is related to knowledge modelling frameworks like

KADS [29] or components of expertise [28]3.

2A perspective constructs from the patient model a speci�c model of the relevant aspects

for the task at hand [5].
3For related approaches see the Knowledge Engineering Methods and Languages web page

at ftp://swi.psy.uva.nl/pub/keml/keml.html

5

The Noos representation language is based on four components: domain

knowledge, problem solving knowledge, episodic memory, and metalevel.

Domain knowledge speci�es a set of concepts, a set of relations among con-

cepts, and problem data that are relevant for an application. Concepts and re-

lations de�ne the domain ontology of an application. For instance, the domain

ontology of CoDiT de�nes concepts such as insulin-dependency or pregnant.

Problem data, described using the domain ontology, de�ne speci�c situations

(speci�c problems) that have to be solved. For instance, in the diabetes appli-

cation, problem data represents information from speci�c patients.

Problems to be solved in a domain are modeled as tasks. For instance, the

main task in the diabetes application is to recommend therapies for diabetic

patients. In Noos, a problem solving method (PSM) models a way to solve

problems. Methods can be elementary or can be decomposed into subtasks.

These new (sub)tasks may be achieved by other methods. A method de�nes

a speci�c combination of the results of the subtasks in order to solve the task

it performs. For a given subtask there may be multiple alternative methods

that may be capable of solving that subtask in di�erent situations. This re-

cursive decomposition of a task into subtasks by means of a method is called

the task/method decomposition. For instance, Figure 1 shows the task/method

decomposition of the case-based reasoning method for diabetes therapy. The

CBR-method is decomposed into two subtasks, namely retrieve and reuse.

For each subtask one or several alternative methods are speci�ed|e.g. subtask

retrieve has the identify&select method that is decomposed in (sub)tasks

namely identify, search, and select.

Noos provides an initial set of existing methods, called built-in methods,

that are those of a general-purpose language plus some constructs enabling

introspection. New methods can be de�ned by re�nement of these built-in

methods.

Problem solving in Noos is considered as the construction of an episodic

model. In this sense the Noos approach to problem solving is close to that of

CommonKADS [29] and to the TASK language [21]. Our view of \problem

solving as modelling" is that problem solving is the process of constructing an

episodic model. This model is obtained from transformations of problem data

performed using problem solving knowledge. A clear and explicit separation

between tasks, methods, and domain knowledge permits the dynamical link

between a given problem, tasks, and methods as well as the dynamical choice

of a method suited to achieve a task in that problem context: a `task' uses a

`method' on a `episode' (described using domain knowledge and problem data).

An episodic model is the set of knowledge pieces used for solving a speci�c

problem. Once a problem is solved Noos automatically memorizes (stores and

indexes) the episodic model that has been built. Episodic memory is the (ac-

cessible and retrievable) collection of the episodic models of the problems that a

system has solved and constitutes its experiential knowledge. The memorization

of episodic models is a basic building block for integrating learning into a KM

framework.

Metalevel (or re
ective) knowledge is knowledge about domain knowledge,

6

problem solving knowledge, and episodic memory. Metalevel knowledge in-

cludes preferences to model decision making about sets of alternatives present

in domain knowledge and problem solving knowledge. For instance, metalevel

knowledge can be used to model criteria for preferring some methods over other

methods for a task in a speci�c situation. Speci�cally, competence models are

represented in Noos in the metalevel.

On the other hand, the metalevel has models about how problems are solved

in the system|or in other words, knowledge about episodic models. Knowledge

about episodes models knowledge such as the method that has succeeded in

achieving a speci�c task, the methods that have failed in achieving a speci�c

task, the tasks that have been engaged in the evaluation of a method, and the

preference orders built while choosing among alternatives. At the conclusions

section we will describe a future research line where the experience accumu-

lated in delegating tasks to other acquaintances may be used to improve the

competence models that a Noos agent has about its acquaintances.

Communication and coordination capabilities provided by Plural enable Noos

to the exchange of tasks (task delegation) and the exchange of methods (mobile

problem solving methods) in multi-agent scenarios. Both capabilities will be

explained in the following subsection.

3.2 Communication and Coordination in Plural

Plural provides Noos with a communication scheme based on message-passing as

communication protocol and point-to-point as addressing scheme. Namely, the

means by which Plural allows agents to share knowledge takes the form of mes-

sages routed from an agent to another. However, Plural agents do not commu-

nicate directly with one another, instead, the rely on interagents. An interagent

is an autonomous software agent which manages (intermediates) the communi-

cation and coordination between an agent and the agent society wherein it is

situated [15, 17]. Each agent has attached its own interagent which constitutes

the sole and exclusive means through which it interacts with other agents. An

interagent gives a permanent identity to its owner and establishes what mes-

sages can be forwarded, to whom and when. An interagent supports a range of

programmable communication and coordination facilities. On top of such facil-

ities, Plural provides Noos with some constructs which o�er, at the knowledge

representation level, the coordination level required to the exchange of tasks and

methods allowing agents to cooperate in non-trivial ways. These constructs al-

low the exchange of knowledge to be performed at the knowledge representation

level transparently to the agent communication and coordination language.

Up to now, two new constructs have been provided|de�oreign and defmobile.

The de�oreign construct allows a Plural agent to remotely invoke methods owned

by other Plural agents4 (foreign evaluation). The defmobile construct, on the

other hand, allows a Plural agent to send methods to be remotely evaluated to

4A method can remotely be invoked by other acquaintances only if its owner agent have

previously made it accessible for other agents.

7

other agents (mobile evaluation)5. Thus, using such constructs Plural agents are

provided with the following capabilities.

Foreign Evaluation This capability allows a Plural agent to remotely invoke

methods, like in the remote procedure call (RPC) model, owned by any of its

acquaintances. When an agent invokes a method owned by an acquaintance it

also provides the necessary parameters to evaluate it. Foreign evaluation, like

the RPC model, is based on the notions of data mobility and control mobility

among agents. Data is exchanged among agents in the form of parameters and

results of foreign evaluations. Through foreign evaluation a thread of control

started at one agent can continue at other agent and thereafter come back.

Mobile Evaluation Plural agents are capable of transporting Noos meth-

ods (code) from one agent to another to be remotely evaluated. Transporting

a method implies that the whole task/method decomposition of a method is

transferred from an agent to another. Mobile evaluation is based on the notions

of data mobility and code mobility. Data is exchanged among agents in the

form of parameters and results of mobile evaluations. The code that composes

a mobile evaluation is packaged up and conveyed from one agent to another.

By means of these capabilities, a Plural agent can delegate a task to any of its

acquaintances (task delegation) or can send a method to solve remotely a task

on its behalf to other agents (mobile problem solving methods).

Task Delegation Plural allows an agent to delegate another agent to carry

out a task on its behalf. Thus, we talk about an originator agent meaning the

agent who originates a task and about a helper agent meaning the agent to who

a task is delegated. The foreign evaluation capability of Plural is what allows

an agent to delegate a task to an acquaintance. In order to perform a foreign

evaluation the originator has to indicate the helper agent's PSM that has to

be applied to carried out the forwarded task. Task delegation enables an agent

to share and reuse other agents' problem solving knowledge and experiential

knowledge.

Mobile Problem Solving Methods Plural allows an agent to shift a task

and the problem solving method to achieve that task to another agent[16]. The

mobile evaluation capability of Plural is what allows a task and a method of

that task to be dispatched from one agent (the originator) to a remote agent

(the helper) on behalf of the originator. Using mobile PSMs an agent can share

and reuse other acquaintances' experiential knowledge.

5The foreign evaluationandmobile evaluationcapabilities of Plural are based on the notions

of foreign re�nements, mobile re�nements and alien references. Foreign re�nements allow

an agent to remotely re�ne Noos terms owned by an acquaintance, mobile re�nements allow

an agent to re�ne Noos terms to be sent to an acquaintance, and alien references are the

basic mechanism that allows Noos terms to be remotely referenced in a multi-agent setting.

Readers interested in further details are referred to [15].

8

A Plural agent is an autonomous application developed in Noos which hold its

own domain knowledge, problem solving knowledge, experience, and metalevel.

In Plural an individual agent is built in the following four modules: a Noos

interpreter; an interagent; a working memory; and a episodic memory. Several

Plural agents can share the same interpreter but neither the same interagent nor

the same working memory nor the same episodic memory. In order to share

the knowledge stored in these memories, Plural agents have to deploy any of the

cooperation modes explained below.

4 Cooperative Case-Based Reasoning

Communication and coordination constitute the basis for cooperation among

Plural agents. Cooperation allows an agent achieve tasks which surpass its

problem solving capabilities. Thus, cooperation can be thought of as an exten-

sion of agents' knowledge. In Plural, agents cooperate in order to share other

agents' knowledge (problem solving, domain, episodic or metalevel knowledge).

Cooperation in Plural is carried out based on the following conventions:

Willingness. We assume that all Plural agents in a speci�c domain application

always are willing to cooperate with other Plural agents.

Faithfulness. A Plural agent will try to ful�l any commitment that it takes.

Sincerity. Plural agents will always tell what they believe.

Politeness. A Plural agent always acknowledges requests from other agents, that

is, it does not ignore them. Thus, every time a Plural agent calls another Plural

agent either it can establish a conversation or get a busy signal. Either agent

will be able to terminate the conversation, but only after an agreement between

both.

When a competent agent faces a (sub)task T which is inside its problem

solving capabilities then it can perform such task alone. But in case that task

T surpasses (is beyond) its problem-solving capabilities then it can cooperate

with other agent(s) to try carry out that task. Therefore, that agent should

decide:

� when cooperate, depending on whether a speci�c task is under its problem-

solving capabilities or not;

� with whom cooperate, namely which agent/s is/are able to succeed in

performing such task.

� how cooperate, that is to say which cooperation mode is suitable for suc-

cessfully gathering necessary knowledge together to perform that task.

A competent agent AihM;A; C;Si can decide when cooperate thanks to its

own competence self-models S which indicate its own suitability to achieve the

task in hand. In case an agent does not feel competent to perform a speci�c

9

task, that is, its competence self-model indicates that such task is beyond its

problem solving capabilities then such agent should �nd out the most competent

agent to achieve that task by means of other agents' competence model C.
A cooperation mode establishes the conventions that a couple of agents follow

when exchanging knowledge. Thus, a cooperation mode expresses the actions

that two particular agents must carry out in order to gather together the di�er-

ent elements required to perform a speci�c task. That is to say, a cooperation

mode allows an agent (the originator) to reunite the set of knowledge pieces

needed to construct an episodic model for a given problem with the help of an

acquaintance (the helper). Di�erent cooperation modes allow Plural agents to

gather necessary knowledge together to perform speci�c tasks in di�erent ways.

For instance, several cooperation modes can be established depending on the

following aspects:

� which agent originates the task; that is to say, if the task in hand is

originated at one or another agent side.

� which agent owns the processor and the rest of computational resources

needed to solve task T ; in short, which computer machine is used.

� which agent owns the problem solving method used to solve that task;

� which agent owns the experience; in case a problem solving method uses

experience acquired by an agent.

For instance, agent A who solves a speci�c task T in isolation accomplishes

the following features:

Table 1: Agent A solve (sub)task T isolatedly

Agent A Agent B

Where task T is originated
p

Who owns the Problem Solving Method
p

Who owns the computational resources
p

Who owns the experience
p

Thus, a cooperation mode establishes how two agents must behave to ac-

complish a particular task. However, when a competent agent can opt for more

than acquaintance to cooperate solving a speci�c (sub)task, then di�erent co-

operation strategies can be established for each cooperation mode depending on

di�erent criteria followed by the agent to solve such (sub)task. For instance,

depending on how the set of helper agents chosen to cooperate is constructed

and how this set is sorted to be traversed in search of a competent agent. In this

way, it could be told that a cooperation mode settles how two agents cooperate

whereas a cooperation strategy settles how more than two agents do.

In this way, the term cooperative case-based reasoning groups together the

set of cooperation modes and cooperation strategies that can be deployed by a

10

collectivity of CBR agents wherein each CBR agent has its own base of preceding

cases CB previously solved by itself.

Therefore, cooperation among CBR agents can be thought as an extension of

agents' set of precedents, that is to say an expansion of the individual memory

of a CBR agent to the memories of a collectivity of CBR agents. For instance, in

CoDiT the retrieve task incorporates cooperation with other agents in order to

�nd relevant cases known for other agents|i.e. to �nd the patient record most

relevant to the current problem. Thus, the competent agents that constitute

CoDiT are provided with a competence model on top of which two cooperation

strategies each using a cooperation mode have been developed as explained in

x4.1 and x4.2. Thereby, from now on we concentrate exclusively on the retrieve

task and consider that the reuse task is always performed by the originator.

We propose two cooperation modes between CBR agents: Distributed Case-

Based Reasoning (DistCBR) and Collective Case-Based Reasoning (ColCBR).

Intuitively, both DistCBR and ColCBR are based on solving the retrieve task

reusing the experiential knowledge (in form of cases) of other CBR agents.

DistCBR. An agent (the originator) delegates the retrieve task to another agent

(the helper) indicating the helper's CBR method to solve such task.

ColCBR. An agent (the originator) forwards the retrieve task and the PSM of

that task to an acquaintance (the helper). That is to say, the originator, in

addition to the task, also conveys the PSM to solve that task.

Table 2: DistCBR for agents A and B and agent A's (sub)task T

Agent A Agent B

Where task T is originated
p

Who owns the Problem Solving Method
p

Who owns the computational resources
p

Who owns the experience
p

Table 3: ColCBR for agents A and B and agent A's (sub)task T

Agent A Agent B

Where task T is originated
p

Who owns the Problem Solving Method
p

Who owns the computational resources
p

Who owns the experience
p

The di�erence between both cooperation modes basically resides in which

agent owns the problem solving method to �nd the most relevant case (Ta-

bles 2 and 3 try to make clear this di�erence). In both cooperation modes

helper's experiential knowledge is shared and then reused by the originator.

However, whilst the DistCBR cooperation mode also allows helper's problem

11

solving knowledge to be shared and reused by the originator, using the ColCBR

cooperation mode the PSM sent by the originator is shared by the helper to

retrieve the most relevant case(s) that will be later reused by the originator.

From the standpoint of implementing these cooperation modes, we can say that

DistCBR is supported by the task delegation capability of Plural whereas Col-

CBR is supported thanks to the mobile problem solving methods capability of

Plural. On the other hand, from an authority point of view, it can be said that

using DistCBR the originator delegates authority to the helper to solve the task

in hand. On the contrary, using ColCBR the originator maintains the authority,

since it has fully control over the PSM applied, merely it uses the experiential

knowledge of the helper.

4.1 Distributed CBR

The DistCBR cooperation mode enables an agent to share experiential knowledge

acquired by an acquaintance by means of particular problem solving methods

provided by this.

The DistCBR cooperation mode allows a CBR agent (the originator) to ex-

tend its base of precedents CBoriginator with the base of precedents CBhelper of

an acquaintance (the helper). However, the way in which the base of precedents

CBhelper is accessed|i.e. how precedents are identi�ed and selected|depends

exclusively on the helper's problem solving methods.

The following actions are performed by two CBR agents whilst cooperating

using the DistCBR cooperation mode:

1. The originator asks the helper to solve (delegates) the retrieve task indi-

cating which helper's problem solving method must be applied to solve

such task.

2. On receipt of the task, the helper retrieves the most relevant precedent(s)

using its corresponding retrieval method (as indicated by the originator).

3. Thereafter, the helper refers the available precedent(s) back to the origi-

nator which will have been inferred using its own (helper's) PSM.

In the DistCBR cooperation mode, a competent agentAihfDistCBRg;A; C;Si
solving a speci�c (sub)task T could deploy di�erent strategies to perform task

T depending on which subset of acquaintances A agent Ai asks for help and

in which order. For instance, CoDiT has a cooperation strategy that uses the

competence models to decide to which agent and when it shifts the retrieve task.

Thus, the retrieve task of a CBR agent shown in Fig. 1 is transformed to that

of Fig. 2.

There are now two possible ways to solve the retrieve task: i) using method

identify&select as before (it's the method owned by the agent that works on

the episodic memory of that agent) or ii) using the DistRetrieval method that

can delegate the retrieve task to other agents. There is a metalevel task (with

respect to the retrieve task) that decides the base-level method to use; this task,

12

CBR-method

Retrieve Reuse

Best
case

Propose
therapy

Identify&Select

DistRetrieval

SelfModel
Assessment

Asses Self
Competence

Figure 2: Task decomposition of the DistCBR cooperation mode for diabetes

therapy. There is a metalevel task assess-self-model that decides whether to solve

the retrieve task using the agent own method identify&select or the DistRetrieval

method that uses task delegation to other agents.

called assess-self-model, has a (metalevel) method that uses the self-competence

model to decide whether the agent is competent for the problem in hand or

needs to ask other agents for help. As a result, this self-competence-assessment

method decides that whether identify&select or DistRetrieval is the method to

be used for the retrieve task.

The second part of the cooperation strategy is embodied by the DistRetrieval:

choosing with which other competent agents to cooperate in order to retrieve

a case that is similar to the current problem. The current strategy has several

phases:

Phase 1 Search for relevant patient records from most competent agents.

1. Assess the competence degree of the competent agents using the com-

petence models.

2. Select the agent Aj with higher competence degree and delegate to

it the retrieve task; in this way Aj will use its own identify&selectj
method to retrieve the most relevant patient case from its case base

CBj .

3. If the helper agent cannot solve the task (no good enough case can be

found in its case-base) try next best competent agent Aj+1; otherwise

Phase 2 starts.

Phase 2 Assess result of helper agent. Firstly, notice that the criteria for decid-

ing what is a \relevant" patient case is di�erent for competent agent|this

stems from the fact that each one uses a di�erent method identify&selectj
for the retrieve task. Since the originating agent may have a very strict

relevance criterion it is wise to assess a posteriori the result recommended

by a helper agent.

13

1. Assess the most relevant case recommended by the helper agent

against the originator agent relevance criteria.

2. If the case is good enough, the agent proceeds to the reuse task (see

below).

3. Otherwise the case is cached (as the best case an agent Aj can give

for the current problem).

4. Since, according to the originator the solution given by Aj is consid-

ered a failure, Phase 1 should be resumed and the next most compe-

tent agent is to be queried. However, if no competent agent remains

then Phase 3 is entered.

Phase 3 Relaxation of relevance criteria. This phase arises when no competent

agent can provide a case in a set of case-bases that is good enough for the

strict relevance criteria of the originator agent. However, relevance criteria

used for retrieval are just a priori assessments, and it may be possible that

some of the cached cases (the \best cases" from the competent helper

agents) may be good enough to solve the current problem on the reuse

task (see below).

1. First, using some less relevance criteria the \best cases" cached from

the helper agents are ranked.

2. The highest ranking cached case is selected and the reuse task will

adapt its solution, if possible, to the current problem.

Reuse The solution of the best retrieved case has to be adapted to the current

problem. In CoDiT domain knowledge is used to adapt, if possible, the

recommended therapy to the current patient. However case relevance does

not assure solution reuse, and when the solution cannot be adapted the

retrieved case is also considered to be a failure and the agent resumes

previous phases in search of a more adequate episode.

In this cooperation strategy, the originator delegates the authority solving

the task retrieve whenever its self-competence model indicates that it is not so

competent for the problem in hand.

4.2 Collective CBR

The ColCBR cooperation mode allows a couple of CBR agents to share experi-

ential knowledge. By means of the ColCBR cooperation mode a CBR agent (the

originator) can make use of the base of precedents CBhelper of an acquaintance

(the helper). The way in which the base of precedents CBhelper is accessed, in

this case, depends on the originator's problem solving method sent.

The ColCBR cooperation mode implies the following actions to be carried

out between two CBR agents:

1. The originator sends the retrieve task to be solved and a originator's re-

trieval method to be applied to solve such task together to the helper.

14

2. On receipt of the task and the PSM, the helper retrieves the most relevant

precedent(s) using the PSM received.

3. Thereafter, the helper refers the available precedent(s) back to the origi-

nator which will have been inferred using the originator's PSM method.

CoDiT has also been provided with a cooperation strategy based on the Col-

CBR cooperation mode to solve the retrieve task. A competent agentAihfColCBRg;
A; C;Si deploying this cooperation strategy also uses competence models to de-

cide when cooperate and with which agents.

The �rst part of this cooperation strategy coincides with the cooperation

strategy explained above with the exception of the second way to solve the

retrieve task. Since now the self-competence-assessment method can choose be-

tween the identify&select and ColRetrieval methods. The ColRetrieval method is

a mobile problem solving method which shifts the retrieve task and the iden-

tify&select method of the competent agent to an acquaintance with the aim of

using its precedents. Thus, in this case the retrieval task of a CBR agent is alike

that shown in Fig. 2 except for the DistRetrieval method that has been changed

for the ColRetrieval method.

The second part of this cooperation strategy is much more straightforward

than in the strategy explained formerly. On the one hand, Phase 1 has been

modi�ed slightly as explained below, Phase 2 and 3 have no sense in this strategy

since a posterior assessment is not necessary to be carried out using the ColCBR

cooperation mode, given that the identify&select method used by all involved

competent agents will be the same. On the other hand, the reuse task remains

just as above. Phase 1 have been changed as follows:

Phase 1 Search for relevant patient records from most competent agents.

1. Assess the competence degree of the competent agents using the com-

petence models.

2. Select the agent Aj with higher competence degree and forward the

retrieve task and the identify&select method to agent Aj in order to

retrieve the most relevant patient case from Aj's case base CBj .

3. If the helper agent Aj cannot solve the task (no good enough case

can be found in CBj) try next best competent agent Aj+1; otherwise

the reuse task starts.

Reuse The solution of the best retrieved case has to be adapted to the current

problem. As above when the solution cannot be adapted the retrieved case

is also considered to be a failure and the agent resumes previous phases

in search of a more adequate episode.

This cooperation strategy guarantees that when the originator shifts a task

to an acquaintance it carries on maintaining the authority solving the retrieve

task.

15

5 Related Work

In regard to agent models (representations of one-self and other agents in a

multi-agent scenario), it can be told that the identi�cation, design, and imple-

mentation of strategies for cooperation based on agent models have been key

research issues since the early years of the �eld of Distributed Arti�cial In-

telligence (DAI). Indeed, the Actors model of concurrent computation already

introduces a simple representation of others. An actor during its behaviour def-

inition is provided with a list of identi�ers (acquaintance list) indicating the

name and location of each acquaintance [3]. In other early work Cammarata et

al. introduce di�erent strategies of cooperation based on more complex agent

models for the collision avoidance in the air tra�c control (ATC) domain [9].

They present four distinct ATC systems, where each involved agent models des-

tinations, speeds, fuel levels and so on of others what allows agent groups to

solve shared tasks e�ectively.

The contract net protocol [26, 12] facilitates distributed control of coopera-

tive task distribution (task-sharing) among the nodes of a distributed problem

solver. In this approach, when a particular node lacks necessary knowledge to

perform a task it announces (broadcasts) that task to the rest of nodes. Then,

each node evaluates its own suitability to carry out that task and bids a �g-

urative price (since each node is endowed with a strength parameter as the

hypothetical capital for granting contracts or charging services) for that task.

Afterwards, the originator chooses the most suitable among all bids submit-

ted. A shortcoming of the contract net protocol is the communication overhead

caused by broadcasting. Recent approaches|like addressee learning based on

CBR [19]|have tackled this problem.

In ARCHON[30, 11], a development environment for building communities

of cooperating heterogeneous systems, self and acquaintance models are used

to store the domain-speci�c information that de�nes the individual behaviour

of each member of the community. Both models include, at di�erent details,

agent's skills, current status, goals and so on. Other approaches such as GRATE

[14] or CooperA[27] also provide an agent with representations of the capabil-

ities, current status, and goals of other agents and itself allowing it to decide

which tasks are performed locally and which are delegated.

A twin-base agent modeling approach have been proposed in the framework

of the Virtual Secretary Project (ViSe2) [2]. The twin-base is composed of a

task-base and cooperator-base: the task-base provides direct mappings between

tasks and suitable expert agents to perform such tasks, whereas the cooperator-

base collects stable information of the others and acts as an auxiliary base to

the task-base. In addition, a capability revision process keeps the mapping

information consistent [10].

As stated in the introduction, our approach focuses on cooperating peer

agents which are not merely specialist at speci�c subtasks but are capable to

solve the overall task in hand. This makes a di�erence from the aforementioned

approaches since they rely on agents as specialists in a team what tends to a

�xed division of labour, whereas we are addressing more
exible and dynamic

16

task/agent assignments.

In respect of communication and coordination issues with which Plural pro-

vides Noos, for several years, agent-based software engineering has faced the

matter of enabling heterogeneous programs written by di�erent people, at dif-

ferent times, in di�erent languages and with di�erent interfaces to communi-

cate and interoperate [13]. Researchers in the ARPA Knowledge Sharing E�ort

have proposed agent communication languages (ACLs) as the means to allow

the exchange of knowledge among software agents in order to facilitate their

interoperation [13]. Generally, an ACL is composed of three main elements:

an open-ended vocabulary appropriate to a common application area, an inner

language (KIF|Knowledge Interchange Format) to encode the information con-

tent communicated among agents, and an outer language (KQML|Knowledge

Query and Manipulation Language) to express the intentions of agents [18].

In our approach, two communication protocols have been devised (Plural-to-

interagent and interagent-to-interagent) whose communication languages are

based on KQML. Therefore, both agent-to-interagent messages and interagent-

to-interagent messages are expressed as KQML performatives. Nevertheless,

since we are dealing with homogeneous agents a translation phase of the inner

language is not necessary, and given that we assume that all Plural agents taking

part in a speci�c domain application share the same ontology, Plural agents do

not need to allude to a concrete ontology to properly exchange knowledge.

Nowadays, KQML has become the communication language par excellence

in agent-based systems. However, when several computational entities interact

by exchanging messages a higher level of interaction concerned with the conven-

tions that they share during the exchange should be addressed [8]. This level of

interaction is not supported by KQML, whereas coordination languages|like

COOL[8]|allow such conventions to be explicitly expressed. Making shared

conventions explicit allows interdependencies among agents' activities to be

managed.

Our approach is based on interagents [15, 17] which|likewise KQML facili-

tators[20]|are inspired by the e�cient secretary metaphor already introduced

in the Actors model of concurrent computation (as receptionists) [3]. Neverthe-

less, interagents (unlike KQML facilitators) o�er the coordination level required

by agents to cooperate in non-trivial ways. On the other hand, unlike KQML

facilitators interagents have no knowledge (models) about the reasoning capa-

bilities of their owners [25].

With regard to other approaches placing CBR in multi-agent settings [24],

the CBR-TEAM [23] system allow cooperative retrieval and composition of

a case whose subcases are distributed across several (specialist) agents in a

MAS. A Negotiation Retrieval (NR) algorithm based on a distributed constraint

optimization process is introduced to smooth inconsistencies by cooperatively

retrieve cases while negotiating compromises to solve con
icts. Schematically,

a complex query is presented to several agents. Then each agent is responsible

for retrieving information related to a part of the query. Afterwards, agents

negotiate to piece together an acceptable response. Again, agents' specialization

makes a di�erence with our approach.

17

6 Conclusions

In this article, we have introduced a competent agent as an agent which is pro-

vided with a set of cooperation modes, a set of acquaintances, a competence

model for each acquaintance, and a re
ective competence model. Competence

models indicate, for a given cooperation mode and a given (sub)task, the de-

scription of the problems for which a particular agent is competent as well as a

performance evaluation of that agent. Using competence models a competent

agent can decide when cooperate and with which acquaintance(s).

In this respect, our research has focused on competent homogeneous peer

learning multi-agent systems. In short, systems wherein all involved competent

agents use the same representation language and are capable of the task in

hand|which is solved using knowledge acquired by learning from individual

experience and speci�cally using case-based reasoning. We are investigating

so-called cooperative case-based reasoning, i.e. di�erent cooperation modes and

cooperation strategies in agent societies of CBR agents wherein each agent owns

an individual base of preceding cases CB. A cooperation mode establishes the

conventions that a couple of agents follow when exchanging knowledge. For

a speci�c cooperation mode and for a speci�c (sub)task di�erent cooperation

strategies can be established depending on how the set of competent agents

chosen to cooperate is constructed and how is sorted to be traversed in search

of a satisfactory solution for the task in hand.

Particularly, we are developing CoDiT a multi-agent system for therapy rec-

ommendation in diabetic patients, which lies in the framework of the SMASH

project[1]. In this system each agent stores a case base of a particular doctor's

patient records. Nonetheless, due to legal and deontological reasons patient data

cannot be centralized. An ontology for this domain have been developed by the

doctors involved in the SMASH project, what have allowed us to concentrate on

communication and cooperation issues. Up to now, we have mainly focused on

how the retrieve task of these agents can be upgraded with di�erent cooperation

strategies based on competence models. Thus, we have devised two cooper-

ation modes|DistCBR and ColCBR|which enables an agent (the originator)

to retrieve precedents owned by other agent (the helper). Using DistCBR the

originator uses the helper's retrieval problem solving method to �nd relevant

cases, whereas, using ColCBR the retrieval problem solving method employed

belongs to the originator. That is, what basically makes a di�erence between

both cooperation modes is which agent lets the problem solving knowledge to

identify, search and select the most relevant precedent(s). In short, in both

cooperation modes helper's experiential knowledge is shared and then reused

by the originator. However, while the DistCBR cooperation mode also allows

helper's problem solving knowledge to be shared and reused by the originator,

using the ColCBR cooperation mode the PSM sent by the originator is shared

by the helper to retrieve the most relevant case(s) that will be later reused by

the originator. Furthermore, we have shown a cooperation strategy based on

competence models for each one of these cooperation modes.

CoDiT is being developed using Plural [15], an extension of the Noos knowl-

18

edge representation language [4]. Noos have been designed to support knowl-

edge modelling of problem solving and learning. Plural provides Noos with an

agent communication language and an agent coordination language supported

by autonomous software agents called interagents. An interagent intermediates

the communication and coordination between an agent and the agent society

wherein this is situated. On top of communication and coordination services

provided by interagents Plural incorporates foreign evaluation and mobile eval-

uation of problem solving methods which, respectively, allow a Plural agent to

delegate tasks and send mobile problem solving methods to other agents in or-

der to solve problems on its behalf [16]. The task delegation capability of Plural

underpins the DistCBR cooperation mode, whereas the mobile problem solving

methods capability of Plural supports the ColCBR cooperation mode.

Finally, in our approach even if all agents involved in CoDiT at the beginning

are provided with the same domain knowledge about diabetes domain, in the

long term they will have disparate experiences, coming from their disparate

memories and separate existence|since each agent will probably have been

involved in solving di�erent problems. Precisely, this plurality in agent's past

experiences is what can give rise to prove the clear leverage of cooperation in

order to share and reuse other agents' experiential knowledge.

References

[1] The SMASH project. http://www.iiia.csic.es/Projects/smash/.

[2] The Virtual Secretary project. http://www.cs.uit.no/DOS/Virt Sec/.

[3] Gul Agha. Actors, A Model of Concurrent Computation in Distributed

Systems. The MIT Press, 1986.

[4] Josep Llu��s Arcos. The Noos representation language. PhD thesis, Univer-

sitat Polit�ecnica de Catalunya, 1997.

[5] Josep Llu��s Arcos and Ramon Lopez de Mantaras. Perspectives: A declar-

ative bias mechanism for case retrieval. In Proc. ICCBR-97, volume 1266

of Lecture Notes in Arti�cial Intelligence, pages 279{290. Springer Verlag,

1997.

[6] Josep Llu��s Arcos and Enric Plaza. Inference and re
ection in the object-

centered representation language Noos. Journal of Future Generation Com-

puter Systems, 12:173{188, 1996.

[7] Eva Armengol and Enric Plaza. Induction of feature terms with indie. In

Proc. ECML-97, volume 1224 of Lecture Notes in Arti�cial Intelligence,

pages 33{48. Springer Verlag, 1997.

[8] Mihai Barbuceanu and Mark S. Fox. Cool: A language for describing coor-

dination in multi agent systems. In Proceedings of the First International

Conference on Multi-Agent Systems, 1995.

19

[9] Stephanie Cammarata, David McArthur, and Randall Steeb. Strategies of

cooperation in distributed problem solving. Proceedings of the 8th Inter-

national Joint Conference on Arti�cial Intelligence, pages 767{770, 1983.

(Also published in Readings in Distributed Arti�cial Intelligence, Alan H.

Bond and Les Gasser, editors, pages 102{105, Morgan Kaufmann, 1988.).

[10] Wen Cao, Gheng-Gang Bian, and Gunnar Hartvigsen. Achieving e�cient

cooperation in a multi-agent system: the twin-base modeling. In Pro-

ceedings of Cooperative Information Agents -DAI meets Database Systems,

number 1202 in Lecture Notes in Arti�cial Intelligence, pages 210{221.

Springer, 1997.

[11] David Cockburn and Nick R. Jennings. Archon: A distributed arti�cial in-

telligence system for industrial applications. In Foundations of Distributed

Arti�cial Intelligence. John Wiley and Sons, 1996.

[12] Randall Davis and Reid Smith. Negotiation as a metaphor for distributed

problem solving. Arti�cial Intelligence, 20(1):63{109, January 1983.

[13] Michael R. Genesereth and Steven P. Ketchpel. Software agents. Com-

munications of the ACM, Special Issue on Intelligent Agents, 37(7):48{53,

July 1994.

[14] Nick Jennings. Cooperation in Industrial Multi-Agent Systems. World Sci-

enti�c, 1994.

[15] Francisco J. Martin, Enric Plaza, and Josep L. Arcos. Interagents: Pro-

viding knowledge representation languages with agent-oriented capabilities.

1998. Submitted.

[16] Francisco J. Martin, Enric Plaza, and Josep L. Arcos. Mobile problem

solving methods in multi-agent systems. 1998. Submitted.

[17] Francisco J. Martin, Enric Plaza, Juan A. Rodriguez-Aguilar, and Jordi

Sabater. Jim, a java interagent for multi-agent systems. 1998. Submitted.

[18] James May�eld, Yannis Labrou, and Tim Finin. Evaluation of kqml as an

agent communication language. In Michael Wooldridge and J�org M�uller,

editors, Intelligent Agents II, pages 347{360. Springer Verlag, 1996.

[19] Takuya Ohko, Kazuo Hiraki, and Yuichiro Anzai. Addresse learning and

message interception for communication. In Gerhard Weiss, editor, Dis-

tributed Arti�cial Intelligence Meets Machine Learning. Learning in Multi-

agent Environments, number 1221 in Lecture Notes in Arti�cial Intelli-

gence. Springer-Verlag, 1997.

[20] R. S. Patil, R. E. Fikes, P. F. Patel-Schneider, D. McKay, T. Finin, T. R.

Gruber, and R. Neches. The darpa knowledge sharing e�ort: Progress

report. In Proceedings of the Third International Conference on Principles

of Knowledge Representation and Reasoning, 1992.

20

[21] C. Pierret-Golbreich and E. Hugonnard. Organization and use of generic

models based on the TASK language. In EKAW'94, 1994.

[22] Enric Plaza, Josep Llu��s Arcos, and Francisco Mart��n. Cooperative case-

based reasoning. In Distributed Arti�cial Intelligence meets Machine Learn-

ing, volume 1221 of Lecture Notes in Arti�cial Intelligence, pages 180{201.

Springer Verlag, 1997.

[23] M. V. Nagendra Prasad, Victor R. Lesser, and Susan E. Lander. Retrieval

and reasoning in distributed case bases. Journal of Visual Communication

and Image Representation, Special Issue on Digital Libraries, 7:74{87, 1995.

Also as UMASS CS Technical Report 95-27.

[24] M. V. Nagendra Prasad and Enric Plaza. Corporate memories as dis-

tributed case libraries. In Corporate Memory & Enterprise Modeling track

in KAW'96, Tenth Knowledge Acquisition for Knowledge-Based Systems,

1996.

[25] Narinder Singh and Mark Gisi. Coordinating distributed objects with

declarative interfaces. In Coordination Languages and Models, number 1061

in Lecture Notes in Computer Science, pages 368{385. Springer, 1996.

[26] Reid G. Smith. The contract net protocol: High-level communication and

control in a distributed problem solver. IEEE Transactions on Computers,

C-29(12):1104{1113, December 1980.

[27] Lorenzo Sommaruga, Nikos M. Avouris, and Marc H. Van Liedekerke. The

evolution of the coopera platform. In Foundations of Distributed Arti�cial

Intelligence. John Wiley and Sons, 1996.

[28] Luc Steels. Components of expertise. AI Magazine, 11(2):28{49, 1990.

[29] Bob Wielinga, Walter van de Velde, Guss Schreiber, and H. Akkermans.

Towards a uni�cation of knowledge modelling approaches. In J. M. David,

J. P. Krivine, and R. Simmons, editors, Second generation Expert Systems,

pages 299{335. Springer Verlag, 1993.

[30] T. Wittig. ARCHON: An Architecture for Multi-Agent Systems. Ellis Hor-

wood, 1992.

21

