
ABSTRACT

In this paper we present the results of an empirical study in
which we have investigated Machine Learning (ML)
algorithms with regard to their capabilities to accurately
assess the correctability of faulty software components.
Three different families algorithms have been analyzed:
Top Down Induction Decision Tree, covering, and
Inductive Logic Programming (ILP). We have used (1) fault
data collected on corrective maintenance activities for the
Generalized Support Software reuse asset library located at
the Flight Dynamics Division of NASA's GSFC and (2)
product measures extracted directly from the faulty
components of this library. In our data set, the software
quality models generated by the inductive logic
programming (ILP) presented the best results from the point
of view model accuracy. In addition, the models generated
by ILP algorithms, in form of first-order logic rules, can be
used as coding guidelines.

Keywords

Software correctability, machine learning algorithms,
predictive software quality model building.

1.0 INTRODUCTION

Software maintenance consumes most of the resources in
many software organizations. We must be able to better
characterize, assess, and improve the maintainability of
software products in order to decrease maintenance costs.
Maintenance involves activities such as correcting errors,
migrating software to new technologies, and adapting
software to deal with new environment requirements.

Corrective maintenance is the part of software maintenance
devoted to correcting errors. Mostly, when software
maintainers have to correct a faulty software component,
they rely almost exclusively on their previous experience in
order to estimate the effort they will spend to do it. Even
though highly experienced software maintainers may make
accurate predictions, the estimation process remain
informal, error-prone, and poorly documented, making it
difficult to replicate and spread throughout the organization.
In general, software maintenance organizations tend to
assign corrective maintenance activities to young software
engineers who do not know a great deal about software
systems they have to maintain.

In order to improve corrective maintenance, we must be
able to provide models which help software maintainers
better assess the maintainability of software products and
estimate corrective maintenance effort. The benefits of
having such models for software maintenance are
numerous. For instance, estimation models can help us
optimize the allocation of resources to corrective
maintenance activities. Evaluation models can help us made
decisions about when to re-structure or re-engineer a
software component in order to make it more maintainable.
Understanding models can help us know better the
underlying reasons about the difficulty of correcting
specific kinds of errors.

Many different approaches have been proposed to build
corrective maintenance estimation/evaluation models (see
Section 2.0). In this paper, we show the results of an
empirical study in which we have investigated different ML
algorithms with regard to their capabilities to generate
accurate correctability models. To do so, we have studied
four very-well known, public-domain ML algorithms
belonging to three different families of ML techniques. We
have compared these algorithms with regard to their
capabilities to assess the difficulty of correct Ada faulty
components. To do so, we have used (1) data collected on
corrective maintenance activities for the Generalized
Support Software reuse asset library located at the Flight

An Investigation on the Use of Machine Learned Models
for Estimating Software Correctability

1

Mauricio A. de Almeida1 and Hakim Lounis

Centre de Recherche Informatique de Montréal
550, Sherbrooke O., #100

Montréal, H3A 1B9 Qc, Canada
{mdealmei, hlounis}@crim.ca
phone: (1) (514) 840-1234

1. Guest researcher at CRIM and assistant professor at Facul-
dade de Tecnologia de Sao Paulo, Sao Paulo , Brazil.

Walcelio L. Melo

Oracle Brazil and
Universidade Católica de Brasília

SCN Qd. 02 - Bl. A- Salas 604
Brasilia, DF Brazil 70712-900

wmelo@acm.org
phone: (55) (61) 327-5151

2

Dynamics Division of NASA's GSFC and (2) internal
product measures extracted directly from the faulty
components of this library. The results show that ML
algorithms are able to generate statistically significant
prediction models. These prediction models, also,
demonstrated to be more accurate than those built with
logistic regression combined with principal component
analysis.

The paper is organized as follows: Section 2.0 describes
related work. Section 3.0 briefly presents the ML algorithms
we have studied. Section 4.0 presents the data used in this
comparative study and the analysis method. Section 5.0
provides the experimental results. Finally, conclusions and
directions for future research are outlined.

2.0 RELATED WORK

As far as we know, Selby and Porter [24] have been the first
to use a ML classification algorithm to automatically
construct software quality models. They have used ID3, a
ML classification algorithm, to identify those product
measures that are the best predictors of interface errors
likely to be encountered during maintenance.

After Selby & Porter many others, e.g., [3], [15], have used
ML classification algorithms to construct software quality
predictive models. In the arena of building up corrective
maintenance cost models via ML classification algorithms,
as far as we know, the works we present in Table 1 are the
most relevant. Table 1 provides a schematic comparison of
these works with regard to the following criteria: ML
classification algorithm(s), data set, software measures,
where ASAP and AMADEUS stands for the Ada products
measures provided by the ASAP tool and the Amadeus
system, respectively.

TABLE 1. Related work

Briand & al. [7] have constructed cost models for error
isolation and error correction. To do so, they have used OSR

[8], an approach which combines statistical and ML
classification principles. Like us, the predictor variables for
the model are product measures extracted via ASAP from a
set of Ada components from the NASA SEL. They also
benchmark OSR against a traditional machine learning
algorithm (ID3/NewID) and logistic regression. The
correctness of the classification model generated with OSR
was considered superior than both the logistic regression
and ID3/NewID models.

Jorgensen [15] has constructed a predictive model of the
cost of corrective maintenance using OSR for generating a
logical classification model. The predictor variable for the
model is the size measured in lines of code. The data used
came from distinct software organizations and application
domains. He has compared OSR to neural networks and
least-square regression. The logical classification model
was deemed more accurate than the least-square regression
and neural network classification model.

More recently, Basili & al. [3] have constructed a corrective
maintenance cost model using the C4.5 system [28] for
generating a logical classification model. The predictor
variables for the model are measures of internal software
product attributes extracted with Amadeus [1]. The model
demonstrates good prediction accuracy. Our work is, in fact,
a continuation of Basili et al.’s work: the data set we have
used comprises the one used by them. We have also used
the same version of C4.5, i.e., version 8.

The next section presents the ML algorithms we have used
in this study. The data we have used in our study are
available under request allowing thus other researchers to
compare our results with their own classification
techniques.

3.0 MACHINE LEARNING ALGORITHMS

Most of the work done in machine learning has focused on
supervised machine learning algorithms. Starting from the
description of classified examples, these algorithms produce
definitions for each class. In general, they use an attribute-
value representation language that allows the use of
statistical properties on the learning set. Nevertheless,
others use the first order logic language. It has better
expressive capabilities than the attribute-value language. It
permits the expression of relations between objects. An
important consequence is the diminution of the learning
data-set size. Both are helpful for constructing efficient
software quality models, and section 5 will present some
results obtained with them. This section gives an overview
of machine learning algorithms we have used in this work.
Two algorithm methods emerge in the attribute-value-based
family: the divide and conquer method and the covering
one. The following table summarizes the four ML
algorithms we have used.

Related
Work

Classification
Technique

Data Set

Product
Measures

Application
domain Environment

Briand &
al., 1993
[7]

OSR &
Logistic
Regression

Flight
Dynamic

Application

NASA
GFSC FDD

ASAP

Jor-
gensen
[15]

OSR &
Neural Net-
works

Manage-
ment
Information
Systems

Distinct
Norvegian

Software
Companies

Lines of
Code

Basili &
al., 1997
[3]

C4.5 GSS reuse
asset
library

NASA
GFSC FDD

Ama-
deus

Our work C4.5, NewID,

CN2, and
FOIL

GSS reuse
asset
library

NASA
GFSC FDD

ASAP

3

TABLE 2. ML algorithms used in the study

3.1 The divide and conquer family

In this family, the induced knowledge is generally
represented by a decision tree. It is the case of algorithms
like ID3 [26] [27], CART [6], ASSISTANT [10]. The
principle of this approach could be summarized by this
algorithm:

If all the examples are of the same class

Then - create a leaf labelled by the class name;

Else - select a test based on one attribute;

- divide the training set into subsets, each associated to
one of the possible values of the tested attribute;

- apply the same procedure to each subset;

Endif.

The key step of the algorithm above is the selection of the
“best” attribute to obtain compact trees with high predictive
accuracy. Information-based heuristics have provided
effective guidance for the division process.

NewID and C4.5 are two algorithms of this family. They
induce Classification Models, also called Decision Trees,
from data. They are derived from the well known ID3
algorithm. ID3 works with a set of examples where each
example has the same structure, consisting of a number of
attribute/value pairs. One of these attributes represents the
class of the example. The problem is to determine a decision
tree that on the basis of answers to questions about the non-
class attributes, correctly predicts the value of the class
attribute. Usually the class attribute takes only the values
{true, false}, or {success, failure}, or something equivalent.

A decision tree is important not because it summarizes what
we know, i.e. the training set, but because we hope it will
classify correctly new cases. Thus when building
classification models one should have both training data to
build the model and test data to verify how well it actually
works.

A measure of entropy is used to measure how informative a
node is. In general, if we are given a probability distribution

P=(p1, p2, ..., pn), then the Information conveyed by this
distribution, also called the Entropy of P, is:

 I(P) = -(p1*log(p1) + p2*log(p2) + .. + pn*log(pn))

This notion is exploited to rank attributes and to build
decision trees where at each node is located the attribute
with greatest gain among the attributes not yet considered in
the path from the root.

One of the weaknesses of the original ID3 is that it does not
directly deal with attributes that have continuous ranges or
unknown values. So below we examine how it can be
extended to do so.

• NEWID and C4.5 Extensions:

C4.5 and NewID introduce a number of extensions of the
original ID3 algorithm. C4.5 is an extension of ID3 that
accounts for unavailable values, continuous attribute value
ranges, pruning of decision trees, rule derivation, and so on.
Like C4.5, NewID accounts for continuous attribute value
ranges, unknown and don’t-care values, and post-pruning of
decision trees. Let us explain some of these extensions.

In building a decision tree, we can deal with training sets
that have examples with unknown attribute values by
evaluating the gain for an attribute by considering only the
examples where that attribute is defined. In using a decision
tree, examples that have unknown attribute values are
classified by estimating the probability of the various
possible results.

To deal with the case of attributes with continuous ranges,
we can proceed as follows. Say that attribute Ai has a
continuous range. We examine the values for this attribute
in the training set. Say they are, in increasing order, V1, V2,
..., Vm. Then for each value Vj, j=1..m, we partition the
examples into those that have Ai values up to and including
Vj, and those that have values greater than Vj. For each of
these partitions we compute the gain, and choose the
partition that maximizes the gain.

The decision tree built using the training set, because of the
way it was built, deals correctly with most of the examples
in the training set. In fact, in order to do so, it may become
quite complex. Pruning of the decision tree is done by
replacing a whole subtree by a leaf node. The replacement
takes place if a decision rule establishes that the expected
error rate in the subtree is greater than in the single leaf.

Finally, it is easy to derive a rule set from a decision tree by
writing a rule for each path in the decision tree from the root
to a leaf. In that rule the left-hand side is easily built from
the label of the nodes and the labels of the edges. The
resulting rules set can be simplified: let LHS be the left-
hand side of a rule, and let LHS' be obtained from LHS by
eliminating some of its conditions. We can certainly replace

ML
algorithms Algorithm family

Description
language

Induced
knowledge

NewID [5] Divide & conquer fam-
ily: Top Down Induc-
tion Decision Tree -
TDIDT-

Attribute-
value

Decision
tree

CN2 [11] Covering family Attribute-
value

Rules

C4.5 [28] Divide & conquer fam-
ily: -TDIDT-

Attribute-
value

Decision
tree & rules

FOIL [29] Inductive Logic Pro-
gramming -ILP-

First order
logic

Clauses

4

LHS by LHS' in this rule if the subsets of the training set
that satisfy respectively LHS and LHS' are equal.

3.2 The covering family

The covering family represents classification knowledge as
a disjunctive logical expression defining each class. It could
be summarized by the following algorithm:

- find a conjunction that is satisfied by some examples of
the target class, but no examples from another class;

- append this conjunction as one disjunct of the logical
expression being developed;

- remove all examples that satisfy this conjunction and, if
there are still some remaining examples of the target class,
repeat the process.

CN2 [11] belongs to the covering family. It is considered as
a descendant of AQ [30]. It shares the previous algorithm
but uses a divide and conquer method to construct a suitable
conjunction; for this reason, it is also considered as a
descendant of ID3. It induces classification rules expressed
in an attribute-value formalism (propositional calculus with
typed variables). In this context, an example is a
conjunction &i attributei=val (i=1, n), where n is the
number of attributes in the language. The aim of CN2 is to
induce a complete and coherent description (with a
polynomial complexity) using a version of the star
algorithm:

Repeat

- start with the general rule: “everything --> <class>”;

- specialize the rule;

- retain the more significant disjunctive term;

Until no more rules to find.

CN2, NewID, and C4.5 are attribute-value systems. Indeed,
their description language is the propositional one, and
specifically, the attribute-value language. Let us enumerate
some problems encountered with this type of description
language.

• Some problems with attribute-value systems:

- Performances of both CN2 and NEWID decrease when the
learning set is corrupted with noise.

- Don’t-care and unknown values produce the drop of
classification performances; the correctness ratio of the two
algorithms decreases and the size of the induced knowledge
(e.g., the decision tree) takes large proportion.

- In presence of attributes with continue value ranges, the
predictive accuracy of the algorithms becomes worse than
when they deal only with nominal attributes. The following

figure [20] illustrates this fact.

FIGURE 1. Correctness in terms of continuous
attributes ratio (% of correctness in terms of
continuous attributes ratio).

On the other hand, this leads to an increasing size of the
learned knowledge. For example, the decision tree induced
by NewID becomes very large in terms of nodes, leaves and
path lengths.

- Languages used by these algorithms have limited
expressive capabilities. Indeed, they can not express
relations between objects.

FOIL, the next algorithm we present has a better expressive
language; it allows the learning of interesting rules with
relations between objects.

3.3 Inductive Logic Programming Family: moving
to a better expressive language

First order logic language has better expressive capabilities
than the attribute-value language. It permits the expression
of relations between objects. An important consequence is
the diminution of the learning data-set size.

FOIL represents the family of machine learning algorithms
called ILP family. Contrary to its ancestors and because the
propositional attribute-value formalism is limited, the
expression language of FOIL is function-free Horn clause
logic. It learns a logical definition represented by clauses
starting from the extensional definition of the target
relation. A learned clause defines the target relation in terms
of itself and the other relations; so, it permits recursivity.

The operation of FOIL can be summarized as follows:

- Establish the learning set consisting of constant tuples,
some labelled + and some -

- Repeat

Find a clause defining part of the target relation

Remove all tuples that satisfy the right-hand side of this
clause from the learning set

Until there are no + tuples left in the learning set.

5

Like ID3, FOIL exploits a heuristic by computing an
information-based estimate for assessing the usefulness of a
literal as the next component of the right-hand side of a
clause.

As we have said above, and contrary to attribute-value-
based algorithms, FOIL allows us to discover rules that
consider relations between objects. It has better expressive
capabilities than the attribute-value language used in pre-
cited algorithms. For example, running it with a set of data
concerning the maintenance of a library of reusable
components, we can obtain such a rule:

high(A):-executable(A,B),
maximum_statement_nesting_depth(A,C),
lines_of_comments(A,D),commentsdivsize(A,E),
N1(A,F),N2(A,G),less_or_equal(E,F),
~less_or_equal(B,G),C<>4,C<>43, less_or_equal(C,D)

This rule can be read as:

“a faulty component has a high corrective maintenance cost
if the comments density (#commentsLines / # source lines of
code) is less or equal to number of Operators, and
executable statements is greater than number of operands,
and maximum_statement_nesting_depth is less or equal to
the number of lines of comments, and the maximum
statement nesting depth is different from 4 and 43”.

It is an example of the expression language allowed by first-
order logic (or a subset of it); indeed, these relations
between attributes (here, software metrics) could never be
induced by attribute-value-based algorithms. However,
FOIL involves a great amount of work on learning data
before it runs, because it is sensitive to the way initial
relations have been stated.

4.0 STUDY OVERVIEW

4.1 The studied environment

In this study, we have used data from the maintenance of a
library of reusable components. This library, known as the
Generalized Support Software (GSS) reuse asset library, is
located at the Flight Dynamics Division (FDD) of NASA’s
Goddard Space Flight Center (GSFC). Component
development began in 1993. Subsequent efforts focused on
generating new components to populate the library and on
implementing specification changes to satisfy mission
requirements. The first application using this library was
developed in early 1995. The asset library currently consists
of 1K Ada83 components totalling approximately 515
KSLOC.

4.2 Data Collection

In this study, we collected error and fault data about this
library. An error is represented by a single software Change

Request Form (CRF) [17] filled by developers and
configurers to institute and document a change to one or
more components. A fault pertains to a single component
and is evidenced by the physical change of that component
in response to a particular error CRF. In this study, we have
only used those components representing Ada 83 files. A
faulty component version becomes a fixed component
version after it is corrected. We are only interested in the
Ada faulty component versions.

For each CRF, we have collected data on: (1) error
identification and error correction, including the names and
version numbers of the Ada source code components that
had faults in them, (2) the effort expended to repair all faults
associated with the error, (3) source code metrics
characterizing these particular components. The ASAP tool
[13] was used to extract source code metrics from the Ada
faulty component versions.

Given the fact that we are only concerned with building
models for assessing the cost of corrective maintenance, we
have only analyzed faulty components, i.e., only
components which have been modified for correcting
errors. Based on the data we have, a study combining faulty
and non faulty components is difficult to be undertaken,
since we do not have data about the effort spend by the
software engineers on analyzing non faulty components
during corrective maintenance activities. Although, we
believe that the software engineers spend time on non-faulty
components to fix errors and thus repair faulty components.
NASA SEL’s change request form, which is the source of
the process data used in this study, does not provide any
information about effort spend on non-faulty components.

ASAP has been already used in the industry and academia
in similar benchmark studies [7]. Therefore, the use of
ASAP can help us compare our results with these studies.
ASAP extracts a set of measures similar, e.g., size metrics,
cyclomatic complexity, Hastead’s metrics, etc., to other
traditional tools, e.g. Amadeus [1], Matrix, Logiscop, and it
is free available and well documented. ASAP shares the
same weekness of these tools: most of the measures are
highly correlated to size and they do not capture high level
internal software product attributes, e.g. modularity. The
use of higher sophisticate measures could indeed improve
the accuracy of the prediction models we have generated.
Unfortunately, tools able to extract higher level coding
measures from Ada programs, e.g. cohesion and coupling
[9] [21], either were not available when this study took
place or are too expensive to be used in an academic work
as this one. The construction of the tools to extract these
measures in the framework of this current study would also
be cost-prohibitive. Finally, it is important to point out that
the definition and/or validation of software measures is
beyond the scope of this paper.

6

4.3 Dependent variables

In our study, the dependent variable is the total effort spent
to isolate and correct a faulty component. Isolation and
correction effort at NASA SEL is measured on a 4-point
ordinal scale: 1 hour, from 1 hour to 1 day, from 1 to 3 days,
and more than 3 days. Once an error is found during
configuration and testing, the maintainer finds the cause of
the error, locates where the modifications are to be made,
and determines that all effects of the change are accounted
for. Then the maintainer modifies the design (if necessary),
code, and documentation to correct the error. Once the
maintainer fixes the error, the maintainer provides the
names of the components changed (in our case the faulty
components).

Figure 2 and Figure 3 show the distribution of the isolation
effort across the 4 NASA SEL effort categories,
respectively. 1HR stands for 1 hours or less, 1DAY for
more than 1 hours and less than 1 working day, 3DAY for
more than an one working day and less than 3 days, and,
finally, NDAY for more than 3 days. As we can see in Table
3, most of the faults have been considered easy to be
isolated (53% spent 1 hour or less and only 6% spent more
than 1 day to be isolated) and corrected (64% spent less than
1 day to be corrected, only one spent more than 3 days).

FIGURE 2. Histogram of isolation effort by faulty
componentsf

FIGURE 3. Histogram of correction effort by faulty
components

In general, most of the work on this area has been concerned
with building dichotomous classification models about
external software properties (e.g, high/low software
correctability), based on product (e.g., number of lines of
code), and process (e.g., change effort) metrics [3] [7] [12]
[19]. To build the classification model, we have also
dichotomized the corrective maintenance cost into two
categories: low and high correct maintenance cost. By doing
so, we facilitate the comparison of our results with other
works [3] [8][12] [15] [19].

NOTE TO MAURICIO: Please include here comments
about the fact ML alghoritms work better on
dichotomous dependent variables and references to the
study which this is commented.

To dichotomize the corrective maintenance effort in two
categories, we used the following approaches.

• Regarding isolation effort, we have dichotomized the
isolation effort categories in only two categories: 1 hour
or less (i.e., low cost) and more than 1 hour (i.e., high
cost). In this way, we have 52% of the data points
classified as low cost and 48% as high cost.

• Regarding correction effort, we have dichotomized the
correction effort categories also in two categories: 1
working day or less (i.e., low cost) and more than 1 day
(i.e., high cost). In this way, we have now 64% of the
data points classified as low cost and 36% as high cost.

• And, finally, we converted the four effort categories into
average values following [4]. We assumed an 8 hour
day, and took the average value for each of the
categories of corrective maintenance effort. Therefore,
the category of “1 Hour” was changed to 0.5 hours, the
category of “1 hour to 1 Day” was changed to 4.5 hours,
the category of “from 1 to 3 Days” was changed to 16
hours, and the category of “more than 3 Days” was
changed to 32 hours. We then summed up these values
for isolation and correction costs. This gives us an
average overall corrective maintenance cost. The cost of

TABLE 3. Isolation and correction effort frequencies

Isolation
Effort

Correction
Effort

Category Count % Count %

1HR 86 52.44 27 16.46

1DAY 69 42.07 78 47.56

3DAY 9 5.49 58 35.37

NDAY 0 0 1 .61

7

corrective maintenance is measured as the total effort
taken to isolate and correct an error. We used the median
of total corrective maintenance cost as the cutoff point
for dichotomization. By doing so, the 164 Ada faulty
components were classified in the following way: 85
components as having “high” cost and 79 as having
“low” cost.

In Section 5.0, we will show how each algorithm behaves
for each one of the dichotomizations described above.

4.4 Independent Variables

In this study, the independent variables are the ASAP
product measures extracted from the faulty components.
Other information about the CRF, such as characteristics of
the error (i.e., initialization, interface, etc.) were not used,
since they are not available before error isolation and,
therefore, they should not be used to develop a model for
predicting total corrective maintenance effort. Table 20
shows the descriptive statistics of measures. Table 21 shows
the rank correlations coefficients expressed in percentage
among 19 measures used in this study. The figures in bold
represent the pairs of measures which presents a high
correlation with each other. For instance, the pair # of
operators (N1) (M18) and # of operands (N2) (M19)
presents a very high correlation (Spearman square rho - r2

s
= 96%). In other words, in our data set, these two measures
are extremely related to each other.

4.4.1 Evaluating Prediction Accuracy

In order to evaluate the model, we need formal measures for
evaluating the classification performance of the estimation
models produced by the different ML algorithms.
Evaluating model accuracy tells us how good is the model
expected to be as a predictor. Two criteria for evaluating the
accuracy of predictions are the measures of correctness and
completeness.

Correctness (high, resp. low) is defined as the percentage of
components that have deemed as having a high (resp. low)
corrective maintenance and were really with a high (resp.
low) corrective maintenance cost. Completeness (high, resp.
low) is defined as the percentage of those components that
were judged as having a high (resp. low) corrective
maintenance cost. All the measures above are expected to
be as high as possible, because when they are low, it will
lead to a wrong allocation of resources to maintain the
faulty components. Table 4 summarizes the formal
measures of the learned model classification performance.

TABLE 4. Formal measures of classification
performance [25]

The model accuracy measures how correct is the model. It is
given by the formula in Equation 1. In addition, we have
used a measure of prediction validity as it was presented in
[19] and also used in [3]. It means that if the statistical
significant coefficient p-value of the computed value of the
Chi2 test is less than 0.05 then we can say that the generated
model has predictive validity.

(EQ 1)

In order to calculate the values of the formal measures of
classification performance as described in Table 4, we used
a V-fold cross-validation procedure [6]. For each
observation X in the sample, a model is developed based on
the remaining observations (sample - X). This model is then
used to predict whether observation X will be classified as
either costly or not costly. This validation procedure is
commonly used when data sets are small.

5.0 RESULTS

5.1 Statistical Analysis

Before performing the benchmark of the 5 ML algorithms
presented in Section 3.0, we will first build a predictive
model using a statistical procedure. As suggested in [23],
we perform a principal component analysis (PCA) [14] to
determine the actual underlying dimensions of our dataset.
Indeed, despite differences in their definitions, many of
measures used in this study capture similar underlying
dimensions, i.e., they are highly correlated with each other
(see Table 21). A small number of dimensions can be used
instead of the measures as potential explanatory variables,
thus simplifying the subsequent analysis. Using multivariate
logistic regression [18], we then analyze the relationships
between correctablity and the rotated factors generated by
the PCA in order to build a classification model for software
correctability.

PCA yields 4 principal components whose Eigenvalue is

Predicted cost

High cost Low cost Completeness

Real
cost

High cost n11 n12 n11/(n11+n12)

Low cost n21 n22 n22/(n21+n22)

Correctness n11/
(n11+n21)

n22/
(n12+n22)

Accuracy

nii
i 1=

2

∑

nij
i j, 1=

2

∑
------------------------=

8

above one, an usual criterion in PCA to select principal
components (PCs) [14]. The four selected principal
components (PC) represent four orthogonal dimensions in
the sample space formed by all the measures. Table 22
shows, for these four principal components, what are the
weightings of each measure in the linear expression forming
each rotated PC. Rotated PCs capture the same information
as non-rotated ones and are sometimes referred to as factors.
The larger the absolute weight associated with a measure,
the larger the impact of this measure on the principal
component.

In addition, Table 23 shows the Eigenvalue of each PC, the
percentage of variance of the standardized variables that is
explained by the rotated PC, the cumulative variance
explained from top to bottom, and the cumulative
eigenvalue also explained from top to bottom. The first
factor accounts to 61% of the variance, factor 2 for 13%,
and so on.

Based on the results obtained in the PC analysis, we can
focus on the construction of the multivariate model for the
purpose of classification using the univariate/multivariate
logistic regression for each dichotomization approach
defined in the previous section. Logistic regression has
shown to have better properties than discriminant analysis,
e.g., no distributional assumptions [22].

5.1.1 Isolation effort

Table 28 shows the results obtained from the standard
multivariate logistic regression. Table 29 shows the
contingency table obtained from the application of this
multivariate logistic regression classification model. This
model yields an accuracy of 58% and it has predictive
validity. It means that the statistical significant coefficient
p-value of the computed value of the Chi2 test is less than
0.05, in this case p-value=0.0492. In Table 30, we have
showed the results from the univariate logistic regression
model for each factor. As we can see, only the univariate
logistic regression model which uses factor 4 as
independent variable is statistically significant, however, its
classification model has no predictive validity (see Table
31).

5.1.2 Correction Effort

Table 32 shows the results obtained from the standard
multivariate logistic regression. Table 33 shows the
contingency table obtained from the application of this
multivariate logistic regression classification model.
Although, this model yields a good overall accuracy (65%),
it has not predictive validity (p-value > 0.05). Again, the
classification models generated from the univariate logistic
regression of each one of the 4 factors are not statistically
significant (see Table 34). Although, the classification
model generated from the univariate logistic regression
analysis of Factor 4 yields an accuracy of 64% and a very

high completeness (low) (see Table 35), this model has not
predictive validity (p-value > 0.05).

5.1.3 Average effort

Table 24 and Table 26 show the results from the standard
multivariate logistic regression and the univariate logistic
regression for each factor, respectively. Table 25 shows the
contingency table obtained from the application of the
multivariate logistic regression classification model on our
data set. Also, Table 27 presents the contingency tables
derived from the application of the univariate logistic
regression classification for Factor 4, 3, 2, and 1,
respectively. The classification models generated by the
univariate logistic regression with factor 1, factor 2, and
factor 3 are not statistically significant. It means that the
statistical significant coefficient p-value of the computed
value of the Chi2 test is less than 0.05, therefore these
models have not predictive validity. The classification
model generated by the multivariate logistic regression
yields an overall acurracy of 61% (see Table 25) and it has
predictive validity (Chi2(1)=7.70, p-value=0.005).

Concluding, the approach we have used to convert the four
effort categories (i.e., 1 hour, from 1 hour to 1 day, from 1
to 3 days, and more than 3 days) into average values has
demonstrated to be adequate. The classification models
built with multivariate logistic regression using the average
effort as the dependent variable and the principal
components as independent variables proved to be more
accurate than those using the isolation and correction effort
as dependent variables. However, as we will see in the next
section, the results obtained with C4.5 and Foil are better
than those presented in this section.

5.2 Quantitative comparison

5.2.1 Data preparation

The ML algorithms used for this study are: C4.5, C4.5rules,
CN2, NewID, and FOIL. All except FOIL use attribute-
values as input representation language description and
therefore are easy to use with minor input format
adjustments.

The preparation of the data for FOIL is more complicated.
FOIL exploits relations as input representation language
instead of attribute-value. Than the first question is how to
change the attribute-value data we have into a relational
form. The solution we choose is to enumerate each
component and associate to each component the values of
each attribute by a relation named with the attribute name.

FOIL does not deal with real numbers but only with
constants. This is also an important problem once part of the
values in the data-set are real numbers. This was solved by
declaring all the numbers that appear in the input as
constants.

9

The final problem is then the comparison between the
constants which represent the numbers. Once they are string
constants, the only possible comparisons would be equality
and its negation. We expect, however, that the resulting
rules could have comparative relations like “less or equal”
and “greater than”. To make it possible all the possible
relations “less or equal” were added to the data

5.2.2 Isolation effort

Tables 5, 6, 7, 8, and 9 present the quantitative results of the
study for NewID, CN2, C4.5 tree, C4.5 rules, and Foil,
respectively, with the isolation effort dependant variable.
All the models are statistically significant. The overal
accuracy of all the model variates from 60% (NewID) to
66% (CN2, C4.5 rules and trees). C4.5 rules presents,
however, the best predictive validaty. This result is, thus,
better than the results shown in Section 5.1.1 which have
been obtained with logistic regression.

5.2.3 Correction effort

Tables 10, 11, 12, 13, and 14 present the quantitative results
of the study for NewID, CN2, C4.5 tree, C4.5 rules, and
Foil, respectively, having the correction effort as the
dependant variable. The overall accuracy of all the models
constructed by all the algorithms is not very high (C4.5
rules and trees with 59%). The models generated by CN2,
NewID and Foil have not predictive validity (p-value >
0.05). Although, the estimation models for correction effort
constructed with the studied ML algorithms are not ver
high, they behavior better than the model built with logistic
regression. As showed in Section 5.1.2, all the correction
effort estimation models built with logistic regression have
no predictive validity.

TABLE 5. NewID results for isolation effort
Predicted cost

Low cost High cost Completeness

Real Low cost 52 34 60%

cost High cost 31 47 60%

Correctness 63% 58% Accuracy=60%

Chi2(1)=7.03 p-value=0.008

TABLE 6. CN2 results for isolation effort
Predicted cost

Low cost High cost Completeness

Real Low cost 60 26 70%

cost High cost 30 48 62%

Correctness 67% 65% Accuracy=66%

Chi2(1)=16.19 p-value=0.0001

TABLE 7. C4.5 tree results for isolation effort
Predicted cost

Low cost High cost Completeness

Real Low cost 60 26 70%

cost High cost 29 49 63%

Correctness 67% 65% Accuracy=66%

Chi2(1)=17.50 p-value<0.0001

TABLE 8. C4.5 rules results for isolation effor
Predicted cost

Low cost High cost Completeness

Real Low cost 52 34 60%

cost High cost 21 57 73%

Correctness 71% 63% Accuracy=66%

Chi2(1)=18.63 p-value<0.0001

TABLE 9. FOIL results for isolation effort
Predicted cost

High cost Low cost Completeness

Real High cost 35 43 44%

cost Low cost 20 66 76%

Correctness 63% 60% Accuracy=62%

Chi2(1)=8.57 p-value=0.0034

TABLE 10. NewID results for correction effort
Predicted cost

High cost Low cost Completeness

Real High cost 74 31 70%

cost Low cost 33 26 44%

Correctness 69% 45% Accuracy=61%

Chi2(1)=3.52 p-value=0.0605

TABLE 11. CN2 results for correction effort
Predicted cost

High
cost

Low cost Completeness

Real High cost 60 46 56%

cost Low cost 29 30 50%

Correctness 67% 39% Accuracy=55%

Chi2(1)=0.85 p-value=0.35

TABLE 12. C4.5 tree results for correction effort
Predicted cost

Low cost High cost Completeness

Real Low cost 96 9 91%

cost High cost 59 0 0%

Correctness 62% 0% Accuracy=59%

Chi2(1)=5.35 p-value=0.02

TABLE 13. C4.5 rules results for correction effort
Predicted cost

Low cost High cost Completeness

Real Low cost 96 9 91%

cost High cost 59 0 0%

10

5.2.4 Average effort

Tables 15, 16, 17, 18, and 19 present the quantitative results
of the study for NewID, CN2, C4.5 tree, C4.5 rules, and
Foil, respectively, in which average effort is the dependent
variable.

From the point of view of prediction validity measures, the
models generated by NewID and CN2 are not statistically
significant (Chi2 test p-value>0.05). All the other generated
models are, from this point of view, statistically significant,
since the p-values are less than 0.001 (far away from the
threshold of 0.05).

FOIL presents the best results in our experiment. This study
confirms another one, made with artificial data sets [20].
The correctness and completeness are pretty high (around
80%) and the overall accuracy is 5% higher than the second
best algorithm (C4.5 rules). This means that in some cases
one can allocate resources to corrective maintenance of
faulty components with a 82% of confidence.

It is also important to point out that the approach we have
used to convert the four effort categories (i.e., 1 hour, from
1 hour to 1 day, from 1 to 3 days, and more than 3 days) into
average values has demonstrated, again, to be adequate. For
instance, the classification models generated with C4.5 rules
and trees yield an overall accuracy of 68% and 66%,
respectively.

Another important result is that rule-based predictive
models (e.g., C4.5_rules) obtain better results than decision
tree-based ones (e.g., C4.5 trees and NewID). It is
interesting to notice that the pairs <NewID, CN2> and
<C4.5, C4.5_rules> present the same behavior where better
results are obtained with rules description than with
decision trees. This seems to agree with the results obtained
by [20]. In fact, the model induced by C4.5_rules is a
generalization of the one induced by C4.5. It seems that an
over-specialization of the model does not improve the
predictive abilities of the system. Further studies are needed
to provide a full explanation about such a pattern

In a recent study [3] where another set of metrics have been
used, Basili and his colleagues obtained similar results
using C4.5 rules (correctness 76% and overall accurary
73%). Although the results are difficult to compare, since
Basili and his colleagues [3] have used a different data set
and independent variables (i.e., software metrics), the
results of our study demonstrated again that C4.5 rules have
worked better than C4.5 decision trees. In addition, the
results obtained with C4.5 rules on both studies are quite
close (around 75%).

Correctness 62% 0% Accuracy=59%

Chi2(1)=5.35 p-value=0.02

TABLE 14. FOIL results for correction effort
Predicted cost

High cost Low cost Completeness

Real High cost 11 48 18%

cost Low cost 30 75 71%

Correctness 26% 60% Accuracy=52%

Chi2(1)=1.99 p-value=0.16

TABLE 15. NewID results
Predicted cost

High cost Low cost Completeness

Real High cost 47 38 55%

cost Low cost 41 38 48%

Correctness 53% 50% Accuracy=52%

Chi2(1)=0.19 p-value=0.66

TABLE 16. CN2 results
Predicted cost

High cost Low cost Completeness

Real High cost 49 36 58%

cost Low cost 39 40 51%

Correctness 56% 53% Accuracy=54%

Chi2(1)=1.13 p-value=0.29

TABLE 17. C4.5 tree results
Predicted cost

High cost Low cost Completeness

Real High cost 50 35 59%

cost Low cost 21 58 73%

Correctness 70% 62% Accuracy=66%

Chi2(1)=17.34 p-value=0.0001

TABLE 18. C4.5 rules results
Predicted cost

High cost Low cost Completeness

Real High cost 50 35 59%

cost Low cost 18 61 77%

Correctness 74% 64% Accuracy=68%

Chi2(1)=21.91 p-value<0.0000

TABLE 13. C4.5 rules results for correction effort TABLE 19. Foil results
Predicted cost

High cost Low cost Completeness

Real High cost 51 33 61%

cost Low cost 13 61 82%

Correctness 80% 65% Accuracy=71%

Chi2(1)=30.39 p-value<0.0000

11

5.3 FOIL rules

As we have commented in Section 3.0, FOIL is able to built
predictive software models via rules expressed in first order
logic. Here, we show one of the rules generated by FOIL
taken arbitrarily to exemplify the rule’s interpretation.

high(A):-executable(A,B),
maximum_statement_nesting_depth(A,C),
lines_of_comments(A,D),commentsdivsize(A,E),
N1(A,F),N2(A,G),less_or_equal(E,F),
~less_or_equal(B,G),C<>4,C<>43, less_or_equal(C,D)

This rule can be read as:
“a faulty component has a high corrective maintenance cost
if the comments density (#commentsLines / # source lines of
code) is less or equal to number of Operators, and execut-
able statements is greater than number of operands, and
maximum_statement_nesting_depth is less or equal to the
number of lines of comments, and the maximum statement
nesting depth is different from 4 and 43”.

Let us analyze the first part of the left hand side rule “the
comments density is less or equal N1”. It is a comparison
between two different unities.

Comments density stands for comments divided by size,
where ‘comments’ is the number of comment lines, and
‘size’ is the size of the program in lines. So ‘comment
density’ is an adimensional constant. N1 is the number of
operators. In a first look it seems that we can not compare
these two metrics because they are different. The number of
operators in a component is also one of many possible
indirect measures of the complexity of that component. The
number of comment lines and consequently the comments
density of a component are direct consequences of the
programming style, but as the programming style is fixed it
is acceptable to consider that, as the complexity of the
component grows, the number of comment lines and the
comments density grows together. So, in this sense the
number of comment lines and the comment density can also
be indirect measures of the complexity of the component
with regard to our dataset. Taking both ‘number of
operators’ and ‘comment density’ as complexity measures,
we think that they can be compared. The meaning of this
part of the rule may be that one condition for an Ada faulty
component to have a high corrective maintenance cost is
when it is not well commented in comparison with the
complexity revealed by the number of operators.

6.0 CONCLUSIONS

In this paper, we have empirically investigated different
machine learning techniques with regard to their capabilities
to generate accurate correctability models. Four very well
known, public-domain machine learning (ML) algorithms
have been studied. We have compared these algorithms
with regard to their capabilities to assess the difficulty of
correct Ada faulty components from the Generalized

Support Software reuse asset library located at the Flight
Dynamics Division of NASA's GSFC. The results show that
the inductive logic programming algorithms are superior to
the top-down induction decision tree, top-down induction
attribute value rules, and covering algorithms, i.e. the
overall accuracy of the model build using FOIL was higher
than the other algorithms. Also, we have compared the
accuracy of ML algorithms to multivariate logistic
regression combined with principal components analysis.
The results showed that the classification model generated
by Foil and C4.5 (trees and rules) proved to be more
accurate to those generated by the logistic regression
technique.

The model that we developed identifies Ada fault
component versions that are associated with costly
corrective maintenance rather than trying to predict the
exact effort for corrective maintenance a component
version. We therefore use the characteristics of a faulty
component version as input into the model, and the total
corrective maintenance effort for the error as the output of
the model. Given that the model we developed is a
classification model, it classifies an Ada faulty component
version into one of two cost categories: Low Cost and High
Cost. This allows the model to predict whether a component
version is associated with a costly, or otherwise.

A prediction identifying component versions that are going
to be associated with costly errors can help managers
allocate resources for the maintenance activities. It should
be noted, however, that the model does not identify which
component versions in the asset library are likely to have
faults, only which of the faulty versions should be more or
less expensive to isolate and correct. Application of such
predictions assumes that the manager knows beforehand
which components are likely to contain a fault. Models for
the prediction of fault-prone Ada components in the SEL
environment have been developed in the past [9]. Once a
component version has been identified as potentially fault-
prone, then it is possible to predict the cost of rework
category when fixing an error that leads to faults in that
version. Using this additional information, a manager can
better improve the resource allocation for maintenance.

The work we have presented addresses two different but
complementary domains: software engineering and machine
learning domains. Our plans for the future, therefore,
include new work in these two domains. With regard to
software engineering, we intend to do the following work:

• The generation of other quality models, such as
reliability, error-proneness, etc.

• The use of other set of measures which enriches the
measures provided by ASAP. Although very well know,
the set of measures we have used are not able to capture
higher level product attributes, e.g., modularity.

• Replicate the study using other data sets.

12

• Provide guidelines which help software managers to
take preventive action early in the process life-cycle.
The rules generated by the ML algorithms can be a rich
source of information to software engineers and mana-
gers to understand the causes of problems (in our case,
costly corrective maintenance). By generating models
which can be used at the early product-life cycle, i.e.,
design phase, we can be able to take corrective action
early, and thus saving effort and resources early as well.

With regard to machine learning domain, we intend to:

• Make a deeper analysis to understand why ML
algorithms that deal with rules seems to behave better
than the ones which deal with trees.

• Propose an extension to FOIL in order to allow it to deal
directly with numerical descriptors.

• Provide application-domain knowledge to the ML
algorithms.

ACKNOWLEDGEMENTS

The authors wish to thank Vic Basili from University of
Maryland -SEL- and Steven Condon from CSC for
providing the data used in the paper. We are also grateful to
R. Tesoriero and P. Mackenzie for their feedback on the
early versions of this paper. During this work, W Melo was
in part, supported by the Software Quality Group of Bell
Canada, and by NSERC operation grant #OGP 0197275.

7.0 REFERENCES

[1] Amadeus Software Research Inc. “Getting Started
with Amadeus”. Amadeus Measurement System.
1994.

[2] V. Basili, L. Briand, W. L. Melo. “"How reuse
influences productivity in object-oriented systems",
Communications of ACM, 39(10):104-116,
October 1996.

[3] V. Basili, Condon, K. El Emam, R. B. Hendrick,
W. L. Melo. “Characterizing and Modeling the
Cost of Rework in a Library of Reusable Software
Components”. In Proc. of the IEEE 19th Int’l.
Conf. on S/W Eng., Boston, MA, May 1997.

[4] V. Basili and B. Perricone. “Software Errors and
Complexity: An Empirical Investigation”. In
CACM, 27(1):42-52, January 1984.

[5] R. Boswell. “Manual for NewID”. The Turing
Institute, January 1990.

[6] L. Breiman, J. Friedman, R. Olshen and C. Stone.
“Classification and Regression Trees”. Published
by Wadsworth, 1984.

[7] L. Briand and V. Basili. “A Classification
Procedure for the Effective Management of
Changes during the Maintenance Process”. In
Proc. of the Int’l Conf. on S/W Maintenance, pages
328-336, 1992.

[8] L. Briand, V. Basili, C. Hetmanski. “A Pattern
Recognition Approach for Software Engineering
Data Analysis”. In IEEE TSE, 18(1), Nov. 1992.

[9] L. Briand, S. Morasca, V. Basili. “Defining and
Validating High-Level Design Metrics”. Technical
Report , University of Maryland, Dep. of
Computer Science, College Park, MD, 20742,
1994. CS-TR-3301.

[10] B. Cestnik, I. Bratko, I. Kononenko. “ASSISTANT
86: a knowledge elicitation tool for sophisticated
users”. Progress in machine learning, Sigma Press,
1987.

[11] P. Clark & T. Niblet. “The CN2 induction
algorithm”. In Machine Learning Journal, 3, p
261-283.

[12] W. W. Cohen & P. Devanbu. “A Comparative
Study of Inductive Logic Programming Methods
for Software Fault Prediction”. Technical Report
AT&T Labs-Research, 1996.

[13] D. Doubleday. “ASAP: An Ada Static Source Code
Analyzer Program”. CS-TR-1895, Computer
Science Department, University of Maryland,
College Park, MD. August, 1995.

[14] Dunteman. “Principal Component Analysis”.
SAGE publications, 1989.

[15] M. Jorgensen. “Experience with the Accuracy of
Software Maintenance Task Effort Prediction
Models”. In IEEE TSE, 21(8):674-681, August
1995.

[16] M. Halstead. “Elements of Software Science”.
North-Holland, Amsterdam, 1977.

[17] G. Heller, J. Valett and M. Wild. “Data Collection
Procedure for the Software Engineering Labo-
ratory (SEL) Database”. Technical Report SEL-
92-002, Software Engineering Laboratory, 1992.

[18] D. Hosmer and S. Lemeshow. "Applied Logistic
Regression". Wiley-Interscience. 1989.

[19] F. Lanubile and G. Visaggio. “Evaluating
Predictive Quality Models Derived from Software
Measures: Lessons Learned”. Technical Report
ISERN-96-03, International Software Engineering
Research Network, 1996.

[20] H. Lounis & G. Bisson. “Evaluation of learning
systems: an artificial data-based approach”. In
Lecture Notes in Artificial Intelligence, p 463-481,
March 1991.

[21] H. Lounis & W. L. Melo. “Identifying and
measuring coupling on modular systems”. In Proc.
of the 7th Int’l Conf. on Software Technology,
Curitiba, Brazil, June 9-13, 1997, pages 23-40.
Organized by Centro Internacional de Tecnologia
do Software (CTIS), Curitiba, Parana, Brazil.

[22] S. Menard. "Applied Logistic Regression
Analysis", SAGE publications, 1995.

[23] J. Munson and K. Khoshgoftaar. "The Detection of
Fault-Prone Programs”. IEEE Trans. Software
Eng., SE-18 (5):423-433, 1992.

[24] A. Porter and R. Selby. “Empirically-guided
software development using metric-based

13

classification trees”. IEEE Software, 7(2):46-54,
March 1990.

[25] S. M. Weiss, C. A. Kulikowski. “Computer
Systems That Learn”. Morgan Kaufmann
Publishers, Inc. Sao Francisco, CA. 1991.

[26] J.R. Quinlan. “Discovering rules from large
collections of examples: a case study”. In E.S in
the micro-electronic age, D.Michie (Ed),
Edinburgh university press, 1979.

[27] J.R. Quinlan. “Induction of decision tree”.
Machine Learning journal 1, p 81-106, 1986.

[28] J. R. Quinlan. “C4.5: Programs for Machine
Learning”. Morgan Kaufmann Publishers, Sao
Mateo, CA, 1993.

[29] J.R. Quinlan. “Learning Logical Definitions from
Relations”. In machine learning journal, vol 5, n°3,
p 239-266, August 1990.

[30] R.S. Michalski, I. Mozetic, J. Hong, & N. Lavrac.
“The AQ15 inductive learning system: an overview
and experiments”. Technical report UIUCDCS-R-
86-1260, dpt of computer science, university of
illinois at Urbana-Champaign.

14

TABLE 20. Descriptive statistics of the measures used in this study

Measure ID Measures Mean Median Minimum Maximum Std.Dev.

M1 cyclomatic complexity 65.02 51 0 272 67.77

M2 statements 196.15 157 3 1085 173.92

M3 executabl 112.24 87 0 752 136.96

M4 declarative 83.91 72.5 3 333 58.00

M5 total source lines 683.38 568.5 7 3318 547.28

M6 Ada language statements 196.15 157 3 1085 173.92

M7 lines of code 526.67 457 4 2273 386.24

M8 maximum statement nesting dep 13.04 4 1 96 19.78

M9 lines of comment 57.85 38 0 1076 111.45

M10 Comments/size 0.07 0.06 0 0.42 0.07

M11 total statement nesting dep 446.73 281.5 2 2723 515.62

M12 inline comments 11.02 0 0 84 16.45

M13 average statement nesting_dep 7.29 2.35 0.67 49.39 10.87

M14 blank_lines 98.86 54 1 797 121.83

M15 blank_lines/size 0.13 0.14 0.01 0.43 0.09

M16 # of distint operators 155.33 85 5 1091 186.52

M17 # of distinct operands (n2) 194.53 151 7 1419 214.50

M18 # of operators(N1) 1428.28 1210 10 6789 1151.22

M19 # of operands (N2) 969.90 773.5 8 5035 853.87

TABLE 21. Rank correlation (Spearman square rho - r2
s) in percentage betweem the 19 used measures

Metrics M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19

M1 75 92 5 68 75 65 43 32 2 85 29 43 54 6 27 14 58 57

M2 100 79 31 89 100 89 38 38 1 92 26 40 55 2 42 35 87 88

M3 100 3 67 79 60 55 35 2 82 28 55 60 11 37 23 54 57

M4 100 34 31 42 0 6 1 21 5 0 5 10 4 15 50 45

M5 100 89 95 34 47 2 84 36 34 63 3 43 36 88 87

M6 100 89 38 38 1 92 26 40 55 2 42 35 87 88

M7 100 25 38 0 83 25 27 47 0 35 33 96 92

M8 100 20 3 42 37 96 65 26 68 56 22 31

M9 100 56 35 19 17 30 1 27 17 27 28

M10 100 1 2 2 2 1 3 0 0 0

M11 100 30 44 59 3 33 27 79 81

M12 100 32 60 24 31 29 24 27

M13 100 61 21 67 60 24 34

M14 100 43 54 43 42 48

M15 100 11 6 0 0

M16 100 71 33 39

M17 100 33 44

M18 100 96

M19 100

15

TABLE 22. Rotate Principal Components

Measure ID Measures Factor 1 Factor 2 Factor 3 Factor 4

M1 cyclomatic complexity .851505 .116251 .051423 .238098

M2 statements .898579 .392422 .136547 -.011359

M3 executabl .817164 .447950 .137578 .165239

M4 declarative .764910 .118957 .084584 -.424269

M5 total source lines .870993 .258735 .356466 .144572

M6 Ada language statements .898579 .392422 .136547 -.011359

M7 lines of code .938445 .266313 .115973 .003508

M8 maximum statement nesting dep .252627 .944985 .025164 .166035

M9 lines of comment .393874 .052507 .829323 .152014

M10 Comments/size -.120269 .016633 .913011 -.059099

M11 total statement nesting dep .908311 .165106 .011069 .081385

M12 inline comments .405575 -.015189 .571979 .435208

M13 average statement nesting_dep .204997 .951678 .016295 .163836

M14 blank_lines .577129 .269940 .474944 .499251

M15 blank_lines/size -.062748 .232034 .098130 .900337

M16 # of distint operators .336491 .928074 .058272 .071271

M17 # of distinct operands (n2) .529859 .814802 .047109 -.043180

M18 # of operators(N1) .944013 .253529 .124841 -.006661

M19 # of operands (N2) .922169 .316058 .131894 .006233

TABLE 23. Eigen Values

Eigenvalue % total Variance Cumul. Eigenval Cumulative %

Factor 1 11.63319 61.22734 11.63319 61.22734

Factor2 2.40756 12.67136 14.04075 73.89870

Factor3 2.17650 11.45524 16.21725 85.35394

Factor4 1.03084 5.42545 17.24808 90.77939

TABLE 24. Average effort:
Standard multivariate logistic regression results

Const.B0 FACTOR1 FACTOR2 FACTOR3 FACTOR4

Estimate .07896 .2607 .18372 -.0400 .3634

Standard Error .1609 .1656 .1682 .1606 .1631

Wald's Chi-square .2407 2.4769 1.1932 .06208 4.9649

p-level .623647 .11553 .27467 .80323 .02587

TABLE 25. Average effort:
Classification results from the multivariate logistic regression model

Predicted cost

High cost Low cost Completeness

Real cost High cost 59 26 69%

Low cost 38 41 52%

Correctness 61% 61% Accuracy=61%

Chi2(1)=7.70 p-value=0.005

16

TABLE 26. Average effort:
Results from univariate logistic regression for each factor

Const.B0 FACTOR4 Const.B0 FACTOR3 Const.B0 FACTOR2 Const.B0 FACTOR1

Estimate 0.075 0.362 0.073 -0.034 0.075 0.176 0.076 0.253

Standard Error 0.159 0.161 0.156 0.155 0.157 0.159 0.158 0.162

Wald's Chi-square 0.225 5.064 0.640 0.825 0.226 1.214 0.235 2.449

p-level 0.635 0.024 0.219 0.049 0.634 0.270 0.628 0.118

TABLE 27. Average effort:
Classification results from the univariate logistic regression models

Factor 4 Factor 3
Predicted cost Predicted cost

High cost Low cost Completeness High cost Low cost Completeness

Real High cost 52 33 61% Real High cost 79 6 93%

cost Low cost 38 41 52% cost Low cost 77 2 3%

Correctness 58% 55% Accuracy=57% Correctness 51% 25% Accuracy=49%

Chi2(1)=2.83 p-value=0.09 Chi2(1)=1.81 p-value=0.18

Factor 2 Factor 1
Predicted cost Predicted cost

High cost Low cost Completeness High cost Low cost Completeness

Real High cost 53 32 62% Real High cost 43 42 51%

cost Low cost 54 25 32% cost Low cost 34 45 57%

Correctness 50% 44% Accuracy=48% Correctness 56% 52% Accuracy=54%

Chi2(1)=0.65 p-value=0.42 Chi2(1)=0.94 p-value=0.33

TABLE 28. Isolation effort:
Standard multivariate logistic regression results for isolation effort

Chi²(4)=5.1497 p=.27230

Const.B0 FACTOR1 FACTOR2 FACTOR3 FACTOR4

Estimate -0.101 -0.051 0.150 0.078 -0.317

Standard Error 0.159 0.163 0.162 0.160 0.161

Wald's Chi-square 0.400 0.099 0.853 0.240 3.864

p-level 0.527 0.753 0.356 0.624 0.049

TABLE 29. Isolation effort:
Classification results from standard multivariate logistic regression results

Predicted cost

High cost Low cost Completeness

Real High cost 40 38 51%

cost Low cost 31 55 64%

Correctness 56% 59% Accuracy=58%

Chi2(1)=3.87 p-value=0.0492

17

TABLE 30. Isolation effort:
Results from univariate logistic regression for each factor

Model Chi²(1)=3.9271, p=0.047 Chi²(1)=.2334, p=0.62896 Chi²(1)=0.845, p=0.358 Chi²(1)=0.11228, p=0.7376

Const.B0 FACTOR4 Const.B0 FACTOR3 Const.B0 FACTOR2 Const.B0 FACTOR1

Estimate -0.100 -0.314 -0.098 0.076 -0.098 0.145 -0.098 -0.053

Standard Error 0.158 0.160 0.156 0.158 0.157 0.158 0.156 0.157

Wald's Chi-square 0.398 3.839 0.390 0.232 0.388 0.834 0.390 0.112

p-level 0.528 0.050 0.533 0.630 0.533 0.361 0.532 0.738

TABLE 31. Isolation effort:
Classification results from the univariate logistic regression models

Factor 4 Factor 3
Predicted cost Predicted cost

High cost Low cost Completeness High cost Low cost Completeness

Real High cost 40 38 51% Real High cost 4 74 5%

cost Low cost 34 52 60% cost Low cost 4 82 95%

Correctness 54% 58% Accuracy=56% Correctness 50% 53% 52%

Chi2(1)=2.28 p-value=0.1311 Chi2(1)=0.02 p-value=0.8824

Factor 2 Factor 1
Predicted cost Predicted cost

High cost Low cost Completeness High cost Low cost Completeness

Real High cost 18 60 23% Real High cost 0 78 0%

cost Low cost 17 69 80% cost Low cost 0 86 100%

Correctness 51% 53% 53% Correctness 0% 52% 52%

Chi2(1)=0.27 p-value=0.60 Chi2(1)=0 p-value=0.94

TABLE 32. Correction effort:
Standard multivariate logistic regression results

Chi²(4)=5.3433 p=0.25388

Const.B0 FACTOR1 FACTOR2 FACTOR3 FACTOR4

Estimate -0.597 0.016 -0.056 -0.117 0.363

Standard Error 0.166 0.171 0.171 0.167 0.170

Wald's Chi-square 12.877 0.008 0.107 0.489 4.572

p-level 0.000 0.927 0.743 0.484 0.033

18

TABLE 33. Correction effort:
Classification results from standard multivariate logistic regression

Predicted cost

High cost Low cost Completeness

Real High cost 5 54 8%

cost Low cost 3 102 97%

Correctness 63% 65% Accuracy=65%

Chi2(1)=2.57 p-value=0.1090

TABLE 34. Correction effort:
Univariate logistic regression

Model Chi²(1)=4.723, p=0.0298 Chi²(1)=0.50717, p=0.477 Chi²(1)=0.10064 p=0.75107 Chi²(1)=0.01372 p=0.9067

Const.B0 FACTOR4 Const.B0 FACTOR3 Const.B0 FACTOR2 Const.B0 FACTOR1

Estimate -0.595 0.361 -0.579 -0.122 -0.577 -0.052 -0.576 0.019

Standard Error 0.166 0.169 0.163 0.176 0.163 0.166 0.163 0.163

Wald's Chi-square 12.838 4.571 12.592 0.478 12.557 0.099 12.552 0.014

p-level 0.000 0.033 0.000 0.490 0.000 0.752 0.000 0.907

TABLE 35. Correction effort:
Classification results from univariate logistic regression results

Factor 4 Factor 3
Predicted cost Predicted cost

High cost Low cost Completeness High cost Low cost Completeness

Real High cost 2 57 3% Real High cost 0 59 0%

cost Low cost 2 103 98% cost Low cost 0 105 100%

Correctness 50% 64% Accuracy=64% Correctness 0% 64% 64%

Chi2(1)=0.35 p-value=0.5541 Chi2(1)=0.16 p-value=0.68

Factor 2 Factor 1
Predicted cost Predicted cost

High cost Low cost Completeness High cost Low cost Completeness

Real High cost 0 59 0% Real High cost 0 59 0%

cost Low cost 0 105 100% cost Low cost 0 105 100%

Correctness 0% 64% 64% Correctness 0% 64% 64%

Chi2(1)=0.35 p-value=0.5541 Chi2(1)=0.35 p-value=0.5541

