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Recently, Guibas et al. 10 studied deformable necklaces – flexible chains of balls, called
beads, in which only adjacent balls can intersect. In this paper, we investigate the prob-
lem of covering a necklace by cylinders. We consider several problems under different
optimization criteria. We show that optimal cylindrical cover of a necklace with n beads
in R

3 by k cylinders can be computed in polynomial time. We also study a bounding
volume hierarchy based on cylinders.
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1. Introduction

Our study is motivated by the representation and manipulation of molecular

configurations, modeled by a collection of spheres. The representation of three-

dimensional geometric structure of a molecule with spheres where each atom is

viewed as a rigid sphere is a common approach. The sizes of spheres depend on

the atom types. There are recommended values for the radius of each atom sphere

which is called van der Waals radius. The distance between the centers of every

pair of spheres is also known. In this model, the spheres of atoms in a chemical

bond interpenetrate. The fused spheres have been studied in computational geome-

try. Halperin and Overmars 11 proved useful properties of the spherical model. For

example, the combinatorial complexity of the boundary of a molecule is linear.

Recently Guibas et al. 10 studied the spherical model under motion. They call

the spherical model a necklace and the spheres beads and we follow the same termi-

nology. Deforming necklaces and efficient algorithms for this problem are needed in

many computational fields including computer graphics, computer vision, robotics,

geographic information systems, spatial databases, molecular biology, and scientific

computing. There is a literature on using spheres in engineering modeling 5. Com-

putational problems involving motion can be stated in the Kinetic Data Structure

Framework (KDS for short) 9,8. A motion of necklaces models (i) the Brownian mo-

tion of molecules where necklaces move as rigid bodies, and (ii) molecular dynamics
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where necklaces only undergo local changes. Applied to deforming necklaces an ef-

ficient KDS can be designed using bounding volume hierarchies. Guibas et al. 10

focused on a simple variant of hierarchy that uses spheres. They analyzed two ways

of defining the spheres in the hierarchy. A spherical hierarchy of a necklace is de-

fined to be a balanced tree whose leaves correspond to the beads. To each internal

node there is an assigned cage that is a bounding sphere. A wrapped hierarchy is

a spherical hierarchy of a necklace where the cage corresponding to each internal

node is the minimum enclosing sphere of the beads in the canonical sub-necklace

associated with that node. Another hierarchy called a layered hierarchy is defined

by making the cage of an internal node to be the minimum enclosing sphere of the

cages of its two children 15.

S1 S2

SwSl

Fig. 1. Sw is the wrapped sphere of 7 points and Sl is the layered sphere constructed for the
spheres S1 and S2.

The wrapped hierarchy is slightly more difficult to compute than the layered

hierarchy although it is a tighter fitting, see Fig. 1 for an example and 5 for detailed

comparison of two hierarchies. The idea of using cylinders comes from this example.

The spheres S1 and S2 can be covered by a cylinder of a volume smaller than the

volume of Sl. The use of cylinders for molecular representation is not a new idea.

The cylinders are widely used in software packages visualizing proteins. Structural

components of proteins – helixes – are depicted by cylinders. For example, the

human deoxyhaemoglobin 4HHB is a protein with high concentration of helices;

it contains 32 helices. The helix structure is shown on Fig. 2. Packing helices into

cylinders and related problems can be found in 16.

We intend to represent a molecule using cylinders. Problems of covering spheres

in R
3 by cylinders are computationally difficult. Recently, Zhu 18 considered the

problem of covering points by cylinders. The problem is NP-hard even for points

(spheres of radius 0). In this paper we address the following problem.

Necklace packing into cylinders. Let N be a necklace consist-

ing of n beads B1, B2, . . . , Bn in R
3. Let k be an integer 1 ≤ k ≤ n.

Find k cylinders C1, C2, . . . , Ck and a partition of the necklace into
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Fig. 2. The helices of human deoxyhaemoglobin 4HHB.

k sub-necklaces N1,N2, . . . ,Nk such that, for each 1 ≤ i ≤ k, the

cylinder Ci contains the beads of the necklace Ni and a function

F (C1, C2, . . . , Ck) is minimized. Examples of function F () can be

(i) the sum of volumes of the cylinders, or (ii) the maximum radius

of a cylinder, or (iii) the maximum volume of a cylinder, etc.

We show that, for reasonable functions F , the problem of necklace packing can

be solved in polynomial time. The algorithm exploits the sequence property of

necklaces and is in contrast to NP-hardness result of packing a set of distributed

points 18.

We use the necklace packing to generate a cylindrical hierarchy. As in the spher-

ical hierarchy 10, there are two options here: wrapped and layered hierarchy. We

define a cylinder cage to be the smallest enclosing cylinder of underlying cylinders

where a cylinder is measured using the function F ().

We also mention that the smallest radius cylinders find applications in the pro-

jective clustering 2,12.

2. Smallest Enclosing Cylinder

Given a necklace N , we want to find the smallest cylinder containing all the spheres

of N . Unfortunately, it seems that the property of spheres of being in the necklace

does not help in computing the smallest enclosing cylinder. There are several results

on computing a cylinder with the smallest radius 1,4,17. Agarwal et al. 1 gave a

O(n3+δ) time algorithm for any δ > 0. Schömer et al. 17 found a O(nε−2 log ε−1)

time algorithm that computes (1 + ε)-approximation of the smallest radius for any

ε > 0. Chan 4 improved the running time to O(n/ε) using convex programming.

Zhu 18 obtained a practical algorithm with running time O(n log n + n/ε4). We



4

give a practical algorithm that computes (1 + ε)-approximation of the smallest

cylinder under various objective functions F (). We denote i-th bead in the necklace

by Bi(oi, ri) where oi is the center of Bi and ri is its radius. The coordinates of a

point p ∈ R
3 are denoted by (x(p), y(p), z(p)) or (px, py, pz).

Algorithm 1

Step 1. Compute

B = [cx − ax, cx + ax] × [cy − ay, cy + ay] × [cz − az, cz + az],

the bounding box of the spheres in the necklace N . For example,

cx − ax = min
1≤i≤n

{x(oi) − ri}.

Step 2. Let r = max(ax, ay, az) and let

D = [cx − r, cx + r] × [cy − r, cy + r] × [cz − r, cz + r].

Step 3. Generate a grid of size N × N on each face of the cube D. Let G be the

set of all grid points.

Step 4. For each line p1p2 defined by two grid points p1, p2 ∈ G, find the small-

est cylinder C with the centerline p1p2 that contains all the beads of the

necklace. Compute F (C).

Step 5. Compute the smallest value of F (C) obtained in Step 4.

Theorem 1. Let F (C) be one of the following functions: (1) the radius of the

cylinder C, or (2) the volume of the cylinder C. Algorithm 1 computes (1 + ε)-

approximation of the smallest enclosing cylinder in O(n/ε2) time using N =

d1/(2ε)e for both cases.

Proof. Let C∗ be the optimal cylinder and let l∗ be its centerline and let r∗ be its

radius. The line l∗ intersects the box B; otherwise l∗ can be separated from B by

a plane which means that C∗ is not optimal. The line l∗ intersects the boundary of

B by two points, say q1 and q2. Let pi, i = 1, 2 be the grid point closest to qi and

let C be the cylinder computed for the line p1p2. The angle α between the lines

l∗ and p1p2 is bounded by arcsin(ε). Therefore the radius of the cylinder C differs

from r∗ by no more than ε. This implies the bound for the first case.

Consider the second case where the volume is minimized. Let h∗ be the height

of the cylinder C∗. The height of C is no longer than h∗ cosα = h∗(1+O(ε2)). The

volume of C is at most (1 + O(ε))V ∗ where V ∗ is the volume of C∗. The theorem

follows.

Remark. Algorithm 1 is practical. We implemented it to analyze the perfor-

mance of a cylindrical hierarchy built on the top of Algorithm 1. A faster but more

complicated algorithm (still simpler but asymptotically slower than the algorithms
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by Chan 4) can be obtained by checking O(1/ε) directions and, for each direc-

tion, finding the minimum enclosing circle of the points projected onto the plane

orthogonal to the direction.

The exact algorithm by Agarwal et al. 1 can be applied to the minimization of

the radius. What if one want to minimize the volume of a cylinder?

Theorem 2. The smallest volume cylinder enclosing a necklace of n beads can be

computed in O(n6) time.

Proof. The volume of a cylinder C of radius r and height h is vol(C) = πr2h.

Let C∗ be the smallest volume cylinder enclosing a necklace N . We assume that

the beads of N are in general position, i.e. there is no unbounded cylinder whose

surface touches more than four beads. The surface of C∗ has three components: two

disks D1 and D2 and the cylindrical surface S that can be rolled out as a rectangle.

Note that each disk D1 and D2 touches a bead since C∗ has the smallest volume.

The cylinder C∗ has a property that either

(i) the surface S touches four beads, or

(ii) the surface S touches only three beads.

In the first case the centerline of C∗ is determined by four touching beads and

two disks D1 and D2 are tangent to two extreme beads in the direction of the

centerline. There are O(n4) possible ways to choose these beads. Each combination

of beads generate O(1) centerlines of a cylinder touching them simultaneously. We

compute each of these lines and find two corresponding disks D1 and D2. This gives

us the volume of the cylinder. We check in linear time if the cylinder contains all

the beads of N . Thus, the first case can be processed in O(n5) time.

In the second case the location of the cylinder in the space is determined by five

beads: three beads B1, B2, B3 touching S and two beads B4, B5 touching the disks

D1 and D2. Note that beads B1, B2 and B3 are distinct but two sets {B1, B2, B3}
and {B4, B5} can intersect. There are O(n5) choices to select the beads. Each tuple

generates O(1) cylinders minimizing the volume. Each cylinder can be checked if it

contains all the beads of N . The running time in the second case is O(n6).

Next, we describe a more complicated algorithm with better asymptotic runtime.

Theorem 3. Using advanced techniques the smallest volume cylinder enclosing a

necklace of n beads can be computed in O(n5+δ) time where δ > 0 is arbitrary small

constant.

Proof. We apply the parametric search technique of Megiddo 14. We consider the

following decision problem.

Decision Problem. Given a necklace N and a parameter V , de-

cide if there is a cylinder of volume V that contains all the beads

of N .
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Let L be a line in R
3 and let C be the smallest cylinder with the centerline L

containing the necklace. Let (ξ1, ξ2, 1) be the direction of L, i.e. the line L is parallel

to the line L(ξ1, ξ2) passing through the origin O(0, 0, 0) and the point (ξ1, ξ2, 1).

Consider an i-th bead Bi. To simplify notation, let oi = (xi, yi, zi). There are two

planes, denoted by π−
i and π+

i , orthogonal to the direction (ξ1, ξ2, 1) and tangent

to the bead Bi. Their equations can be written as ξ1x + ξ2y + z = h−
i (ξ1, ξ2) and

ξ1x + ξ2y + z = h+

i (ξ1, ξ2).

The values of h−
i (ξ1, ξ2) and h+

i (ξ1, ξ2) can be computed as follows. Let o′i be

the projection of the point oi to the line L(ξ1, ξ2), see Fig. 3. Then the coordinates

of o′i satisfy x(o′i) = λiξ1, y(o′i) = λiξ2 and z(o′i) = λi for some real number λi. The

segment oio
′
i is orthogonal to the segment Oo′i. Thus

λiξ1(λiξ1 − xi) + λiξ2(λiξ2 − yi) + λi(λi − zi) = 0

λi(ξ
2
1 + ξ2

2 + 1) = ξ1xi + ξ2yi + zi. (1)

Let α = ξ2
1 + ξ2

2 + 1. Clearly, α > 0. The planes π+

i and π−
i intersect the line

L(ξ1, ξ2) at the points H+

i (λ+

i ξ1, λ
+

i ξ2, λ
+

i ) and H−
i (λ−

i ξ1, λ
−
i ξ2, λ

−
i ), respectively,

where λ+

i = λi + ri/α and λ−
i = λi − ri/α, see Fig. 3. The values of h−

i (ξ1, ξ2) and

h+

i (ξ1, ξ2) can be obtained by substituting the points H−
i and H+

i in the equations

of the planes π−
i and π+

i

h−
i (ξ1, ξ2) = ξ1xi + ξ2yi + zi − ri

h+

i (ξ1, ξ2) = ξ1xi + ξ2yi + zi + ri.

oi

o′
i

O

H+

i

H−

i

L(ξ1, ξ2)

π−

i

π+

i

Fig. 3. The points H
−

i and H
+

i .

Suppose that H+

i and H−
j are the extreme points on the line L(ξi, ξ2) among

all the points H−
l , H+

l , l = 1, . . . , n. Then the points H+

i and H−
j determine two

disks of the cylinder C. The height of C is

h = |H+

i H−
j | =

√

(λ+

i ξ1 − λ−
j ξ1)2 + (λ+

i ξ2 − λ−
j ξ2)2 + (λ+

i − λ−
j )2
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= |λ+

i − λ−
j |
√

α.

Note that λ+

i ≥ λ−
j . Then

h = (λ+

i − λ−
j )

√
α = (λi + ri/α − λj − rj/α)

√
α (2)

= (ξ1(xi − xj) + ξ2(yi − yj) + (zi − zj) + (ri − rj))/
√

α. (3)

Since the volume of the cylinder is V = πr2h, the radius of the cylinder is

r =
√

V/(πh). The existence of the cylinder of radius r containing the beads is

related to transversals 1. A line L is called a (line) transversal of the necklace N
if it intersects every bead of N . Let T (N ) denote the set of all transversals of

N . The reduction to transversals is as follows. The set of balls Bi(oi, ri) can be

wrapped by a cylinder of radius r if and only if (i) ri ≤ r for all i, and (ii) the

balls B′
i(oi, r − ri) admit a transversal. For our purposes we need a constrained

reduction: the set of balls Bi(oi, ri) can be wrapped by a cylinder whose centerline

is parallel to L(ξ1, ξ2) and radius r if and only if (i) ri ≤ r for all i, and (ii) the

balls B′
i(oi, r − ri) admit a transversal parallel to L(ξ1, ξ2). Agarwal et al. 1 solved

the transversal detection problem using minimization/maximization diagrams of

bivariate functions. We apply their approach to other functions since we use different

parametrization.

A line L′ parallel to the line L(ξ1, ξ2) can be parameterized using two more

variables ξ3 and ξ4 as follows:

L′(ξ1, ξ2, ξ3, ξ4) = {(ξ3 + tξ1, ξ4 + tξ2, t) | t ∈ R}.

Let π′(ξ1, ξ2, ξ3) be the plane containing all the lines L′(ξ1, ξ2, ξ3, ξ4), ξ4 ∈ R.

Consider an l-th bead B′
l . We define two functions fl(ξ1, ξ2, ξ3) and gl(ξ1, ξ2, ξ3)

as follows. Intersect B′
l with the plane τl passing through the center of B′

l and

parallel to the xz-plane. The equation of the plane τl is y = yl. Let σ+

l and

σ−
l be two hemispheres defined by cutting B′

l by τl. We assume that σ+

l lies

in the halfspace y ≥ yl and σ−
l lies in the halfspace y ≤ yl. If the plane

π′(ξ1, ξ2, ξ3) intersects the bead B′
l , then there are two lines L′(ξ1, ξ2, ξ3, a) and

L′(ξ1, ξ2, ξ3, b), a ≤ b tangent to the hemispheres σ−
l and σ+

l , respectively. We de-

fine gl(ξ1, ξ2, ξ3) = a and fl(ξ1, ξ2, ξ3) = b. In the second case π′(ξ1, ξ2, ξ3) ∩Bl = ∅
we define fl(ξ1, ξ2, ξ3) = +∞ and gl(ξ1, ξ2, ξ3) = −∞. The functions fl and gl

have property that the line L′(ξ1, ξ2, ξ3, ξ4) intersects the bead B′
l if and only if

fl(ξ1, ξ2, ξ3) ≤ ξ4 ≤ gl(ξ1, ξ2, ξ3). The line L′(ξ1, ξ2, ξ3, ξ4) is transversal of the

beads if and only if

max
1≤l≤n

fl(ξ1, ξ2, ξ3) ≤ ξ4 ≤ min
1≤l≤n

gl(ξ1, ξ2, ξ3).

We show that the functions fl(ξ1, ξ2, ξ3) and gl(ξ1, ξ2, ξ3) have constant descrip-

tion complexity 1, that is, the graph of each function is a semi-algebraic set in R
4

defined by a constant number of polynomial equalities and inequalities of constant
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degree. We assume that i and j are fixed. By Equation (3) the radius of the cylinder

satisfies

r2(ξ2
1 + ξ2

2 + 1) = (ξ1(xi − xj) + ξ2(yi − yj) + (zi − zj) + (ri − rj))
2. (4)

The lines tangent to the hemispheres σ−
l and σ+

l are at distance r − rl from the

center ol. This is equivalent to the condition that the line L(ξ1, ξ2) is at distance

r−rl from the point pl(x
′
l, y

′
l, z

′
l) where x′

l = xl−ξ3, y
′
l = yl−ξ4, z

′
l = zl. Substituting

i by l and oi by pl in Equation (1) the nearest point on L(ξ1, ξ2) to pl has coordinates

(λξ1, λξ2, λ) where

λ = (ξ1x
′
l + ξ2y

′
l + z′l)/(ξ2

1 + ξ2
2 + 1). (5)

Therefore the tangent lines satisfy

(r − rl)
2 = (λξ1 − x′

l)
2 + (λξ2 − y′

l)
2 + (λ − z′l)

2

= λ2α − 2λ(ξ1x
′
l + ξ2y

′
l + z′l) + (x′

l)
2 + (y′

l)
2 + (z′l)

2

= (x′
l)

2 + (y′
l)

2 + (z′l)
2 − λ2α. (6)

Plugging λ from (5) and x′
l, y

′
l, z

′
l into (6) we obtain a polynomial of a constant

degree.

Recently Koltun and Sharir 13 proved that the overlay of two trivariate diagrams

has O(n3+δ) complexity. Applied to the maximization diagram of fl(ξ1, ξ2, ξ3) and

the minimization diagram of gl(ξ1, ξ2, ξ3) we obtain O(n3+δ) bound for the fixed pair

(i, j). The decision problem can be solved in O(n5+δ) time since there are O(n2)

pairs (i, j). The parametric search technique allows us to solve the optimization

problem within the same bound O(n5+δ).

3. General k

In this Section we show how to find an optimal necklace packing into cylinders. Our

algorithm is based on the dynamic programming approach. Essentially, a polyno-

mial time algorithm is possible to design since the problem is decomposable into

polynomially many subproblems.

Theorem 4. Let F (C) be one of the following functions: (1) the radius of the

cylinder C, or (2) the volume of the cylinder C. Let F (C1, . . . , Ck) is defined to

be either minmax or minsum of the values of F (C1), . . . , F (Ck). The problem of

necklace packing into cylinders minimizing F () can be solved in O(n5+δ) time for

the case (1) and in O(n7+δ) time for the case (2).

Proof. Let i and j be two integers such that 1 ≤ i ≤ j ≤ n. Let N (i, j) denote the

sub-necklace of N with beads Bi, Bi+1, . . . , Bj . Let C(i, j) be the optimal cylinder

covering the necklace N (i, j). By Theorem 3 the cylinder C(i, j) can be found

in O(n5+δ) time if F (C) is the volume function. Let Ξ(i, j) denote the value of
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F (C(i, j)). Therefore the values of Ξ(i, j) for all i and j can be computed in O(n7+δ)

time. The bound for the first case follows if we apply the O(n3+δ)-algorithm by

Agarwal et al. 1.

Let m be an integer 1 ≤ m ≤ k. Let C(j, m) = {C1, C2, . . . , Cm} be the set of

m cylinders in the optimal packing of the necklace N (1, j) with m cylinders. Let

Φ(j, m) denote the value of F (C1, C2, . . . , Cm). Then

Φ(j, 1) = Ξ(1, j) for all 1 ≤ j ≤ n

Φ(j, m) = min
1≤i<j

{Φ(i, m − 1) + Ξ(i + 1, j)} for all 1 ≤ j ≤ n and 1 ≤ m ≤ k

The dynamic program computes the values of Φ(j, m) using the above equations.

This computation takes O(n2) time. Clearly, the optimal value of the necklace

packing is Φ(n, k). The theorem follows.

We remark that the approach based on dynamic programming can be applied

to many other objective functions that are decomposable.

4. Cylindrical Hierarchy

We consider two hierarchies wrapped and layered. A cage of a node in the wrapped

hierarchy is defined as the optimal cylinder covering all beads in the corresponding

subtree. In the layered hierarchy the cage is the smallest cylinder containing the

cages of its children. At first glance, computation of the wrapped hierarchy is more

difficult than computation of one cylinder. We show that the computing time is the

same for the exact problem and slightly bigger for the approximate one.

4.1. Wrapped Hierarchy

Lemma 1. The wrapped hierarchy can be constructed in

(a) O(n3+δ) time exactly if the objective function is based on the radius only,

(b) O(n5+δ) time exactly if the objective function is based on the volume,

(c) O((n log n)/ε4) time approximately if the objective function is based either

on the radius or the volume.

Proof. The main computational task is to construct all the cages of the hierarchy.

We construct each cage independently using the algorithms from Theorems 1 and 2.

The algorithm is recursive. Let t(n) be the running time for computing the optimal

cylinder (or its approximation) for n spheres. Let T (n) be the running time to

construct the hierarchy for n beads. Then

T (1) = const, and T (n) = t(n) + 2T (n/2) if n ≥ 2.

The lemma follows since (a) t(n) = n3+δ, (b) t(n) = n5+δ, and (c) t(n) =

O(n/ε4).
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4.2. Layered Hierarchy

In the layered hierarchy we have a new problem.

Cage Problem. Let C1 and C2 be two cylinders in R
3. Find an

optimal cylinder C that contains C1 and C2 where the quality of a

cylinder is measured by a function F () as in the necklace packing

problem.

Lemma 2. The optimal cage can be found in O(1) time. Thus the layered hierarchy

can be constructed in O(n) time.

Proof. We note that it is sufficient to substitute the cylinders C1 and C2 by four

circles on their boundaries, see Fig. 4.

s1

s2

s3

s4

Fig. 4. The four circles s1, s2, s3 and s4 on the boundary of two cylinders.

The problem of finding an optimal cylinder has a constant complexity. We pa-

rameterize the cylinder using six variables. Let a = (ax, ay, 0) and b = (ax +bx, ay +

by, 1) be two points that are the intersections of the centerline of the cylinder and

the planes z = 0 and z = 1. We can assume that the centerline of the optimal cylin-

der is not parallel to the plane OXY by the perturbation argument. Two disks on

the boundary of the cylinder can be parameterized as planes bxx+byy+z = h1 and

bxx+ byy+z = h2. The volume of the cylinder can be expressed using the variables

ax, ay, bx, by, h1, h2. The optimal value of the volume can be found in O(1) time.

The total running time is linear since the recurrence for the running time is

T (n) = O(1) + 2T (n/2).

5. Experiments

We have implemented Algorithm 1 for finding the smallest cylinder. A close-up of

the atoms of a helix of human deoxyhaemoglobin 4HHB and the smallest enclosing

cylinder is shown in Fig. 5. It demonstrates that the cylinders are useful for shape

representation of molecules.

The performance of a cylindrical hierarchy can be tested by running real life

applications like the collision detection. We implemented the cylindrical hierarchy
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Fig. 5. The helix of human deoxyhaemoglobin 4HHB and its smallest enclosing cylinder.

based on the binary tree representation of the necklace. We select the wrapped

hierarchy and the objective function minimizing the radius of a cylinder. We modify

slightly the shape of the enclosing cylinders and consider cigars since they admit a

simpler algorithm for detecting whether two cigars intersect. For two points a, b ∈
R

3 and a positive real number r, the cigar π(a, b, r) is the Minkowski sum of the

segment [a, b] and the ball of radius r centered at the origin, i.e.

π(a, b, r) = {p ∈ R
3 | ∃q ∈ [a, b], |pq| ≤ r}.

5.1. The smallest cigar with a given centerline.

Let p1 and p2 be two points and let r be the smallest radius of a cylinder with

the centerline p1p2 containing the necklace N . We want to find the smallest cigar

π(a, b, r) containing the necklace N such that the segment [a, b] lies on the line

p1p2. For each bead Bi, we find two points q+

i and q−i on the line p1p2 that are

at distance r − ri from the bead center oi where the vector q−i q+

i has the same

direction as the vector p1p2, see Fig. 6.

We assume that the distance between p1 and p2 is at least some positive constant

as in Algorithm 1. Let v be the unit vector p2p1/|p2p1|. The point qi of the line p1p2

closest to oi satisfies qi = p1 + αiv for some value of αi ∈ R. Then the vectors oiqi

and v are perpendicular. Thus v · oiqi = 0 or v · (αiv + p1oi) = 0 or αi = v · (oip1).

Let di be the distance between oi and qi. The distance from the points q+

i and q−i
to oi is r. Therefore q+

i = qi + βiv and q−i = qi − βiv where βi =
√

r2 − |oiqi|2. Let

αi + βi be the minimum value among all αm + βm, 1 ≤ m ≤ n and let αj − βj be

the maximum value among all αm − βm, 1 ≤ m ≤ n. The segment of the optimal

cigar is then [p1 + (αi + βi)v, p1 + (αj − βj)v], see Fig. 6.
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p1

p2

oi
r − ri

oj

r − rj

q
+

i

q
−

j

ok

q
+

k = q
−

k

r − rk

π(q+

i , q
−

j , r)

Fig. 6. The smallest cigar π(q+

i , q
−

j , r).

5.2. Collision test

In this section we show that it is not difficult to detect the intersection of cigars.

Lemma 3. Let π1(a1, b1, r1) and π2(a2, b2, r2) be two cigars. Let d be the smallest

distance between two straight line segments [a1, b1] and [a2, b2]. Two cigars π1 and

π2 intersect if and only if d ≤ r1 + r2.

Proof. Suppose that two cigars intersect and a point p lies in the intersection of

the cigars. There are points p1 ∈ π1 and p2 ∈ π2 such that the distances |pp1| and

|pp2| are at most r1 and r2, respectively. Then |p1p2| ≤ p1p|+ |pp2| ≤ r1 + r2. The

reverse claim can be shown by a similar argument.

The computation of the distance between two segments in R
3 is the well-known

problem due to applications in graphics and animations. The collision detection can

be done using the following primitives:

• test whether two balls intersect,

• test whether a segment and a ball intersect,

• find the smallest distance between two lines.

Specifically, two cigars π1(a1, b1, r1) and π2(a2, b2, r2) intersect if and only if one

of the following conditions holds:
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(i) Two balls in at least one pair (B(a1, r1), B(a2, r2)), (B(a1, r1), B(b2, r2)),

(B(b1, r1), B(a2, r2)), or (B(b1, r1), B(b2, r2)) intersect,

(ii) The perpendicular dropped from an endpoint e of one segment s ∈
{[a1, b1], [a2, b2]} to the line l containing the other segment s′ meets a point

e′ of s′ and |ee′| ≤ r1 + r2.

(iii) Let p1p2 be the segment making the shortest distance between two lines

containing [a1, b1] and [a2, b2], respectively. The distance |p1p2| is at most

r1 + r2 and pi ∈ [ai, bi], i = 1, 2.

5.3. Collision detection

Let A and B be two molecules and let HA and HB be their cylindrical hierarchies.

We apply the following algorithm to detect if the necklaces of A and B intersect.

Let CA and CB be the root cylinders of HA and HB , respectively. If CA ∩ CB = ∅
then A and B do not intersect. Otherwise we pick a cylinder with larger radius, say

CA. We check the cylinders of the root children of HA against CB . In general, we

have a list L of pairs of cylinders (C1, C
′
1), (C2, C

′
2), . . . such that the cylinders in

each pair intersect. We select a cylinder with maximum radius among all cylinders

in the list, say C1. Let v be the node of HA storing C1 and let u be the node of HB

storing C′
1. Let C1 and C2 be the cylinders of the children of v. We replace the pair

(C1, C
′
1) in the list by the pairs (C1, C

′
1) and (C2, C

′
1). If v is a leaf of HA then we

consider the children of u. If both v and u are leaves then the collision is detected

and the algorithm stops; otherwise we repeat this process until L is not empty.

We select the protein endonuclease barnase 1BRS.pdb for collision detection.

The chains A and D of the protein are in a docking position where many atoms

from A and D are close to each other but do not overlap. It can be viewed as a

good benchmark for collision detection in proteins. It contains 864 atoms in the

chain A and 691 atoms in the chain D. We count the total number of pairs of

cylinders checked by the algorithm. To compare the performance of the cylindrical

hierarchy we also implemented the spherical hierarchy and the collision detection

similar to the algorithm above (the only difference is that we compare the radii of

two spheres when new pairs are generated). We run both algorithms on 1BRS: the

spherical hierarchy uses 3677 intersection tests and the cylindrical hierarchy uses

2195 intersection tests only.

6. Conclusion

We studied the problem of necklace packing into cylinders, the problem of con-

structing cylindrical hierarchies, and the problem of collision detection using cylin-

drical hierarchies. We presented efficient algorithms, approximate and exact, for

constructing cylindrical hierarchies under different criteria of optimal cylinders.

The approximate algorithm is practical and has been implemented. The experi-

ments demonstrate that the cylindrical hierarchy is efficient for collision detection

in proteins.
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Fig. 7. Two chains of 1BRS.
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