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Abstract

In this paper, we consider a map labeling problem where the points to be labeled
are restricted on a line. It is known that the 1d-4P and the 1d-4S unit-square label
placement problem and the Slope-4P unit-square label placement problem can both
be solved in linear time and the Slope-4S unit-square label placement problem can be
solved in quadratic time in [7]. We extend the result to the following label placement
problem: Slope-4P unit-height (width) label placement problem and elastic labels
and present a linear time algorithm for it provided that the input points are given
sorted. We further show that if the points are not sorted, the label placement
problems have a lower bound of Ω(n log n), where n is the input size, under the
algebraic computation tree model. Optimization versions of these point labeling
problems are also considered.

1 Introduction

When drawing a map, in order to let people know what is on the map, the main approach

is attaching texts or labels to geographic features on the map. How to place labels so that

they do not overlap, is a well-known important problem in cartography. Thus, there are
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many research results on this topic and many algorithms have been developed for labeling

points that are on lines [7, 8, 9, 15] or in a region [5, 6, 10, 11, 12, 14, 17, 19]. In the

ACM Computational Geometry Impact Task Force report [2] the map label placement is

listed as an important research area.

Let S denote a set of points S = {p1, p2, . . . , pn} in the plane, called anchors. Asso-

ciated with each anchor there is an axis-parallel rectangle, called label. The point-feature

label placement problem or simply point labeling problem, is to determine a placement of

these labels such that the anchors coincide with one of the corners of their associated

labels and no two labels overlap. The point labeling problem for labeling an arbitrary set

of points has been shown to be NP-complete [6, 10, 11, 14], and some heuristic algorithms

were presented in [4, 6, 19].

There are many variations of the point labeling problem, including shapes of the

labels, locations of the anchors to be labeled and where the labels are placed. Three

common shapes of the labels considered were circles, squares and rectangles. Sometimes,

the rectangular labels may be given additional constraints, e.g., the width and height

may satisfy a certain aspect ratio. The placement of the labels may be restricted. For

instance, the anchors must be on the corners of the labels (i.e., fixed-position model), or

on the boundary of the label (i.e., sliding model). One may also consider an optimization

version of the problem, e.g., maximizing the size of labels.

Strijk and Wolff [17] showed that to decide if a set of points can be labeled with unit

circles is NP-hard, and also that there is a constant 0 < δ < 1 such that it is NP-hard to

label points with uniform circles of diameter greater than δ · dopt, where dopt denotes the

optimal diameter. They presented an approximation algorithm for labeling points with

uniform circles whose diameter is about 1/19.59 times the optimal in O(n log n) time [17].

The elastic point labeling problem, is yet another variation, and is defined as follows:

Given a set of n points on the plane, each of which is associated with an elastic rectangular

label of a given area, we want to choose a valid height (or width) for each label and a

corner to place at its associated anchor so that no two labels overlap. A label is said to

be elastic if its width and height can vary but its area remains a constant.

Iturriaga and Lubiw [8] proved that the one-corner elastic point labeling problem, in
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which the anchors must be at the corners of the labels is NP-hard. They considered the

elastic point labeling problem when n anchors lie on the x-axis and m anchors lie on the

y-axis, and the labels for the anchors on the x-axis (resp. y-axis) have an edge coincident

with the x-axis (resp. y-axis) lying in the same quadrant [8] and presented an O(nm)

algorithm. They also considered the rectangle perimeter point labeling problem [9], in

which the given elastic labels are to be placed on anchors that lie on the boundary of a

given rectangular map. They combined the solution of the two-axis case and the two-

parallel-line case to solve the rectangle perimeter point labeling problem in O(n4) time,

where n is the number of anchors. The two-parallel-line case is similar to the two-axis

case except that the points to be labeled lie on two parallel lines.

In this paper we consider the case when the anchors lie on a line and are to be labeled

with rectangular labels. We consider two main models. One is fixed-position model,

denoted 4P model, in which a label must be placed so that the anchor coincides with one

of its four corners, and the other is sliding model, denoted 4S model, in which a label can

be placed so that the anchor lies on one of the four boundary edges of the label. Figure 1

shows these two point labeling models, among others, that have been studied previously

[12, 15]. The positions {1, 2, 3, 4} in 4P model shown in Figure 1 denote the corner

positions of labels coincident with the anchor, and the arrows in 4S model indicate the

directions along which the label can slide, maintaining contact with the anchor.

4S

1

4

4P

2

3

Figure 1: Illustration of 4P and 4S models.

Extending the result of [7], we consider the problem of labeling points on a sloping

line with rectangular labels of unit-height (or unit-width) in 4P model, referred to as

Slope-4P unit-height label placement problem and the problem of maximizing the size of

the rectangular equal-width labels of the points on a horizontal line whose top edge or
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bottom edge coincide with the line in 4S model, referred to as 1d-4S equal-width label

maximization problem. We also address the elastic point labeling problem, where points

to be labeled lie on a sloping line.

This paper is organized as follows. In Section 2, we give some definitions and notation

about our point labeling problems. In Section 3, we consider the Slope-4P unit-height

label placement problem for points lying on a sloping line. In Section 4, we extend the

result of Section 3 to the case where the labels are elastic. In Section 5, we consider

the 1d-4S equal-width label maximization problem, and give a lower bound of the time

complexity of the 1d-4S equal-width label placement (decision) problem.

2 Preliminaries

In this section, we introduce some terminology and notation. Consider a set P =

{p1, . . . , pn} of n anchors on a line L such that they are sorted in ascending x-coordinate,

i.e., pi.x < pi+1.x, i = 1, 2, . . . , n− 1, and for each pi, there is an axis-parallel rectangular

label li.

We shall use prefixes, 1d- or Slope- to refer to the problems in which the anchors lie on

a horizontal or a sloping line, respectively. Combined with 4P and 4S model as described

previously, we have, for example, 1d-4P denotes that the anchors lie on a horizontal

line and each label has four possible placement positions, and Slope-4S denotes that the

anchors lie on a sloping line and each anchor can lie on any of the four boundary edges

of a label.

1d−4P

Slope−4S

Figure 2: An illustration of a good 5-realization in 1d-4P and Slope-4S models.
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A k-tuple Rk = (r1, · · · , rk) is a k-realization of labels l1, l2, . . . , lk for P such that each

ri encodes a position of li. If no two labels in Rk intersect each other, Rk is said to be

a good k-realization. Our goal is to find a good n-realization Rn, or good realization for

short, for a given P . See, for example, Figure 2 for a good 5-realization in 1d-4P and

Slope-4S models.

A point u is said to be above another point v, or v is said to be below u if the y-

coordinate of v, v.y, is smaller than that of u, u.y, i.e., v.y < u.y . A point u is said to

be below, on and above a line L, if the y-coordinate of u is smaller than, equal to, and

greater than, respectively, the y-coordinate of the vertical projection point uL of u on L.

Let δ denote the length of the unit for the unit-height label placement problem discussed

in this paper such that each anchor has a rectangular label of the same height δ > 0.

3 Labeling Points on a Sloping Line with Unit-Height

Labels

Garrido et al. solved the Slope-4P unit-square label placement problem in O(n) time,

and the Slope-4S unit-square label placement problem in O(n2) time [7]. They made use

of a concept, called shadow, which is determined by the last two labels. For our Slope-4P

unit-height label placement problem this concept unfortunately does not work. Figure 3

shows that the shadow of the realization R = {r1, r2, r3, r4} defined by the last two labels

as stated in Lemma 4 in [7] will produce an incorrect labeling for the next label at p5. We

therefore propose a new idea, called top and bottom domination labels, for the Slope-4P

unit-height label placement problem. It is obvious that the case for unit-width labels is

similar, so we consider only the case for unit-height labels. We assume that the slope of

the line is positive without loss of generality.

Definition 3.1 In a realization R, a label li is called a top label, if its upper-right corner

qi is above the sloping line, and a bottom label, if qi is below or on the sloping line.

Definition 3.2 In a good realization R, the feasible region, denoted F (li), of each label li

with respect to label lj, for all j > i, or simply the feasible region of each label li, is defined

as the possible region the label lj, j > i, can be placed without intersecting li. Specifically,
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r1

p5
r3

r4

r2

Figure 3: An illustration of how the notion of shadow of the realization R = {r1, r2, r3, r4}
as stated in [7] is not adequate to determine the placement of the fifth label.

if li is a bottom label, F (li) is the intersection of NDqi
and Abi

, where NDqi
is the locus of

points not dominated 1 by the upper-right corner qi of li and Abi
is the region containing

points whose y-coordinates are no less than the y-coordinate of the bottom boundary edge

of li; if li is a top label, F (li) is the intersection of NDqi
and Ati , where NDqi

is defined

as above, and Ati is the region containing points whose y-coordinates are no less than the

y-coordinate minus δ of the bottom boundary edge of li.

Definition 3.3 In a good realization R, label lj is said to cover label li or label li is covered

by label lj, for j > i, if F (lj) ⊆ F (li). That is, whenever label lk can be placed in F (lj) it

can be placed in F (li) for i < j < k (see Figure 4).

li

lj

Figure 4: Label lj covers li

Definition 3.4 In a good realization R, the last top label, is called the top domination

label, denoted dt, and the last bottom label, the bottom domination label, denoted db.

Lemma 3.5 The pair of labels dt and db covers all other labels in any good realization.

1A point u is said to dominate another point v, or v is said to be dominated by u, if both x- and
y-coordinates of v are no greater than those of u.
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Proof: For an arbitrary good realization R, the feasible region F (li) of each top label li

contains the feasible region F (dt) of dt obviously. So dt covers all the top labels. Similarly,

since F (db) ⊆ F (lj) for each bottom label lj, db covers all the bottom labels. The lemma

follows. 2

Let the top and bottom domination labels associated with a good k-realization Rk be

denoted dtk and dbk
respectively.

Definition 3.6 For a good k-realization Rk, we define its associated envelope region

Ek as the intersection of F (dbk
) and F (dtk) (see Figure 5). Given two k-realizations,

R1
k, and R2

k, we say that the domination pair d1
bk

and d1
tk

associated with R1
k, covers

the domination pair d2
bk

and d2
tk

associated with R2
k, if the envelope region E2

k contains

the envelope region E1
k, i.e., E1

k ⊆ E2
k. Two k-realizations R1

k, and R2
k are said to be

comparable if E1
k ⊆ E2

k or if E2
k ⊆ E1

k. Otherwise, they are said to be incomparable.

Envelope region
Envelope region

dt db

dt

db

δ

Figure 5: The envelope region.

Lemma 3.5 plays an important role for Slope-4P model and it implies that if a new

label lk+1 is added to a k-realization Rk, we only need to check if label lk+1 can be placed

to lie totally in the envelope region associated with Rk, and if so, which positions lk+1 can

be placed so as to obtain a good (k + 1)-realization Rk+1.

Therefore, we will simply use the ordered pair (dbk
, dtk) of bottom and top domination

labels of Rk to represent the k-realization, as it defines the envelope region Ek associated

with Rk.

For convenience, we shall encode the label positions in a k-realization, using elements

in {1, 2, 3, 4}, as described in Figure 1. That is, Rk = {r1, r2, . . . , rk} is a k-realization,

where ri ∈ {1, 2, 3, 4}, for 1 ≤ i ≤ k.
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It turns out that given a k-realization Rk, there are six cases of possible positions that

lk+1 can be placed as follows.

1. rk+1 ∈ {1, 2, 3, 4}.

2. rk+1 ∈ {1, 2, 4}.

3. rk+1 ∈ {1, 4}.

4. rk+1 ∈ {1, 2}.

5. rk+1 ∈ {1}.

6. rk+1 = ∅.

And the notion of envelope given in Definition 3.6 simplifies our algorithm. We shall

adopt an incremental algorithm by placing labels one at a time in ascending order of the

x-coordinates of the anchors on the sloping line. The algorithm is greedy in nature. That

is, when we consider adding the next label, lk+1 to a k-realization Rk, if we have more

than one choice to put the label, we shall place it so that the resulting envelope associated

with the new (k + 1)-realization is as maximal as possible, as will be shown below. Thus,

we adopt the following maximal placement strategy.

1. If rk+1 ∈ {1, 2, 3, 4}, we let rk+1 = 3.

2. If rk+1 ∈ {1, 2, 4}, we let rk+1 = 2 or rk+1 = 4, as the resulting realizations may be

incomparable.

3. If rk+1 ∈ {1, 4}, we let rk+1 = 4.

4. If rk+1 ∈ {1, 2}, we let rk+1 = 2.

5. rk+1 ∈ {1}.

6. rk+1 = ∅.

Lemma 3.7 For anchors {p1, p2, . . . , pi}, there are at most two incomparable i-realizations.

for 1 ≤ i ≤ n.
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Proof. We prove it by induction on label index i. For i = 1 and i = 2, this lemma holds

trivially. Suppose that the induction hypothesis holds for i = k. Consider i = k + 1.

By induction hypothesis, there are at most two k-realizations R1
k and R2

k. Let (dj
bk

, dj
tk)

represent the bottom and top domination labels associated with Rj
k respectively, j = 1, 2.

For each of the two k-realization Rk, there are at most two feasible position choices for

rk+1 at the same time according to the maximal placement strategy mentioned above.

Note that rk+1 can be either dbk+1
or dtk+1

in Rk+1. Thus, the following are the four

(k + 1)-realizations: (rk+1, d
1
tk

) represents R1b
k+1, (d1

bk
, rk+1) represents R1t

k+1, (rk+1, d
2
tk

)

represents R2b
k+1 and (d2

bk
, rk+1) represents R2t

k+1. We distinguish the following cases to

show that there are actually at most two incomparable (k + 1)-realizations.

Case 1: Assume rk+1 = 3 (when rk+1 ∈ {1, 2, 3, 4}) for one of R1
k and R2

k, say R1
k without

loss of generality. In this case, we have at most three possible realizations: R1b
k+1,

R2b
k+1, and R2t

k+1. Since E2t
k+1 ⊆ E1b

k+1, we have at most two (k + 1)-realizations R1b
k+1

and R2b
k+1.

Case 2: Assume rk+1 = 4 (when rk+1 ∈ {1, 4}) for one of R1
k and R2

k, say R1
k without

loss of generality. There are three realizations: R1b
k+1, R2b

k+1, and R2t
k+1.

Subcase 2-1: If rk+1 = 2 or 4, that is, rk+1 ∈ {1, 2, 4} for R2
k, then obviously R1b

k+1

and R2b
k+1 are comparable, and one can be eliminated.

Subcase 2-2: If rk+1 ∈ {1, 4} for R2
k, no R2t

k+1 exists. (The subcase rk+1 ∈ {1, 2}
is similar.)

Subcase 2-3: If rk+1 = 1 for R2
k, then either E2b

k+1 ⊆ E1b
k+1 (as rk+1 = db) or

E2t
k+1 ⊆ E1b

k+1 (as rk+1 = dt) and hence one can be eliminated.

Case 3: Assume rk+1 = 2 (when rk+1 ∈ {1, 2}) for one of R1
k and R2

k, say R1
k without

loss of generality. There are three realizations: R1t
k+1, R2b

k+1, and R2t
k+1.

Subcase 3-1: If rk+1 = 2 or rk+1 = 4, that is, rk+1 ∈ {1, 2, 4} for R2
k, then since

rk+1 = 4 is feasible for R2
k, E1t

k+1 ⊆ E2t
k+1.

Subcase 3-2: If rk+1 ∈ {1, 2} for R2
k, no R2b

k+1 exists. (The subcase rk+1 = 1 is

similar.)
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Case 4: Assume rk+1 = 1 for one of R1
k and R2

k, say R1
k without loss of generality. There

are three realizations: R1b
k+1, R2b

k+1, and R2t
k+1, if rk+1 = db, and R1t

k+1, R2b
k+1, and

R2t
k+1, if rk+1 = dt.

Subcase 4-1: If rk+1 = 2 or rk+1 = 4, that is, rk+1 ∈ {1, 2, 4} for R2
k, then E1b

k+1 ⊆
E2b

k+1, E2t
k+1 if rk+1 = db. (As rk+1 = dt, it’s similar.)

Subcase 4-2: If rk+1 = 1 for R2
k, no R2t

k+1 exists as rk+1 = db. (As rk+1 = dt, it’s

similar.)

Case 5: Assume rk+1 ∈ {1, 2, 4} for R1
k and rk+1 ∈ {1, 2, 4} for R2

k, there are four real-

izations: R1b
k+1, R1t

k+1, R2b
k+1, and R2t

k+1. Since rk+1 = 4 is feasible for both R1
k and

R2
k, so R1t

k+1 = R2t
k+1. For both R1b

k+1 and R2b
k+1, rk+1 = 4. So they are comparable

and one can be eliminated.

Case 6: Assume rk+1 = ∅ for one of R1
k and R2

k, it’s trivial.

For every case, there are at most two incomparable (k + 1)-realizations. 2

We thus have immediately the following algorithm, Algorithm Slope-4P, for finding a

good realization for the Slope-4P unit-height label placement problem, using an iterative

method by considering the labels one at a time in order.

Algorithm Slope-4P.

Input: A sloping line L with positive slope, a set of anchors P = {p1, p2, . . . , pn} on

L sorted in ascending x-coordinate, and the corresponding label width l1, l2, . . . , ln (the

heights of all the labels are identical, denoted δ ).

Output: A good realization R of P if it exists, and nil otherwise.

Method.

1. Assume that we maintain at most two realizations R1, R2 for the set P of anchors

and let their associated bottom and top domination labels be (d1
b , d

1
t ), (d2

b , d
2
t ) re-

spectively.

2. Let P 1, P 2 denote the set (⊆ {1, 2, 3, 4}) of positions the next (new) label can be

placed with respect to R1, R2 respectively;
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3. We consider the anchors in ascending order of their x-coordinates one at a time;

4. R1, R2, P 1, P 2 ← ∅ and d1
b , d

1
t , d

2
b , d

2
t ← nil;

5. For each realization Rj, j = 1, 2, we keep two temporary realizations, Rj b, and Rj t;

6. For i = 1 to n

Determine P j with respect to (dj
b, d

j
t), for ri, j = 1, 2;

If (P 1 = ∅ and P 2 = ∅) then return nil and break;

Temporarily store possible realizations in Rj b, Rj t for P j, j = 1, 2,

according to the maximal placement strategy;

Compare R1 b, R1 t, R2 b, R2 t to get at most two maximal realizations;

Update Rj from the previous step, and also update (dj
b, d

j
t), for j = 1, 2;

END;

Theorem 3.8 The Slope-4P unit-height (width) label placement problem can be solved

in linear time when the input anchors are given sorted.

Proof. By Lemma 3.7 there are at most two incomparable realizations that need to be

maintained at each step, and the envelope regions of these two realizations are maximal.

Thus, the algorithm Slope-4P is able to find at least one good realization for the input

anchor set P , if there exist feasible solutions.

As we determine the possible label positions of the next label, only two realizations (d1
b ,

d1
t ), (d2

b , d2
t ) of bottom and top domination labels have to be checked according to previous

lemma. It takes constant time in each iteration. Therefore the total time complexity of

Algorithm Slope-4P is O(n). 2

4 Labeling Points on a Sloping Line with Elastic La-

bels

We now consider the case when the labels are elastic. An elastic rectangle E is a family

of rectangles specified by a triplet (α, H,W ), where α is the area of any rectangle in

E, H = [hmin, hmax] is the range of the height of the rectangles, W = [wmin, wmax] is
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the range of the width. Given an anchor p, the placement of an elastic label E will be

specified by (p,Q)(E), where Q ⊆ {1, 2, 3, 4} is a set of possible label position indexes

and the anchor p is to coincide with a corner of a rectangle in E. The position index is

the same as in the 4P model defined previously. Note that given a label position p(E),

the family E of rectangles is described by a hyperbolic segment tracing out the locus of

the corner of the elastic rectangle opposite to p. In our model, we assume hmin and wmin

are both set to be unity. Figure 6 shows an elastic rectangle with Q(E) = {2}, and the

hyperbola shown as a dashed curve. The notation rmin denotes the unit rectangle of

height hmin and width wmin.

P
hmin

wmin

hmax

rmin

wmax

Figure 6: An instance of an elastic rectangle

Theorem 4.1 For a set of anchors, the Slope-4P elastic label model has a good realiza-

tion if and only if Slope-4P unit-width label model (slope is less than or equal to hmin

wmin

or Slope-4P unit-height label model (slope is greater than or equal to hmin

wmin ) has a good

realization.

Proof. If there exists a good realization for Slope-4P unit-width (respectively height)

label placement problem instance, then this solution is a solution to the Slope-4P elastic

label placement problem in which width w = δ (respectively height h = δ), and height

h = α/δ (respectively width w = α/δ). Conversely, suppose there exists a good realization

Re for Slope-4P elastic label placement problem instance. Let us consider the case when

the slope of the sloping line is less than or equal to hmin

wmin and the other case when the slope
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is greater than or equal to hmin

wmin is similar. We claim that we can let all elastic labels be

unit-width labels, where the unit width δ is set to be wmin and obtain a good realization.

First, it is obvious that there exists a good realization R′ for Slope-4P unit-rectangle rmin

label model for the input instance by reducing each label in Re to rmin. Next, we let each

top label in R′ grow upwards to be of height h = α/wmin. Similarly, we let each bottom

label in R′ grow downward to be of height h = α/wmin. Since the slope of the sloping line

is less than or equal to hmin

wmin , there is no intersection for every label of width w = wmin

and height h = α/wmin. Then we have a good realization for Slope-4P unit-width label

placement problem, where δ = wmin. 2

5 Maximizing Label Sizes and the Lower Bound

5.1 Maximizing Label Size for Slope-4P Unit-height Model

The maximization version of Slope-4P unit-height label model (Slope-4P unit-width la-

bel model, similarly) is defined as follows: Given a set of n anchors P = {p1(x1, y1),

p2(x2, y2), . . . , pn(xn, yn)} on a sloping line with positive slope, where (xi, yi) are the x-

and y-coordinates of anchor pi, i = 1, 2, . . . , n, and each anchor pi is associated with a

rectangular label of unit height h = δ and width li, find the maximum stretch factor λmax

such that the width and height of each label are multiplied by λmax for which there exists

a good realization. For this maximization problem, we can use an idea similar to that

used in [7] to solve this problem and the following result immediately follows.

Theorem 5.1 The maximization version of Slope-4P unit-height (width) label placement

problem can be solved in time O(n2 log n).

5.2 Maximizing Label Size for 1d-4S Equal-width Model

The maximization version of 1d-4S equal-width label placement problem is defined as

follows: given a set P = {p1, p2, . . . , pn} of n anchors on a horizontal line, find the

maximum label width wmax such that there is a good realization of P . We show below

that this problem can be solved in O(n2) time instead. We use an iterative approach to

deal with this problem. Following Theorem 4 in [7], we modify their dynamic programming

13



method and obtain an alternating good realization in a greedy manner [3] for the 1d-4S

equal-width label placement problem in linear time, assuming the input anchors are given

sorted. That is, we place labels as left as possible for each anchor, and alternately place

labels above and below the line in sorted order. 2 Therefore, we can separate the point

set P into two parts, Po = {pi | i is odd } and Pe = {pi | i is even }. The labels of Po are

placed above the line and the labels of Pe are placed below the line. The solutions wmax
o

and wmax
e of Po and Pe, respectively can be computed independently and the smaller of

wmax
o and wmax

e is the solution. We shall consider only the problem of Po and the other

problem is similar. This problem is equivalent to finding an interval of maximum length

for each anchor in Po such that each interval is of equal length, and there is exactly one

anchor in each interval. In other words, we would like to place cuts on the horizontal line

to form a collection of equal-length cut intervals, each containing exactly one anchor.

We would proceed by processing these anchors in Po one at a time from left to right

and placing cuts in an appropriate manner. Assume that these anchors are ordered from

left to right as pi, i = 1, 2, . . . , m. Let xi denote the x-coordinate of the ith anchor and ci

denote the x-coordinate of ith cut. We use (xm − xj)/(m − j − 1) to be the (weighted)

cut interval length, denoted X. Initially j = 1, clearly the first cut can be placed at

the leftmost point, thus c1 = x1. Note that X is an upper bound on the optimal label

width. We then proceed to place cut ci which is at distance X to the right of cut ci−1 for

i ≥ 2, until either there is more than one anchor in the cut interval or there is no anchor

in the cut interval. When either case occurs, we need to adjust the cut interval length

X. For each anchor pi, we maintain a safety clearance sci = |ci − xi|, weighted clearance

wcj = scj/(j − 1), j ≥ 2, and an invariant condition that there is exactly one anchor in

each cut interval.

Case 1: Suppose there is no anchor in the cut interval or cut i happens to be placed at

the ith anchor, i.e. ci = xi.

In this case we can separate the rest of anchors from what we have processed, and treat

the remaining set of anchors as a new subproblem. In the former case we will search for

the next anchor pj, rename it p1, place a cut c1 at it and update X = (xm−xj)/(m−j−1).

2It is shown in [3] that one can always obtain an alternate label placement, if there is a feasible solution
for the 1d-4S equal-width label placement problem
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While in the latter case, anchor pi would play the role of p1 and cut ci would play the

role of c1, and this process continues.

Case 2: Suppose there is more than one anchor in the cut interval.

Assume that this happens for cut ck+1 and that the distance between cut ck and the second

anchor pk+2 to its right is Y , Y < X. This means that the label width X is too large and

we need to re-adjust the length of cut interval. We first calculate the new cut interval

length X ′ = [(k−1)X +Y ]/k which is strictly less than X. Let D = X−X ′. Let U be the

minimum weighted clearance, i.e., U = min{wcj | 2 ≤ j ≤ k}. If D < U , then we have

a new arrangement of cuts and the invariant condition that each cut interval has exactly

one point is maintained. We then update the weighted clearances for all the anchors by

decrementing each wcj by D, place cut ck+1 at anchor pk+2, let sck+1 = |ck+1 − pk+1|,
wck+1 = sck+1/k and continue the processing using X ′ as the new cut interval length with

pk+2 being the next anchor to be considered when placing next cut ck+2. Otherwise, i.e.,

D ≥ U , assume that the minimum weighted clearance wcj′(= U) occurs at pj′ . We know

that if we select the cut interval length as Xwc = X − wcj′ , then cut cj′ will be placed at

pj′ , and there is exactly one anchor in each cut interval among p1 to pj′ . The invariant

condition (there is exactly one anchor in each cut interval) is maintained among p1 to pj′

if we use Xwc to be the cut interval length. We can then separate the rest of anchors from

pj′ on to be a new subproblem such that the anchor pj′ and cut cj′ would play the role

of p1 and c1 respectively, and the process repeats by using the cut interval length Xwc.

Note that if there exists more than one weighted clearance wcj′ which equals U , we pick

the rightmost anchor pj with the largest index j.

In Case 2 we need at most O(n) time to proceed to a cut interval containing more

than one anchor, and recompute a new cut interval width, resulting in a new subproblem.

Since there are at most O(n) subproblems, the total time complexity is O(n2). We need

O(n) space to maintain the information of anchors, cuts and weighted clearances. We

therefore conclude with the following theorem.

Theorem 5.2 The maximization version of 1d-4S equal-width label placement problem

can be solved in O(n2) time and O(n) space.
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5.3 The Lower Bound

Now we consider the lower bound for the 1d-4S equal-width label placement problem. It

is known that when the points are given sorted, the problem can be solved in linear time

[3, 7]. We show that the problem requires Ω(n log n) time, if the points are arbitrary.

We adopt the algebraic computation model of Ben-Or [1] in which we have a random

access machine with real arithmetic, and each arithmetic operation takes constant time.

Consider the following decision version of the 1d-4S equal-width label placement problem.

1d-4S equal-width label placement decision problem

Instance: Given a set P = {p1, p2, . . . , pn} of n points on the real line and a width w.

Output: Yes, if there exists a disjoint set of n intervals, each of width w such that each

interval contains exactly one point, and these intervals may have their endpoints common

to each other, and no, otherwise.

We shall prove the lower bound of the above 1d-4S equal-width label decision problem

by problem reduction [16]. Specifically we shall reduce to it the uniform gap problem, a

well-known problem with an Ω(n log n) lower bound, where n is the input size [13]. The

uniform gap problem is described in the following:

Instance: Given a set of n real numbers X = {x1, x2, ..., xn} and a real number ε ≥ 0.

Output: Yes, if the gaps between consecutive numbers are uniformly equal to ε (Two

numbers xi and xj are said to be consecutive if xi ≤ xj and there exists no other number

xk such that xi < xk < xj.); No, otherwise.

The problem reduction is as follows. Consider an instance X = {x1, x2, ..., xn}. Assume

x1 is the minimum of X and xn is the maximum. We must have xn − x1 = (n− 1)ε; else,

return No obviously. Let w = ε and assign p1 = x1, pn = xn − ε. We shall construct

two equal-width label placement problem instances I and I ′. Let the instance I with

pi = xi− ε, for each pi, 1 < i < n, and the instance I ′ with pi = xi, for each pi, 1 < i < n.

We claim that the gaps between consecutive numbers of X are uniformly equal to ε if and

only if 1d-4S equal-width label placement decision problem has feasible solutions for both

instances I and I ′. If the gaps between consecutive numbers of X are uniformly equal to

ε, then for instance I the second smallest point is also located in p1 and the other points
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excluding p1 and pn are located in uniform distribution of length (n− 2)ε by interleaving

ε-intervals between p1 and pn, in the instance I. Therefore, except that the label of p1

is placed to the left of p1, the labels of all the rest of points are placed to the right of

their anchors. On the other hand, for instance I ′, the second largest point is located in

pn and the other points excluding p1 and pn are located in uniform distribution of length

(n − 2)ε by interleaving ε-intervals between p1 and pn. Similarly, except that the label

of pn is placed to the right of pn, the labels of the rest of points are placed to the left of

their anchors. It is obvious that there exist feasible solutions for both instances I and

I ′. Conversely, suppose there exist consecutive numbers xi and xj with |xi − xj| 6= ε in

X. Assume xj > xi without loss of generality. It divides into two cases. If xj − xi < ε,

then pj = xj − ε < xi = (xi − ε) + ε = pi + w for instance I. Since the only feasible label

placement in instance I is that each label is placed to the right of its anchor, there is no

feasible solution for instance I. The other case is xj − xi > ε. It implies that pj −w > pi

for instance I ′. Since the only feasible label placement in instance I ′ is that each label is

placed to the left of its anchor, there exists pk between pj and pn such that its label does

not have sufficient space ε. Therefore there is no feasible solution for instance I ′. This

completes the proof.

Thus from the above we obtain the following theorem.

Theorem 5.3 The 1d-4S equal-width label placement problem for n points on a line

requires Ω(n log n) time, under the algebraic computation tree model.

Corollary 5.4 The 1d-4S equal-width label placement problem for n points on a line can

be solved in O(n log n) time, which is asymptotically optimal.

Proof. This follows from the above theorem and the results of [3], [7] that the 1d-4S

equal-width label placement problem can be solved in linear time when the anchors are

sorted. 2

6 Conclusion

In this paper we have presented a linear time algorithm for solving Slope-4P unit-height

(width) label placement problem provided that the input points are given sorted. We
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have also proved that the Slope-4P elastic label placement problem and the Slope-4P

unit-height (width) label placement problem are equivalent. We have considered an op-

timization (maximization) version of 1d-4S equal-width label placement problem and

provided a new method to solve it in O(n2) time. In addition, we have presented

a lower bound proof for 1d-4S equal-width label placement problem. The above al-

gorithms have been implemented using GeoBuilder and the details can be found at

http://www.sharetone.org/Members/jhh/GeoBuilder/system demo.htm.

Although Slope-4P elastic label and Slope-4P unit-height (width) label are equivalent,

how to choose an appropriate height and width for each label to make these labels look

aesthetically nice remains an open problem. We also feel that the complexity results of

optimization (maximization) version could be improved. Whether there exist solutions

for the Slope-4P arbitrary rectangle label model remains to be seen.
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