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Abstract

Given a set S of s points in the plane, where do we place a new point, p, in order
to maximize the area of its region in the Voronoi diagram of S and p? We study the
case where the Voronoi neighbors of p are in convex position, and prove that there is
at most one local maximum.

Keywords: Computational geometry, locational planning, optimization, Voronoi
diagram.

1 Introduction

Suppose that we want to place a new supermarket where it wins over as many customers
as possible from the competitors that already exist.

Let us assume that customers are equally distributed and that each customer shops at
the market closest to her residence. Our task then amounts to finding a location, p, for the
new market amidst the locations pi of the existing markets, such that the Voronoi region
of p, that is, the set of all points in the plane that are closer to p than to any pi, has a
maximum area.

Surprisingly, not much seems to be known about this problem. The area of Voronoi
regions has been addressed in the context of games, where players can in turn move their
existing sites, or insert new sites, such as to end up with a large total area of their Voronoi
regions; see the Hotelling game described in Okabe et al. [8], and related work by Cheong et
al. [4] and Ahn et al. [1]. But none of these papers gives an explicit method for maximizing
the region of a new site. After the conference version of the present paper [5] appeared, the
problem of maximizing the Voronoi region of a new site has been addressed by Cheong et
al. [3]. They showed how to compute, in time O(nδ−4 + n log n), a location for a new site
whose Voronoi region approximates the maximum size, up to a 1− δ factor.

In this paper we describe the first nontrivial step towards an exact solution of the area
maximization problem. We are given a finite set, S, of point sites p1, . . . , ps, and we want to
place a new site, p, at a location that maximizes the area of its Voronoi region VR(p, S∪{p}).

Two aspects of this problem statement need to be clarified. First, the Voronoi region
of p is formally undefined in case p = pi holds for a point pi ∈ S. In the context of
our maximization problem, this can be fixed as follows. Suppose that p moves towards pi

along a straight line l. Then the bisector of p and pi converges to the line through p = pi
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perpendicular to l. If we suppose that p is free to choose its direction of attack against pi,
we can define, as p’s Voronoi region, the largest part of VR(pi, S) that can be cut off by
a line through pi. For all points pi, these maximal region parts can be computed in total
time O(s). The maximum area p can win, in this way, is a candidate for the final solution.
Consequently, we may now assume that p 6∈ S holds.

Second, if p settled at some location outside of the convex hull of S its region would
be unbounded. There are several ways of dealing with this fact, as will be discussed in
Section 4. In the following we are assuming that the feasible locations for p are restricted
to some closed domain F inside the convex hull of S. Then the Voronoi region of p in the
Voronoi diagram V (S ∪ {p}) is always of finite area.

Suppose that the Voronoi region p consist of parts of the former regions of certain sites
p1, . . . , pn in V (S); these sites form the set N of Voronoi neighbors of p in V (S ∪ {p}).
In general, this set N spans a polygon that is star-shaped as seen from p.1 As our main
result, we show that if the set N is in convex position then there can be at most one local
maximum for the Voronoi area of p, in the interior of the locus of all positions that have N
as their neighbor set. The proof is based on a delicate analysis of certain rational functions;
it will be given in Section 3.

In Section 4 we analyze the loci of identical Voronoi neighbors, for a given set S of point
sites. Moreover, we discuss how a possible extension of our result to the case of general
star-shaped Voronoi neighborhoods could be used in an overall algorithm for determining
exactly the location of p that attains a maximum Voronoi area. Finally, we mention some
directions for future work in Section 5. Section 2 contains some preliminaries, among them
tractable formulae for the area of a Voronoi region with convex neighbor set.

For general properties of Voronoi diagrams see the monograph by Okabe et al. [8] or the
surveys by Fortune [6] and Aurenhammer and Klein [2].

2 The Area of a Voronoi Region

First, we restate some basic definitions and facts. Let S be a set of s point sites in the
plane that are in general position, that is, no four of them are co-circular, no three of them
co-linear. By V (S) we denote the Voronoi diagram of the set S. It consists of Voronoi
regions VR(q, S), one to each point q of S, containing all points in the plane that are closer
to q than to any other site in S. The planar dual of V (S) is the Delaunay triangulation,
DT(S), of S. It consists of all triangles with vertices in S whose circumcircle does not
contain a site of S in its interior. The circumcircle of a Delaunay triangle is also called a
Delaunay circle. Both, V (S) and DT(S), are of complexity O(s) and can be constructed in
optimal time O(s log s).

The set N of all Voronoi or Delaunay neighbors q of site p forms a polygon, P (N), that
is star-shaped as seen from p. In this section we derive some useful formulae for the area of
the Voronoi region of a new site p with neighbor set N , assuming that P (N) is convex. It
is based on computing the signed areas of certain triangles. Let (v0, v1, v2) be the vertices
of a triangle D, where vi = (ai, bi) in Cartesian coordinates. Then,

SignedArea(D) :=
1
2

2∑

i=0

(aibi+1 − ai+1bi)

1A set P is called star-shaped as seen from one of its points, p, if any line segment connecting p to a point
in P is fully contained in P .
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gives the positive area of D if (v0, v1, v2) appear in counterclockwise order on the boundary
of D; otherwise, we obtain the negative value. Here, indices are counted mod 3.

Now let pi, pi+1 be two consecutive vertices on the boundary of P (N), in counterclock-
wise order. Unless p is co-linear with pi and pi+1, these three point sites define a Voronoi
vertex vi that may or may not be contained in P (N); see Figure 1.
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Figure 1: The triangles Di = (pi, vi, pi+1). Only
D0, D1, D2 are inside the convex neighbor poly-
gon, P (N). Their signed areas are negative,
whereas D3, and D4 have a positive area.

Figure 2: The triangles Ti = (vi+1, p, vi) and
their reflected images T ′i .

Let Di denote the triangle (pi, vi, pi+1), for i = 0 . . . n− 1. Its signed area is positive if
and only if these vertices appear on Di in counterclockwise order, that is, if and only if vi

lies outside the convex polygon P (N).

Lemma 1 With the notations from above we have the following identity.

Area(VR(p, S ∪ {p})) =
1
2
(Area(P (N)) +

n∑

i=1

SignedArea(Di))

Proof. The area of VR(p, S ∪ {p}) equals the sum of the areas of the triangles Ti :=
(vi+1, p, vi). Let T ′i be the result of reflecting triangle Ti about its edge vivi+1. The union of
all these triangles equals P (N) minus those triangles Dj that are contained in P (N), plus
those Di not contained in P (N); see Figure 2. 2

Lemma 1 reduces the problem of maximizing the area of the Voronoi region of p to
maximing the sum of the signed areas of the triangles Di, assuming N is fixed. Two
vertices of Di are the given points pi, pi+1. Only the third vertex, vi, depends on p, and its
movement is constrained to the bisector of pi, pi+1.

Next, we express the signed area of Di as a function of p in different ways. To this end,
let pi = (si, ti), and let mi = ( si+si+1

2 , ti+ti+1

2 ) be the midpoint of pipi+1. We put bi = |pimi|
and li = |pmi|; see Figure 3 for an illustration.
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p = (x, y)
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Figure 3: Computing the signed area of the triangle Di as a function of p. In this case, the sign is
negative.

Lemma 2 Let p = (x, y) be the new point site, different from pi and pi+1. Then the
following identities hold.

−SignedArea(Di) = b2
i

l2i − b2
i

2SignedArea(Fi)
(1)

= b2
i

(x− si+si+1

2 )2 + (y − ti+ti+1

2 )2 − b2
i

x(ti − ti+1) + y(si+1 − si) + siti+1 − si+1ti
(2)

= b2
i

(x− si)(x− si+1) + (y − ti)(y − ti+1)
(x− si)(ti − ti+1) + (y − ti)(si+1 − si)

(3)

Proof. Let us first assume that p does not lie on the line through pi and pi+1. Let C denote
the diametral circle of the line segment pipi+1. By definition, Di = (pi, vi, pi+1). Clearly,
the following equivalences hold.

p lies outside of C ⇔ li > bi

⇔ SignedArea(Di) < 0
⇔ Voronoi vertex vi is contained in P (N)

Let hi denote the height of triangle Di, so that Area(Di) = bihi. The Voronoi vertex vi can
be expressed as a vector sum

vi = mi + hiei,

where ei denotes the unit vector that runs from mi towards vi along the bisector of pi, pi+1.
We have ei = 1

2bi
(ti − ti+1, si+1 − si) if SignedArea(Di) < 0; otherwise the direction of ei is

reversed. On the other hand, p = (x, y) lies on a circle of radius
√

h2
i + b2

i centered at vi.
Plugging the cartesian coordinates of vi into the equation of this circle, and solving for hi,
leads to formula (2), since the coefficient of hi reduces to zero.

The numerators in formulae (1) and (2) are identical, and so are the denominators.
Formula (3) follows directly from (2), using the identity

b2
i = (

si − si+1

2
)2 + (

ti − ti+1

2
)2.
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2

It is interesting to observe that in the situation shown in Figure 3 the area of triangle
Di is also given by b2

i cotαi, where αi denotes the angle at vertex p of triangle Fi. Indeed,
as p moves along circle Cp, the values of αi and li do not change. When p is colinear with
vi and mi we obtain Area(Fi) = libi. Moreover,

cotαi =
cos2 αi

2 − sin2 αi
2

2 sin αi
2 cos αi

2

=
1
2
(cot

αi

2
− tan

αi

2
)

=
1
2
(
li
bi
− bi

li
) =

1
2

l2i − b2
i

libi
.

If p lies on the line through, but differs from, pi and pi+1, then the denominator of (2),
that is, the signed area of Fi, becomes 0, and the area of Di is infinite since Voronoi vertex vi

is at infinity now. The numerator of formula (2) is the equation of the circle C. Therefore,
the area of Di vanishes whenever p is placed on C \ {pi, pi+1}, because vi is then equal to
mi.

At the given points pi and pi+1 the signed area of triangle Di is undefined, and there
is no continuous way of closing these gaps. However, when point p is restricted to move
along a line {Y = eX + f} through pi, the area function can be continuously extended. If
we substitute, in formula (3) of Lemma 2, ex + f for y, where f = ti − esi, then the root
x− si cancels out, and we obtain a finite value at x = si that depends on e.2

3 Uniqueness of the Local Maximum

In this section we assume that N , the set of Voronoi neighbors of the new site, p, consists
of n points in convex position. Then the locus, LN , of all placements of p that have N as
their neighbor set is contained in the convex polygon P (N).

Now we state our main result.

Theorem 3 Let N be a convex neighbor set. Then the area of the Voronoi region of a new
point p has at most one local maximum in the interior of P (N) ∩ LN .

As usual, a function f is said to have a local maximum at point a if f(a) ≥ f(b) holds, for
all b in a neighborhood of a.
Proof. By Lemma 1 it is sufficient to prove that the sum of the signed areas of the triangles
Di has at most one local maximum in the interior of P (N). It is enough to show that this
sum attains at most one maximum along each line through P (N).

We substitute, in formula (2) of Lemma 2, the variable y by the coordinates eX + f of
a line G. By performing partial fraction decomposition, we obtain

−SignedArea(Di(X)) =
Ai

X − ai
+ ciX + di.

If G does not pass through pi or pi+1 then there is a a proper pole at X = ai, where
G intersects the line Gi through pi, pi+1; compare the discussion at the end of Section 2.
More precisely, if the point G ∩Gi lies outside the line segment pipi+1 then, in formula (1)

2The same holds in case line G passes through pi+1 because we can replace, in the denominator of
formula (3), si with si+1 and ti with ti+1.
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of Lemma 2, we have li > bi, while the sign of the area of Fi changes from − to +.
Consequently, the sign of −Di(X) changes from − to +. But if G intersects the interior of
pipi+1 then li < bi, so that −Di(X) changes from + to −.

If line G does pass through the given point pi or pi+1, then there is no pole, and we have
Ai = 0.

Let us assume that line G equals the X-axis, and let

a1 ≤ a2 ≤ . . . ≤ am ≤ l < r ≤ b1 ≤ . . . ≤ bk

denote the n points that correspond to its intersections with the lines Gi. By the convexity
of P (N), the two intersections of the X-axis with the boundary of P (N) must be consecutive
in this sequence; they are denoted by l and r.

Figure 4 shows the behavior of

f(X) := −
n∑

i=1

SignedArea(Di) =

=
m∑

i=1

Ai

X − ai
− L

X − l
+

R

X − r
−

k∑

i=1

Bi

X − bi
+ cX + d

as a function of X. By the above discussion, we have Ai, Bi > 0 and L,R ≥ 0.

a1 a2 l r b
1

b
2

x

-+-+- +-+- +- +

Figure 4: Between l and r, the function f(X) can have at most one local minimum.

First, we assume that both L and R are strictly positive. We want to prove that f(X)
has at most one local minimum in the interval (l, r). Since f comes from −∞ at l, and
returns to −∞ at r, it is sufficient to show that its second derivative

1
2
f ′′(X) =

m∑

i=1

Ai

(X − ai)3
− L

(X − l)3
+

R

(X − r)3
−

k∑

i=1

Bi

(X − bi)3

has at most two zeros in (l, r). We split the function into two parts,

g(X) :=
m∑

i=1

Ai

(X − ai)3
− L

(X − l)3
and

h(X) :=
k∑

i=1

Bi

(X − bi)3
− R

(X − r)3
,

such that f ′′/2 = g − h holds, and discuss g and h independently.
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Lemma 4 Each of the functions g and g′′ has at most one zero in (l,∞), and each of h, h′′

has at most one zero in (−∞, r).

Proof. Let x1 6= x0 ∈ (l,∞) be such that x0 is a zero of g. Then,

0 = g(x0) =
m∑

i=1

Ai

(x0 − ai)3
− L

(x0 − l)3
, (4)

and by multiplying both sides by (x0−l)3

(x1−l)3
we obtain

g(x0) =
m∑

i=1

Ai

(x0 − ai)3
(x0 − l)3

(x1 − l)3
− L

(x1 − l)3
(5)

=
m∑

i=1

Ai

(x1 − ai)3

(
(x1 − ai)3

(x0 − ai)3
(x0 − l)3

(x1 − l)3

)
− L

(x1 − l)3
(6)

<
m∑

i=1

Ai

(x1 − ai)3
− L

(x1 − l)3
= g(x1) , if x1 > x0. (7)

Analogously, we have

0 = g(x0) > g(x1) (8)

if x1 < x0 holds. The alternatives (7) or (8) follow from (6) because ai < l < x0, x1 implies
that

(x1 − ai)3

(x0 − ai)3
(x0 − l)3

(x1 − l)3

is of value < 1 if x1 > x0 holds, and of value > 1, otherwise. Consequently, g has at most
one zero in (l,∞). The other claims are proven analogously. 2

As a consequence of Lemma 4, the function g has at most one zero and at most one
turning point to the right of l. Since g has a negative pole at l and tends to 0 for large
values of X, its graph has one of the two possible shapes shown in Figure 5, together with
the possible shapes of the graph of h.

Our next lemma implies that f ′′/2 = g − h has at most two zeros in the interval (l, r).

Lemma 5 The graphs of the functions g and h have at most two points of intersection over
(l, r).

Proof. If neither g nor h have a zero in (l, r) their graphs do not intersect; see Figure 5.
Suppose that h has a zero in (l, r); then it has a unique minimum, m. Let us assume that
p1 and p2 are, from left to right, the first points of intersection of the two graphs in (l, r).

We argue that p2 must be situated to the right of minimum m of h. Indeed, to the left
of m function h is decreasing, and runs below the X-axis. But below the X-axis, function
g is increasing. Thus, at most one intersection, p1, can be situated to the left of m.

If p2 lies to the left of the maximum, M , of function g, or if g does not have a maximum,
then, in (p2,∞), the two graphs are separated by the wedge between their tangents at p2.
To the right of M , function g is decreasing and runs above the X-axis, while h is increasing
above the X-axis. In either case, there can be no further point of intersection to the right
of p2. 2
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Figure 5: The possible shapes of the graphs of g and h. There can be at most two points of
intersection between l and r.

So far we have shown that the function f takes on at most one local minimum along
each line G that enters and leaves the convex polygon P (N) through interior edge points.

It remains to generalize this statement to the case where the line G passes through one
or two of the given points of N , upon entering and leaving P (N). First, suppose G enters
through pi and leaves through an edge, so that L = 0 and R > 0 hold. We study the same
functions f, g, h as before, but on the interval (am, r). Clearly, function g is strictly positive
now. It comes from +∞ and tends to 0 for large values of X. Hence, its graph can intersect
the graph of h at most once. Consequently, function f has at most one turning point. Since
f comes from +∞ at X = am and tends to −∞ at X = r, it can have at most one minimum
in between.

If both L and R vanish because line G enters and leaves P (N) through vertices pi, pj

then we consider the interval (am, b1) between the innermost poles. Since both graphs of g
and h are strictly positive now, they have at most one point in common. Function f comes
from and returns to +∞ at am and b1. Because f has at most one turning point in between,
it has exactly one minimum.

This completes the proof of Theorem 3. 2

To give an example, let us assume that n points are evenly placed on the boundary of
the unit circle. For n ≤ 4 there is no local maximum of the Voronoi area. In fact, there is
a unique local minimum at the center for n = 3; for n = 4, the cross formed by the four
point sites consists of minimal positions. But for n ≥ 5 we have a unique local maximum
at the center of the circle.

4 Global Considerations

In the preceding section we have studied the situation where the new site, p, moves only
locally, so that the set N of its Voronoi neighbors does not change. During a global move
of p, three events may happen. First, its set of Voronoi neighbors can change.
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As before, let LN be the locus of all placements of p that have exactly the points in N
as their Voronoi neighbors. Figure 6 shows an example where the set LN is not connected.
In general, LN consists of several maximal connected subsets CN called the neighborship
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Figure 6: Each of the shaded cells has p1, . . . , p12 as neighbor set.

cells of N , whose nature is determined by the following Lemma 6. Observe that for two
neighboring sites, q and r, on the convex hull of S we can define, as their Delaunay triangle
and circumcircle, the halfplane defined by the line through q, r that does not contain a site
of S.

Lemma 6 Let S be a set of s point sites in the plane. The neighborship cells with respect
to S are the cells of the arrangement of the Delaunay circles of S. Each cell C has, as its
neighbor set N , all sites that span a Delaunay circle containing C. The total complexity of
all neighborship cells is in O(s2).

Proof. The standard incremental algorithm for constructing the Delaunay triangulation is
built on the following fact. On inserting a new site, p, into the Delaunay triangulation of
S, there will be a Delaunay edge of DT (S ∪ {p}) connecting p with q ∈ S if and only if p
lies in the circumcircle of a Delaunay triangle of DT (S) that has q as a vertex. This shows
that all points of the same cell have the same set of Voronoi neighbors, namely all sites that
span a Delaunay circle containing the cell. Moreover, edge-adjacent cells have different sets
of Voronoi neighbors. Indeed, if p leaves a Delaunay circle spanned by u, v, w through the
arc between u and v then point w can no longer be a Delaunay neighbor of p because the
edge pw would cross the edge uv of the Delaunay triangle (u, v, w) of DT (S ∪ {p}). 2

The arrangement of O(s) many circles can be constructed in time O(sλ4(s)) by a deter-
ministic3 algorithm, or in expected time O(s log s + k), where k denotes the complexity of
the arrangement; see Sharir and Agarwal [10].

3As usual, λt(s) denotes the maximum length of a Davenport-Schinzel sequence of order t over s charac-
ters.
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Another event happens when p hits the boundary of the convex hull of the site set S. At
this point, the region of p becomes unbounded. There are several ways of dealing with this
phenomenon. The most simple one we suggest here is to assume that a certain feasability
domain, F , is given, that consists of neighborship cells contained in the interior of the
convex hull of S, and that the placement of p is restricted to F (“far out of town there
are no customers to win”). One could also think of allowing unbounded Voronoi regions,
and measuring their area by the angle between the two unbounded Voronoi edges. Another
approach could be to specify population densities, instead of the uniform distribution, with
or without defining a feasibility domain F .

Finally, the position of the new site, p, could coincide with one of the existing sites,
pi ∈ S. At these points the area function fails to be continuous; in fact, the former region of
pi is split among p and pi by a bisector through p = pi whose slope is perpendicular to the
direction in which p has approached pi, as we discussed in Section 1. But apart from the
points pi, the area function is smooth, as was shown independently by Okabe and Aoyagi [7]
and by Piper [9] who generalized work by Sibson [11].

Let us assume the uniqueness of the local maximum proven in Section 3 for convex
Voronoi neighbor sets were also true for the general star-shaped neighbor sets N . Then
we could employ the following technique for finding the global maximum within the whole
feasibility domain F . First, we compute how large an area p can obtain by moving close to
an existing site from the right direction. This takes total time O(s). Next, we compute the
Delaunay triangulation of S, and the arrangement of all Delaunay circles in time O(sλ4(s)).
We inspect each cell C of F in turn, and compute the optimal placement of p within the
closure of C. Within the interior of C we can simply follow the gradient which leads to
the (unique!) maximum, or to the boundary of C. Finally, it would remain to check for
maxima on the boundary of C, which consists of circular arcs, by Lemma 6.

5 Conclusions

In this paper we have shown that the Voronoi area of a new site has at most one local
maximum in the interior of each neighborship cell, if the Voronoi neighbors are in convex
position. This result gives rise to many further questions.

The obvious open problem is if the maximum is still unique if the neighbors are in
star-shaped position. The main difference to the convex case is the following. The line
G, along which the new site p was supposed to move in the proof of Theorem 3, can now
intersect edge extensions of the neighbor polygon P (N) inside P (N), too. Consequently,
the functions g and h in the proof of Lemma 4 become more complicated. We expect that
considerably more (mathematical) effort will be necessary in order to settle this problem.

Other questions concern the customer model. Also, it would be interesting to study
metrics different from the Euclidean, that are frequently used in location planning. From a
theoretical point of view, it would also be interesting to investigate higher dimensions.
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Discrete & Computational Geometry 31 (2004), pages 125-138

[5] Frank Dehne, Rolf Klein, and Raimund Seidel. Maximizing a Voronoi region: The convex case. In
P. Bose und P. Morin, editors, Algorithms and Computation, Proceedings 13th International Symposium
(ISAAC 2002), LNCS 2518:624–634, Springer-Verlag, 2002.

[6] S. Fortune. Voronoi diagrams and Delaunay triangulations. In Jacob E. Goodman and Joseph O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 377–388. CRC Press LLC, Boca
Raton, FL, 1997.

[7] Atsuyuki Okabe and M. Aoyagi. Existence of equilibrium configurations of competitive firms on an
infinite two-dimensional space. J. of Urban Economics 29 (1991), pages 349–370.

[8] Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, and Sung Nok Chiu. Spatial Tessellations: Concepts
and Applications of Voronoi Diagrams. John Wiley & Sons, Chichester, UK, 2000.

[9] B. Piper. Properties of local coordinates based on Dirichlet tessellations. Computing Suppl. 8 (1993),
pages 227–239.

[10] Micha Sharir and P. K. Agarwal. Davenport-Schinzel sequences and their geometric applications. Cam-
bridge University Press, New York, 1995.

[11] R. Sibson. A brief description of the natural neighbor interpolant. In: D.V. Barnett, editor, Interpreting
Multiariate Data. John Wiley & Sons, Chichester, 1981.

11


