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ABSTRACT

Consider the following illumination problem: given a stage
represented by a line segment L and a set of lightsources rep-
resented by a set of points S in the plane, assign powers to
the lightsources such that every point on the stage receives
a sufficient amount — let’s say one unit — of light while min-
imizing the overall power consumption. By assuming that
the amount of light arriving from a fixed lightsource de-
creases rapidly with the distance from the lightsource, this
becomes an interesting optimization problem.

We propose to reconsider the classical illumination prob-
lems as known from computational geometry literature (e.g.
[12]) under this light attenuation model. This paper ex-
amines the simple problem introduced above and presents
different solutions, based on convex optimization, discretiza-
tion and linear programming, as well as a purely combina-
torial approximation algorithm. Some experimental results
are also provided.
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1. INTRODUCTION

[llumination and guarding problems have been a popular
topic of study in Mathematics and Computer Science for
several decades. One instance in this class of problems is
the classical one posed by Victor Klee : How many guards
are necessary, and how many are sufficient to patrol the
paintings and works of art in an art gallery with n walls ¢
While this particular problem has been solved shortly after
by Chvatal proving a tight | % | bound, many other variants
in this problem class have appeared in the literature, e.g. [3,
4, 7, 5, 8, 10, 11]; also see [12] for a general survey of the
topic.

On one hand, people have restriced the allowable floor
plans’, i.e. special classes of polygons like orthogonal poly-
gons, or looked at the problem of guarding a set of buildings
from the outside. Kahn et al. have shown for example [7],
that any orthogonal polygon with n vertices can be guarded
with [%] guards, and [%] are sometimes necessary. Fejes
Toth [5] has shown that for any family {Si1,...,S.} of n
disjoint compact convex sets in the plane, one can illumi-
nate the boundaries of the sets by 4n — 7 lightsources in the
complement of S;U---US, and sometimes that many light-
sources are necessary. Common to these results is the fact
that they assume that guards/lightsources cover a 360 field
of view, and distance does not affect guarding/illumination
abilities.

So other people have come up with models for less pow-
erful guards and lightsources, for example by requiring the
guards to be placed at the vertices or edges of the polygon.
Another restriction is to limit the field of view of the guards
to an angle of 180°, or incorporate the used field of view/
illumination angle of the lights/guards into the objective to
be optimized. For example Lee and Lin [8] have shown that
finding the minimum number of vertex guards for a poly-
gon is N P-hard. Toth ([11]) has shown that | | lightsources
with illumination angle 7 suffice to illuminate any polygon
with n vertices (lightsources need not be placed on vertices
of the polygon). Given a line segment L (the stage) and a set
of n points p1,...,pn (lightsources), Czyzowicz et al. ([4])
have proved that it is possible to find in O(n logn) time a set
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Figure 1: Isolines of light intensities induced by 3
light sources.

of floodlights fi,...f, with apexes in the set {p1,...,pn}
and angles of illumination aq, ..., such that the stage L
is illuminated and the sum «1 + - -+ 4+ «, is minimized.

The model we propose in this paper is in the spirit of
the angle restriction employed by Czyzowicz et al., since
we also aim to allow only less powerful lightsources. But
while Czyzowicz et al. disallow omnidirectional lightsources
(modelling floodlights in the real world), we take into ac-
count that the light emitted from a lightsource spreads with
increasing distance, so the amount of light arriving at a fixed
area patch decreases with the distance from the lightsource
(everybody can observe this behavior on a simple light bulb,
see also Figure 1, where we have sketched the isolines of light
intensities induced by 3 light sources). The rationale behind
our model is that it seems rather unrealistic for a guard or a
lightsource to monitor/illuminate things that are arbitrarily
far away, even in the absence of obstructions.

Our contribution

This paper proposes to reconsider the large collection of clas-
sical illumination problems under a light attenuation model,
where the amount of light arriving from a particular light-
source decreases rapidly with the distance. As a first exam-
ple, we consider the simple problem of illuminating a stage
using a fixed set of lightsources, where the goal is to mini-
mize the total amount of power assigned to the lightsources
while ensuring a sufficient illumination of the stage. Several
approaches in decreasing order of weight of the employed
machinery are presented, namely

e a polynomial-time solution based on a convex pro-
gramming formulation

e a (1+4¢) approximate solution based on a discretization
and linear programming

e a purely combinatorial O(1) approximate solution with
running time O(n?)

We also present some experimental results suggesting that
the performance analysis of the combinatorial algorithm is
overly pessimistic, leaving an improved analysis and the con-
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sideration of other illumination problems in this model as
open problems.

2. PRELIMINARIES

Consider the following setting: We are given a closed line
segment L C R? and a set of points S € R?, |S| = n. L
denotes the stage, S a set of lightsources. Our goal is to
assign powers xs to each lightsource s € S such that any
point of the stages receives a ’sufficient’ amount of light —
we will be more precise about that after quickly introducing
the physical light model.

2.1 Thephysical model

For the physical model we consider the setting in three di-
mensions, treating the lightsources as points that emit their
energy isotropically. Thereby, the energy that hits concen-
tric spheres around the lightsource is always the same but its
density decreases with growing radius. Since the energy is
homogeneously distributed over the surface of such a sphere

we get
27 ™
E = / / E2 sin 6dOdp
4

-
x2—|—y +z2

F(z,y,2)

————— dxdy

where the integrand is the flux F' through an infinitesimal
patch on a plane at distance z from the lightsource. This is
not a contradiction to the commonly known sz dependence
for the intensity of a point lightsource since the latter counts
for beams perpendicular to the patch. If we rotate the patch
by an angle a orthogonally to the incident beam, we have to
multiply the intensity by cosa = z/y/x? + y? + 22 yielding
the same result as above.

Note that F' is an additive quantity, i.e. its value can
be expressed by a sum over all lightsources. We shall use
reduced units such that for a point p on the stage at dis-
tances d(p,s) from each lightsource s € S we have a re-
quirement of 1 while the supply is expressed in the form
F(p) = X ses w5y~ We may choose o = 2, if the size of
the stage is small with respect to the distance of the light-
sources to the plane in which the stage is embedded, i.e. if
cos « is nearly 1 for all lightsources. Otherwise, we set 0 = 3
and implement the distance zs in the variable for the power
x5 of each lightsource. Moreover, we scale all distances such
that the minimal value of all zs is 1.

Remark: In case of an illumination problem, it is intuitive
to actually add up the arriving light/energy from all light-
sources when considering some point p € L. Unfortunately
this cannot easily interpreted in the context of a guarding
problem. If there are two guarding cameras watching for
example an expensive painting in a museum, but due to
their distance and limited resolution, each of the cameras
can only tell with 50% confidence whether there is someone
near the painting, this does not mean that by using both
cameras, one can tell with 100% confidence what is happen-
ing near the painting. So, individual ’confidence ratings’ do
not simply add up; a reasonable model could in this con-
crete example assign a confidence rate of 75%, since some
information might be gained by using both cameras instead
of only one. Note though, that the attenuation model in-
troduced does make sense also in this interpretation. If an



Figure 2: Only lights whose Voronoi cells intersect
the stage are useful
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Figure 3: Lightsource moved towards the stage until
[sv| = |sLv| = |srv|

object doubles its distance to the camera, it covers only a
quarter of a digital camera’s CCD pixels or film emulsion.
So in the above attenuation model, we would have an expo-
nent of o = 2.

3. ALGORITHMSIN r?

In this section we propose several ways to solve the prob-
lem in R?. The approaches will employ less and less heavy
machinery, starting with a convex programming formula-
tion, going over a combination of discretization and linear
programming, to finally presenting a very simple combina-
torial algorithm. In spite of the derivation of an attenuation
exponent of o = 3 in the previous section, we will assume in
the following any exponent o > 2, i.e. a point p receives a

L_ fraction of the light emitted from lightsource s. To al-

[ps|”
low for a simpler presentation, most calculations and proofs

will be in terms of o = 2, though generalization for larger
(but constant) values of o are straightforward.

Before presenting these algorithms we first make a simple
observation which allows us to reduce the number of light-
sources that have to be considered for the following steps.

3.1 Pruning lightsources

In this part we show that under the assumption that light-
sources can be assigned arbitrarily high powers, only certain
lightsources are of interest for our problem. Namely, we
show that all lightsources whose Voronoi cell does not in-
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tersect the stage L can be replaced by lightsources whose
Voronoi cells do, without incurring a larger cost in terms of
the overall power used (see Figure 2). Let us state this claim
more formally in the following lemma.

LEMMA 3.1. Consider the order of the lightsources in S
induced by the vertical projection on the line supporting the
stage L. Let s € S be some lightsource whose Voronoi cell
does not intersect the stage, sr,sr € S be the first neighbors
to the left and right in the ordering above whose Voronosi
cells intersect the stage.

Then there always exists a power assignment Ts, and Tsy
such that for any p € L

Tsyp,

|sLpl?

Ts

Tsp
= [sp[?

|srpl?

(1)
and s, + Tsp < Ts.

PrOOF. In the following we will exhibit a power assign-
ment xs; ,%s, With x5, + 255, = xs. Thus, we can express
x5, and s, as s, = a-zs and zs, = (1 — @) - x5 for some
nonnegative a < 1. So we can rewrite (1) as

(1-a) 1

lsrpl? ~ |sp|?’

(%

[sLpl?

a<l (2)
Now the goal is to show that there exists an @ < 1 inde-
pendent of the position of the point p € L and such that
inequality (2) holds.

Let v denote the intersection of the Voronoi edge between
s, and sr and the stage L. Note that we can always move
the light-source s perpendicularly toward the stage until
[sLv| = |sv] = |srv| (see Figure 3) since this is the worst case
scenario for the claim of the lemma (it’s easier to replace far
away lightsources). Then one can observe that in the case
when p lies to the left of v, |spp| < |sp| < |srp| and anal-
ogously when p lies to the right of v, |spp| > |sp| > |srp|.
For the sake of simplicity suppose |spv| = [sv| = |[sgrv| =1
and let d = |vp|, ¢p1 = Lpvsgr, ¢p2 = Lpvs and ¢3 = Lpvsr.
We can express the distances |spp|, |sp| and |sgp| with help
of the law of cosines and obtain:

(1-o)
1+ d? £ 2dcos ¢

o
1+ d? £ 2d cos ¢3

1
D —
— 1+ d? £ 2d cos ¢2

and hence

. (:I:(cosdn — cosd>3))

[sLpl?

+(cos ¢1 — cos ¢2)
=T (P @

were '+’ holds if p lies to the left of v and ’- if p lies to the
right of v. Choosing o = % <lfor0< o1 <2<
¢3 < m and keeping in mind that |szp| > |sp| if p lies to the
right of v and |spp| < |sp| if p lies to the left of v, one can
easily verify inequality (3) and therefore conclude the proof

of the lemma. [




3.2 A convex programming formulation

The following convex program clearly solves our problem:

min E Ts

s€ES
st. Vpel: sz/da(p, s) >1 (4)
seS
Ts >0

Here the second line exactly expresses the constraint that
for every point p on the stage, when summed over all light-
sources, ’enough’ light should arrive at p. If lightsource s
is powered up with z, the fraction of light arriving at p
is proportional to 1/d° (p,s). Here o is the attenuation ex-
ponent as derived to be 0 = 3 in the previous section or
o = 2 as commonly used. Note, that in this formulation one
could also incorporate upper bounds on the light intensity.
Later we will refer to this convex program when considering
only a finite number of constraints (and hence being a linear
program) as lighting LP.

This formulation is not a linear program since the number
of constraints is (uncountably) infinite, so in fact our setting
is an optimization problem over a convex body rather than
a simple linear program. There are numerous algorithms
for optimizing over a convex body, most of which rely on an
efficient method of determining whether a point x € R" is
contained in the convex body, which in our case basically
reduces to determining whether some degree n polynomial
has a root. In the following we describe the method in de-
tail for o = 2. The following notions can be found in [6].
Let K C R™ be a convex body, € > 0. The set S(K,¢)
is the set of points which have at most distance € from K,
S(K,e) ={z € R" | ||z — y|]| < e for some y € K}. The set
S(K, —¢) is the set of points in K whose e-environment is
completely contained in K, S(K, —¢) ={z € K| [[z —y| <
e implies that y € K for all y € R"}.

We now recall the definitions of the weak membership-
and optimization problem over convex bodies, see [6].

DEFINITION 3.1. The weak membership problem for K
is the following:

Given a vector x € Q" and a rational number
6 >0, either

1. assert that © € S(K, ), or
2. assert that x ¢ S(K, —96).

DEFINITION 3.2. The weak optimization problem for K
is the following: Given a vector ¢ € Q" and a rational num-
ber € > 0, either

1. find a vector x* € Q" such that z* € S(K,e) and
e <cTa* 4 ¢ forallz € S(K, —¢), or

2. assert that S(K, —¢) is empty.

Grotschel, Lovédsz and Schrijver [6, Corollary (4.3.12)] prove
the following theorem.

THEOREM 3.1. There exists an oracle polynomial time al-
gorithm that solves the weak optimization problem for every
conver body K, given by a weak membership oracle, where
the conver body contains a ball of radius r around a point ao
and is contained in a ball or radius R around 0.
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Polynomial time here means, polynomial in the dimension
n and the binary encoding lengths of ¢, €, ag, 7 and R.
Observe that the feasible region of the system (4) is not
bounded. However, we can easily compute a bounding pa-
rameter M, such that an optimal solution is contained in
0 <z < M. We simply let M be the largest power value,
which has to be assigned to a single lightsource in order to
lighten the stage by itself. If we then impose the additional
constraint 0 < z < 2M to the system (4), the convex set
is bounded and contained in the ball around 0 with radius
2 M n and contains the ball around M 1 with radius M. In
the following we denote the set of feasible solutions by K.
Next we show that the weak membership problem for a
power assignment z’ can be solved in polynomial time. For
this we assume that the lightsources are located on the Eu-
clidean plane with nonnegative component in the y-axis and
that the stage is the interval [—L, L] on the x-axis. Suppose
we are given a power assignment z’. The exact membership
problem is to decide whether there exists a point (p,0) on
the stage such that > 2./ ((p — Xs)* + ¥J) < 1 holds.
We solve the weak membership problem for any € > 0 in
the following way. We decide whether there exists a p €
[-L, L] such that > _sxs/ ((p — Xs)? +Y7) =1 holds. If
yes, we can assert that 2’ ¢ S(K, —§) for each § > 0. Other-
wise, we determine whether . o zs/ (L — X,)? +Y}) >
1 holds. If yes, we can assert that ' € K. If not, we can
assert that ' ¢ K.
Thus we can solve the weak membership problem for K if
we can determine in polynomial time, whether there exists
ap € [—L, L], such that the following holds:

Do/ ((p—X)?+Y7) =1

seS

()

Equation (5) can be written as f(p) = 0, where f(p) is a
rational polynomial, whose binary encoding length is poly-
nomial in the encoding length of the positions of the light-
sources. The problem now reads as follows. Given a poly-
nomial f(p) € Q(p) and an integer L, determine, whether
f(p) has a root in [—L, L]. This can be done in polynomial
time, after f(p) is decomposed into squarefree factors, with
the method of Sturm, see, e.g.,[13, p. 87]. So the weak op-
timization problem (4) can be solved in polynomial time in
the encoding length of the lightsource placements and the
encoding length of the error parameter e.

THEOREM 3.2. Given a set S of lightsources in the Eu-
clidean plane and an e > 0, one can compute a feasible point
x* for the optimization problem (4) in polynomial time such
that 35 g s <D cqTs + € for any feasible T.

Thus the most energy efficient illumination can be approx-
imated with an additive error € > 0 in polynomial time.

3.3 A (1+¢) approximation scheme

One obvious approach to obtain an approximation to our
problem is to discretize the stage using a finite number of
guards ', solve the linear program with constraints only for
the guards and then power up all lightsources sufficiently

'Note that in the following we use the term guard as a point
on the stage that ensures sufficient lighting at that point.
That notion differs from the use of guard in other work in
that area, where the guard is a point which covers/watches
the scene.



such that all points on the stage which were not 'guarded’
by a constraint for sure also get enough light. The effi-
ciency of this approach depends on the choice of a suitable
discretization which allows for few guards but still requires
only a moderate 'power up’ of the lightsources to guarantee
sufficient overall coverage.

DEFINITION 3.3. For every point p € L, we define ens(p)
— the empty neighborhood size — to be the distance to the
closest lightsource, i.e. ens(p) = minses d(p, s).

The following observation is not hard to see since ens(.)
is defined to be the minimum over some distance functions.

OBSERVATION 3.1. ens(.) is 1-Lipschitz, that is ens(p) <
ens(q) +1- |pq|-

Our discretization will now be based upon the empty
neighborhood size, in particular we will have more guards in
areas where ens(.) is small and fewer guards in areas where
ens(.) is large. Similar discretization approaches occur in
several other places in literature: For example, Amenta et
al. [2] use the so-called local feature size to classify dis-
crete samples from a contiuous surface. Papadimitriou and
Aleksandrov et al. also use a related discretization for the
purpose of shortest path computations [9, 1].

The crucial property for our set GG of chosen guards is the
following;:

DEFINITION 3.4. A set G C L of points satisfying
Vpe L 3geG:d(p,g) <e-ens(p)
is called a e-good set of guards.

Note that assuming a minimum distance of 1 of each light-
source to the stage, it is trivial to obtain an e-good set of
guards of size D/e by placing guards at equal distance € all
along the stage. Here D denotes the length of the stage L.
In the following we will show that one can do considerably
better.

Before we show that using an e-good set G we can ob-
tain a (1 + €) approximation to our original problem, let
us first convince ourselves that a reasonably small set G of
guards exists. For that consider one lightsource s. Assum-
ing that we have pruned the set of lightsources according to
the previous section, there is a point py € L for which s is
the closest lightsource. We start constructing a set G5 by
first adding po to Gs. We then extend G5 by adding guards
p—1 € L (for first guard left of po) and p4+1 € L (first guard
right of p,) at distance 2eens(po) from po. Iteratively we
place the next guard p;4+1 at distance 2eens(p;) from p; (and
accordingly to the left). We now claim the following:

LEMMA 3.2. The set Gs constructed above is a e-good set
of guards for the single lightsource s and furthermore |Gs| =
O(@) where D denotes the length of the stage.

PROOF. Assume the contrary, i.e. there exists a point
p € L st. fpi € Gs with d(pi,p) < eens(p). W.lo.g. as-
sume p lies between p; and pi;+1 (the same argumentation
holds when it lies between p_; and p_;—1). We have Vp'
between p; and pit1: ens(p’) > ens(p;), since we are mov-
ing away from the lightsource. Furthermore we have clearly
mln{d(pap1)7d(papl+l)} S |pzpz+1|/2 But since |pzpz+1| S
2eens(p;) by construction we get min{d(p, pi), d(p, pi+1)} <
eens(p;) < eens(p) which contradicts our assumption.
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P Pit1

Figure 4: Bounding the number of guards for S

Let us now turn to the size of Gs. Look at the situation
in figure 4. Clearly for all p € PP, we have ens(p) > d,
hence the distance between two adjacent guards between P
and P, is at least 2ed, hence there are at most O(1/¢) many
guards placed at that part of the stage.

We are now interested in the guards outside W We
claim that for consecutive guards p;, pi+1 we have ens(pi4+1) >
ens(p;) - (1 + ¢€). This follows easily from the law of cosine
since we have ens(p;+1)? = ens(p;)? +(2eens(p;))* —2ens(p;)-
2¢cens(p;) cos(a) > ens(pi)?[1 + 4e? + 2¢] > ens(p;)?(1 + €)?
where the last two inequalities follow from the fact that
a > %n. Hence the distance between adjacent guards out-

side P, P, grows at least by a factor of a = (1 + €) in each
iteration. We now establish an upper bound on the number
of guards in terms of this factor a.

|Gs|

D . a‘Gs‘il
> 2 t = S
> eZa 2ea p—)

i=1

Lol < De-1

— 2e a
log(£.a=L 11
= |Gq| g(Qel a )
oga

Since the number of guards contained in P, P, is also O(1/¢)
we can conclude that the total number of guards generated
by our procedure is O(*62) [

For a fixed length D of the stage, this estimation is tight
as can be seen from the definition 3.4. It establishes an
upper bound on the distance of two guards. Having a stage
of length D and a lightsource at distance 1 from the stage,
ens(-) is at most v/1 + D2. Therefore, we have to partition
the stage into at least Q(1) parts.

Obtaining a set of e-good guards G could be easily achieved
by computing G for all lightsources s and taking the union
of those sets. It is clear that the resulting set is e-good for
the set of all lightsources, since for any p € L there is a
guard within distance € - ens(p) in the set Gs where s is the
lightsources closest to p. The resulting union then contains
O(%Z log D) guards. We can do better though:

LEMMA 3.3. There exists a e-good set of guards G of size
O(Z log[l + 27).

Proor. The idea is that we may consider each Voronoi
cell of the lightsources on its own since the ens(-) of its points
on the stage are determined by their distance to this par-
ticular lightsource. The stage is partitioned into n pieces
D, ..., D, corresponding to the respective Voronoi regions
of the light sources. Let d; denote the length of piece D;, i.e.

?_ ,di = D. For each piece D; we construct the sample
set as before and get overall O((3_"_, log[1l + d;])/¢) many



guards. This sum is maximized when all parts have equal
length, ie. d; = %. |

Note that this bound considered asymptotically with re-
spect to n tends to O(£), since nlog[l + £] = log[l +
%]” — logeP, i.e. in the limit the number of guards does
not depend on n anymore, but only on D (but linearly, not
in the logarithm).

The last lemma in this section shows that given a e-good
set of guards, we can use this to obtain a (1-+¢)-approximate
solution to the lighting problem without having to worry
about the infinite number of constraints. But before proving
that, we show a small auxiliary Lemma which gives an upper
bound on the distance between two consecutive guards in a
e-good set of guards.

LEMMA 3.4. Let G be an e-good set of guards, p and q two
guards in G that appear consecutively on the stage. Then

Ipg| < < ens(p).

PROOF. Let z € L such that |pz| = |z¢|. By the definition
3.4 we know that |zg| < e - ens(z). Using the 1-Lipschitz
property of the local feature size ens(z) we can write down
Ipg| = 2|zq| < 2¢- (ens(q) + |pg|/2) which in turn implies the
claim of the lemma. [J

LEMMA 3.5. Let {zs} be an optimal solution of the light-
ing LP (4) with respect to an e-good set of guards G. Then
powering up every lightsource by a factor (1 + 6¢) ensures
that every point on the stage receives enough light.

PROOF. For the power assignment {z,} we know that for
all p’ € G, the lighting constraints are fulfilled, i.e. they re-
ceive enough light. Consider some point p € L, p ¢ G. Let
p’ € G be the closest guard to p, hence |pp’| < t=ens(p’) ac-
cording to Lemma 3.4. We want to show that after powering
up all lightsources by a sufficiently large factor 1» = 14+ 0O(e),
p also receives enough light. Namely, we are looking for 1)
such that

P
2 Gop T+ ems(@) - A= 2|

seS

(6)

Observe that all lightsources have distance at least ens(p’)
to p’ just by definition of ens(-) and keeping in mind that
p’ receives enough light, inequality (6) holds if v is chosen
such that:

>

sesS

Y-z

L >
|sp/[2(1+€/(1 —€) - ens(p') /|sp'])?
——

T+e/(1-€)? ~

> 1

<1

Therefore, for ¢ < 1/2, powering up all lightsources by a
factor of 1 = (1 + 2¢)? < 1 + 6¢ makes sure that p receives
at least as much light as p’ received before powering up all
lightsources. [

We summarize by stating the main theorem of this part:

THEOREM 3.3. Given a stage of length D and a set of
lightsources S where each lightsource has at least unit dis-
tance from the stage, one can compute a power assignment
{zs}ses such that each point on the stage receives at least 1
unit of light and Y xs < (14 €) Y. xP" where x2P* denotes
an optimal power assignment. {s}ses can be found in poly-
nomial time by solving a linear program with O(Z log %)
constraints and n variables.

1
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3.4 Pruning guards — a simple o(1) approxi-
mation algorithm

Even though the previous section provided a rather sim-
ple (1 + €) approximation algorithm for our problem, it re-
lied on solving a linear program which — in spite of being
polynomial-time — is still quite time-consuming (at least in
theory). Furthermore there was still a — even though only
logarithmic — dependence on the length D of the stage. In
the following we will propose a very simple O(1)-approximation
algorithm that can be easily implemented to run in O(n?)
time.

Similar to the previous section we will first relax our prob-
lem by restricting to a small — here O(n) size — set of guards.
This set is chosen such that any solution for this reduced set
transfers to a solution for the original problem incurring only
a O(1) overhead in terms of the quality of the solution.

Consider the function ens(.) on the stage L. This contin-
uous function consists of several arcs, each corresponding to
one lightsource / their respective Voronoi cell. ens(.) is dif-
ferentiable except for the positions where two adjacent arcs
are joined, that is at the boundary between two Voronoi
cells. ens has local maxima at all the intersection points be-
tween Voronoi edges of V(S) and L, and potentially at the
endpoints of L — depending on the location of the left-most
and right-most lightsource.

LEMMA 3.6. Let Gy be the set of guards consisting of all
points p of the stage L where ens(.) has a local mazimum.
Furthermore let x3, be a feasible power assignment to the
lightsources S w.r.t. the set Gv of guards.

Then ™ = 4 -z, is a valid power assignment w.r.t. to all
points on the stage.

ProOF. Consider any point p € L, p &€ Gyv. Let pyv € Gv
be a guard such that p is contained in the circle centered
at pv with radius ens(py'). Such a guard py always exists
since each point on the stage is contained at least in one
of the Voronoi circles around its left and right neighbors
in the set Gy. Obviously all lightsources have distance at
least ens(pv) to pv. But on the other hand we have |ppv| <
ens(py ) by choice of py. Therefore all lightsources satisfying
pv’s demand are at most a factor 2 further away from p,
hence powering up all lightsources by a factor of 4 ensures
that p receives a sufficient amount of light. [

An immediate consequence is the following corollary:

COROLLARY 3.1. A 4-approzimation to the lighting prob-
lem can be obtained by solving the lighting LP consisting of
n+ 1 constraints.

In other words, if we are only aiming for a O(1) approx-
imation, we can obtain a solution in time independent of
the length of our stage D (remember in case of the (1 + ¢)
approximation we had a log D dependence on the length of
the stage).

In the following we will work on this set of guards Gv
as defined above. Essentially we order them according to
decreasing ens(.) and one-by-one increase the power of their
respective nearest lightsource such that they all get satisfied.
By a primal-dual fitting argument we then show that the
used amount of power does not exceed a constant times the
optimum.

Our analysis relies on a special property of the set of
guards, namely we want that the density of the guards is pro-
portional to the local value of ens(.), in particular we want



the distance between two adjacent guards g;, g; on the stage
L to be lower bounded by |gig;| > C - max{ens(g;),ens(g;)}
for some constant C' > 0. This need not be the case in gen-
eral, e.g. consider a set of lightsources on a line parallel to
but far away from the stage. Hence we need to prune the
set of guards beforehand to ensure this property.

3.4.1 Pruning Guards

Let @ > 0 be some constant. Then the following algorithm
prunes a set of guards Gy to a set Gp:

1. Compute for each guards p; its empty neighborhood
size ens(p;)

. Sort the guards in decreasing order of ens(p;), i.e.
ens(p1) > ens(p2) > ...ens(py)

Lfori=1...n

e if p; has not been removed yet, remove all guards
p; at distance < « - ens(p;) (but not p; itself)

. return the set of guards that have not been removed
as Gp

In the following we will show that for constant «, even
after this pruning step, we can obtain a O(1) approximation
using the pruned set of guards.

LEMMA 3.7. Let xp be a feasible assignment of powers
to the lightsources such that all guards in Gp are satisfied.
Then x5, = (1+a)* -z} is a valid power assignment for the
set of guards Gv O Gp.

PrOOF. Let p; € Gv,¢ Gp be a guard that has been
removed during the pruning step, p; € Gp the guard re-
sponsible for the removal. Then we have |p;p;| < aens(p;),
and hence powering up all lightsources by a factor of (lJra)2
ensures that p; receives enough light due to the same rea-
soning as in Lemma 3.6. [

Furthermore, our desired property is obviously fulfilled:

LEMMA 3.8. For any two guards in the pruned set p;, p; €
Gp, we have |pip;| > amax{ens(p;), ens(p;)}.

PROOF. Assume otherwise, then either p;, or p; would
have been pruned away when considering the other guard. [

An immediate corollary of Lemma 3.7 is the following:

COROLLARY 3.2. A 4(1+4 «)? approzimation to the light-
ing problem can be obtained by solving the lighting LP w.r.t.
to the pruned set of guards Gp.

It is now time to describe the algorithm which we will use
to derive a power assignment to the lightsources. For that
let us denote by s; the lightsource that is closest to guard
pi, x; its assigned power for all guards p, € Gp. Without
loss of generality we assume that no lightsource is the clos-
est for more than one guard (our derived bounds only get
better if we remove this assumption). The algorithm works
as follows:

1. Compute the set of guards Gv (via the Voronoi dia-
gram of S)

2. Prune the set of guards Gy with pruning constant «
to obtain Gp, |Gp| =m.
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3. Let Gp be ordered such that ens(p1) > ens(p2) > - - -
ens(pm)

A%

4. foralli=1...m

e T, = IIlELX{O7 |pi8i|2 . (1 — Zi_l

zj
J=1 Js;p;l?

)}

Informally speaking this algorithm takes the guards one-by-
one in decreasing order of their ens(.) value and increases the
power of their closest lightsource just sufficiently such that
they receive enough light. It can be trivially implemented
to run in O(n?) time.

The crux of the analysis will be to show that no guard
receives more than a constant amount of excessive light.
This property will then allow us to use a primal-dual fitting
argument bounding the quality of our solution.

Let P; be the amount of light experienced by some guard
p; after the execution of the algorithm. Let us write this as
P, = P~ + P + P7 where P~ denotes the power received
from lightsources sj, j < 4, P; the power received from
lightsource s; and P the power received from lightsources
sj, j > i. Clearly P, > 0 & P~ < 1, that is s; will
only be used if p; did not already receive enough light from
lightsources which were switched on before in the course of
the algorithm. In the following we will bound P;” and P~
and show that they are at most some constant (P;~ < 1 is
obvious).

LEMMA 3.9. P7 <4

PROOF. Assume w.l.o.g. that all guards p;, j > i lie to
the right of p; (at the end we simply multiply the obtained
bound by 2 to obtain a bound for all p;). We have

i x5 i ens(p;)?
P7j> — J < _ J
J’=zZ+1 [pis;|? j=12'+1 ((XCi—is1 - ens(pi—1)) — ens(p;))?

following from Lemma 3.8 and since each lightsource s; is
at most powered up to ens(p;)?. Assuming o > 2 we can
continue with

~ _ens(p;—1)?
= Z J=1 g 2
j=it+1 ( 1—i enb(pl))
2
But this sum is of the form Y| =5z with &, > 6:41
j=19
(new indices here !). We then get
= (9 T o (i0;)2 — 6 —

by our decreasing odering of the 9;.

O

Furthermore we have for the energy collected from the
lightsources assigned previously in the course of the algo-
rithm:

LEMMA 3.10. P~ <6.

Proor. Consider the first guard p;, j < ¢ to the left of
pi whose lightsource is switched on, i.e. x; > 0. Clearly we
have P;~ + P]-< = 1 by definition of the algorithm. Further-
more due to the previous Lemma we know that p; receives
at most 2 units of light from the left from lightsources k > j.
Hence at most 3 units of light can arrive at p; from the left,
which makes 6 units of light overall considering both the
contributions from the left and the right. [



From these two Lemmas and the observation that P;- <1
we can derive the following

COROLLARY 3.3. If powers are assigned to the lightsources
according to our algorithm, we have for every guard p; € Gp:
1< P =P +P +P><4+1+6=11.

which says that any guard receives between 1 and 11 units
of light.

3.4.2 Bounding the Quality of the Solution

In the following we will argue that the solution z* ob-
tained with respect to the pruned set of guards G p is almost
optimal, i.e. only a constant factor away from the optimal
solution (w.r.t. Gp). Since z* can be easily extended to a
feasible solution for the whole stage incurring an additional
cost factor of at most 4 - (1 4+ a)? according to Corollary
3.2 and since an optimum solution with respect to some fi-
nite set of guards is always a lower bound on the optimum
solution for the whole stage, we obtain the desired O(1) ap-
proximation guarantee.

Let us rewrite the linear program w.r.t. the pruned set of
guards Gp and lightsources Sp:

min E Ts

seSp
st. Vpelp: Z xs/d*(p,s) >1 (M)
seESp
Ts >0

The dual of this program looks as follows:

max Z Yp
peGp
st. Vse Sp: Z yp/d*(p,s) <1 (8)
peGp
Yp >0

The interpretation of the dual is the following: You want to
assign weights y, to each guard p € G, such that for each
lightsource, the ’influence’ of the guards does not exceed 1.
To show that the power assignment constructed by our al-
gorithm is not too far off the optimum, it suffices to exhibit
a feasible solution to the dual program which has about the
same objective function value. Weak duality then tells us
that the optimum solution to the primal program is sand-
wiched between the solution of our algorithm and the feasi-
ble dual solution. Making use of the fact that the distance
between a lightsource s; and a guard g; is essentially the
same as the distance between lightsource s; and p; (after
the a-pruning), we can use the amount of light arriving at
each guard p; as value for y; and after scaling by a constant
factor obtain a feasible solution to the dual program.

LEMMA 3.11. For any lightsource s; and guard p; in the
pruned set of gquards and lightsources Gp and Sp we have:

2

2
il (1 — —=—) < |sipi| < |simil -
fsgpil - (1 = =) < Jsapy| < lsymil - (14—

PrOOF. We show the right inequality, the left works anal-
ogously. We have by triangle inequality |s:p;| < |pip;| +
ens(p:) < |pis;| + ens(pi) + ens(p;) < |pis;| 4+ 2E for £ =
max{ens(p;)ens(p;)}. But since E < ‘p—’saH—E we get after
rearranging £ < ‘Z—‘fld which yields the desired bound. [
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In other words, for e > 3 the distances |s;p;| and |p;s;|
can differ by at most a factor of two.

LEMMA 3.12. Let x* be the solution to the primal LP (7)
as computed by our algorithm, ¢, its objective function value.
Then there erists a feasible solution y* to the dual LP (8)
with function value ¢ > ¢, /22.

PROOF. Let us set for every p; € Gp: y; = x;/22. We
need to verify that Vs € Sp : > . yp/Ips|? < 1. But
according to Corollary 3.3 and together with Lemma 3.11
we have for o > 3:

SoUo <
= lpssil* — 22

O

So we have established a dual feasible solution with func-
tion value at least c,/22, i.e. the optimum value copy must
lie between c;, /22 and ¢;, which implies that z; is no worse
than a 22-approximation for the LP w.r.t. the pruned set of
guards. And because an optimum solution w.r.t. the pruned
set of guards can be extended to a feasible solution for the
original problem at a cost of an additional 4 - (1 + «) factor,
we conclude with the following main theorem of this section:

THEOREM 3.4. Given a stage L and n lightsources, one
can compute in O(n2) time a power assignment to the light-
sources such that any point on the stage receives at least one
unit of light. The solution produced requires at most O(1)
times the optimal amount of energy.

3.4.3 Questions

It is not clear whether the pruning is indeed necessary for
the analysis of the algorithm. As the experiments later on
show, even without pruning the algorithm achieves a rather
good approximation ratio, so it might be possible that the
pruning was only necessary due to our inability to give a
more precise analysis.

4. GENERALIZATIONSAND OPEN PROB-
LEMS

In the following we will list some extensions and other
open illumination problems that are worth analysing within
our light attenuation model.

4.1 Generalization to higher dimensions (r?)

There is a straightforward way of extending the described
model to a 3-dimensional setting by assuming the stage L
to be some bounded two-dimensional surface patch in R2.
The definition of e-good sampling 3.4 can still be used, and
e-good sample sets can be derived in a similar manner as de-
scribed for the 2-dimensional case. Their sizes then depend
on the area of the two-dimensional surface to be sampled
(again, a logarithmic instead of linear dependence is achiev-
able). The LP-based solution strategy can still be applied,
whereas the constant approximation probably requires some
more work.

4.2 Open Problems

There is a vast number of variations of the basic illumi-
nation/guarding problems that have been considered in the
past. Many of them can also be considered in our light at-
tenuation model, for example:



| [ LPsc [ LPY [ G5 |
D =710, |Gv|=6 | 390.97 | 1547.96 | 39776
D =70, |Gv|=15 || 106.03 | 416.04 | 11671.44
D =70, |Gv|=22 | 8228 | 324.12 | 8883.60
D =140, |Gv| =8 || 690.88 | 2507 | 66584.32
D =140, |Gv| =19 || 314.59 | 1227.44 | 33846.56
D =140, |Gv| =41 || 172.40 | 675.96 | 20138.80

Table 1: Energy costs for different stage lengths (D),
number of guards (|Gv|), and algorithms (LP-based
(1 + e)-approximation, LP-based 4-approximation,
combinatorial O(1)-approximation).

Art Gallery Illumination with & Lightsources

Given some fixed number k, determine position and power
assignments of k£ lightsources such that any point on the
boundary (or also in the interior) of a polygon with n ver-
tices receives at least 1 unit of light. Minimize the sum of
assigned powers.

Floodlight [llumination

Given a stage L and a set F' = {f1,..., fn} of floodlights
of angle sizes aa, ..., a, such that their apexes are located
at some fixed points on the plane, all on the same side of
L. Decide if it possible to rotate them such that every point
on L is illuminated, and if yes, determine the rotations and
power assignments, such that the stage is sufficiently illu-
minated at every point and the overall power assigned is
minimized.

Sage lllumination with Obstacles

The same problem as considered in this paper can be exam-
ined also in the presence of obstacles. In this case, neither
the pruning of lightsources nor the discretization can be
applied immediately, though some similar approach seems
doable.

5. EXPERIMENTAL RESULTS

In this experimental section we want to investigate the ac-
tual behaviour of the proposed algorithms, since we believe
that our analysis of the approximation ratios is overly pes-
simistic. We have implemented the LP-based approximation
algorithms using a e-good set of guards and the local max-
ima of the ens(.) function, as well as the combinatorial O(1)
approximation algorithm based on the pruned set of Voronoi
vertices. We have run the algorithms for different lengths D
of the stage also varying the number of relevant (in the sense
of Section 3.1) lightsources (which were randomly generated
around the stage).

Performance according to the Analysis

In Table 1 we have listed the sum of the power assigments

made by our algorithms for varying values of D and |Gv |

(the number of light sources whose Voronoi cells actually

intersect the stage). Columns LPiy. (e = 0.01), LPy,

and Cg contain the results for the (1 + €)-, 4-, and O(1)-

approximation algorithms, including the power-up of all light-
sources to satisfy all points on the stage as proved in the

previous sections.

Not surprisingly, the differences in the approximation ra-

D, |Gv| [ LPy. | LP, | Cy | APXy | APXcows |

70, 6 414.43 | 561.13 | 1071.24 | 1.43 2.73
70, 15 112.40 | 139.37 167.11 1.31 1.57
70, 22 87.22 102.10 162.52 1.24 1.97
140, 8 732.34 | 814.775 | 1112.26 | 1.11 1.51
140, 19 333.47 | 527.79 | 615.39 1.58 1.95
140, 41 182.75 | 239.96 | 299.79 1.39 1.74

Table 2: Energy costs for different stage lengths,
number of guards, and algorithms, but with adap-
tive power-up.

D Gy [a=0]a=1]a=3]a=5]
70, 14 3.39 3.31 3.19 3.16
70, 20 2.75 2.76 1.54 1.51
70, 31 5.09 5.09 4.98 3.92
140, 21 6.81 7.03 1.75 1.74
140, 30 10.15 | 10.06 | 9.98 9.88
140, 65 5.45 5.40 2.64 2.54

Table 3: Maximum excess of light for different stage
lengths, number of guards, and values of a.

tios of the latter two algorithms are dominated by the "power-
up’ factor. Note though, that this completely disregards to
which degree some point on the stage gets insufficient light.
This will be taken into account in the next measurement.

Actual Performance

To assess the real amount of 'power-up’ required to satisfy
all points on the stage, we evaluated the power assignments
on a e-good set of guards with € = 0.01 and determined the
'worst’ guard, i.e. the guard that received the least amount
of light. We use this to compute an appropriate power-up
factor (for all lightsources; one could improve here by pow-
ering up lightsources locally only). The results can be found
in Table 2; here LP}, and C|, denote the power assignments
resulting from this more careful power-up strategy for the
4- and the O(1)-approximation scheme.

We have also included in the last two columns the result-
ing approximation factor of the solutions (taking the (14 €)
solution with ¢ = 0.01 as a lower bound). It turns out
that in fact, by using this more refined power-up strategy,
the combinatorial O(1) as well as the 4-approximation get
much closer to the optimum solution than guaranteed by the
pessimistic theoretical analysis.

Further Observations

In the proof of the approximation ratio of the O(1) algo-
rithm, we employed a pruning procedure with some param-
eter « to actually be able to bound the amount of excess
light at any guard. But already when proving this, we sus-
pected that this was only necessary because of our inability
to come up with a better analyis. We want to substanti-
ate this suspicion by an experiment. In Table 3, the worst
amount of excess light at any guard is stated for different
values of a. It seems that even without pruning (i.e. o = 0)
the amount of excessive light is bounded by a small con-
stant; in our proof we were only able to bound it for o > 3.



| D, |GV| || LPiye | o | CblI:q]SLE | APXbl'Ij\_I;LE |
70, 6 565.28 | 54175.6 | 613.63 1.08
70, 16 130.94 | 14386.3 | 180.66 1.38
70, 32 55.77 | 6106.18 | 72.90 1.31
140, 15 || 581.27 | 63846.1 | 684.78 1.18
140, 38 || 235.43 | 37361.8 | 322.78 1.37
140, 54 117.95 | 13528 | 154.83 1.31
Table 4: Energy costs of the LP-based (1 + ¢)-

approximation, the combinatorial algorithm as de-
scribed, and the combinatorial algorithm using a e-
good set of guards.

In a last experiment we have run the simple combinatorial
algorithm on a e-good set of sample points. Even though we
cannot prove any better approximation ratio than for the
original algorithm, the results look quite promising as can
be seen in Table 4. Here we denote by CLt< . the outcome
of running the O(1) algorithm on an e-good set of guards,
including the required power-up.

6. CONCLUSIONS

In this paper we have introduced a light attenuation model
under which the large class of illumination problems can be
considered. Our model also takes into account the decrease
of light intensity with distance — something that had not
been regarded in classical models for illumination problems.
As a concrete example we have examined the problem of illu-
minating a stage using a fixed set of lightsources minimizing
the overall energy.

Looking at our solutions, we believe this new model cre-
ates quite a number of new and interesting open questions in
the context of illumination problems for which only a com-
bination of geometric reasoning and techniques from combi-
natorial optimization will lead to provable results.
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