Dilation-Optimal Edge Deletion in Polygonal Cycles*

Hee-Kap Ahn' Mohammad Farshit Christian Knauer® Michiel Smid¥
Yajun Wang]|

Abstract

Consider a geometric network G in the plane. The dilation between any two vertices x and
y in G is the ratio of the shortest path distance between = and y in G to the Euclidean distance
between them. The maximum dilation over all pair of vertices in G is called the dilation of G.
In this paper, a randomized algorithm is presented which, when given a polygonal cycle C' on
n vertices in the plane, computes in O(n log® n) expected time, the edge of C' whose removal
results in a polygonal path of smallest possible dilation. It is also shown that the edge whose
removal gives a polygonal path of largest possible dilation can be computed in O(nlogn) time.
If C is a convex polygon, the running time for the latter problem becomes O(n). Finally, it is
shown that a (1 — €)-approximation to the dilation of all the path C'\ {e}, for all edge e of C,
can be computed in O(nlogn) total time.

1 Introduction

A geometric network on a set V' of points in d-dimensional space is a weighted undirected graph
G(V, E) with vertex set V whose edges are straight-line segments connecting pairs of points in V'
and the weight of each edge is the Euclidean distance between its endpoints. Geometric networks
naturally model many real-life networks, such as road networks, telecommunication networks, and
SO on.

Given a (geometric) network, a natural question to ask is what happens to the quality of the
network when some connections are removed. In case some links in a traffic network have to be
shut down (e.g., due to budget considerations), we may want to know which edges of the network
should be removed so as to not decrease the quality of the new network too much. Alternatively,

“Part of this work was done during the Korean Workshop on Computational Geometry at Schloff Dagstuhl in
2006. Work by Ahn was supported by the Korea Research Foundation Grant funded by the Korean Government
(MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-D00372). Work by Farshi was supported by Ministry
of Science, Research and Technology of I. R. Iran. Work by Smid was supported by NSERC.

"Department of Computer Science and Engineering, POSTECH, Pohang, Korea. heekap@postech.ac.kr

¥School of Computer Science, Carleton University, Ottawa, Ontario, KI1S 5B6, Canada.
mfarshi@cg.scs.carleton.ca and Department of Computer Science, Yazd University, P.O. Box. 89195-741,
Yazd, Iran. mfarshi@yazduni.ac.ir

$Institut fiir Informatik, Freie Universitit Berlin, Takustrafe 9, D-14195 Berlin, Germany.
christian.knauer@inf.fu-berlin.de

YSchool of Computer Science, Carleton University, Ottawa, Ontario, KIS 5B6, Canada.
michiel@scs.carleton.ca

IMicrosoft Research Asia, Beijing, China. yajunwlmicrosoft.com

we may want to know the most critical edge in the network, i.e., the edge whose removal causes
the largest possible decrease in the quality of the new network.

We measure the quality of a network G by its dilation (or stretch factor) dg. The dilation
between two distinct vertices x and y of the graph G is defined as

dg(ﬂf,y)

5G(x7y) = ’xy‘

where dg(z,y) denotes the distance between x and y in the graph G, that is, the length of the
(weighted) shortest path between them, and |zy| denotes the Euclidean distance between x and y.
For convenience we define dg(x,z) := 1. The dilation between two sets X and Y of vertices of G
is defined as

0c¢(X,Y) := max{dg(x,y) | = is a vertex of X, y is a vertex of Y},
the dilation of a set X of vertices of G is defined as
66(X) = da(X, X),
and the dilation of the network G(V, E) is defined as
dc = 0a(V) = max{dg(z,y) | * and y are vertices of G}.

For an overview of work on geometric networks, we refer to the recent book by Narasimhan and
Smid [I8].

Recently the problem of constructing minimum-dilation networks on a given point set has
attracted a lot of attention. Klein and Kutz [14] showed that constructing a geometric network on
a point set in the plane using a given number of edges such that the network has minimum dilation
is NP-hard. The problem is NP-hard even for more specific cases like minimum dilation spanning
tree or minimum dilation path, see [] and [I2]. Minimum dilation stars is the case which we can
construct in polynomial time, see [].

All the above problems want to construct a network from scratch but in many applications we
already have a network and the problem at hand is to extend/prune the network such that the
dilation of the resulting network is minimized. In the case of adding an edge, the optimal edge, i.e.
the new edge which minimize the dilation of the network, can be computed in O(n3logn) time,
where n is the number of nodes in the network, see [2I]. There are also several approximation
algorithms which run faster, see [9]. However, the problem of computing the edge in the network
whose removal minimizes/maximizes the dilation of the resulting network was not studied before,
to the best of our knowledge. We consider a simple variant of this problem: The initial network is
a polygonal cycle C' in the plane, and we have to remove one single edge from C.

The problem we consider is the following: We are given a polygonal cycle
C = (po,---,Pn-1,p0) Whose n vertices py,...,pn—1 are points in the plane. We want to determine
the edge e of C' for which the dilation of the polygonal path C'\ {e} is minimized or maximized. In
other words, if we denote by P; (for 0 < i < n) the polygonal path obtained by removing the edge
(pi,s pit1) from C (where indices are to be read modulo n), then our goal is to compute

I . — min ip.
¢ 0<i<n = °

and
0™ = max dp,.
0<i<n
Agarwal et al. [I] presented an algorithm which computes the dilation of a path in the plane in
O(nlogn) time. Therefore using a naive algorithm which checks all the edges of the cycle takes
O(n?logn) time to compute the optimal edge in the cycle. Note that computing the dilation of a
path, or even approximating it, needs 2(nlogn) time, see [I8, Theorem 13.1.3].

A summary of our results and the organization of the rest of this paper are in the following.
In Section Bl we consider the dilation-minimal edge deletion problem and present a randomized
algorithm for the problem. We start in Section Bl by describing an approach of [I] to estimate
the dilation of a polygonal path. These ideas will play a central role in the algorithm we give
in Section for solving a decision problem associated with the problem of computing 5231“; the
algorithm solving this decision problem runs in O(n log? n) expected time. In Section 3 we give a
simple randomized approach which reduces the problem of computing 5231“ to an expected number
of O(logn) decision problems of Section Thus, this reduction incurs a logarithmic slowdown
of the decision procedure.

In Section B, we consider the dilation-maximal edge deletion problem and present a O(nlogn)
time algorithm for the problem. We first show that for two fixed vertices x and y of C, it is easy
to determine the largest possible dilation between them if one edge is removed from C. We then
show that, in order to compute §@**, it suffices to consider pairs (x,y) of vertices whose distance is
at most twice the closest-pair distance in the vertex set of C'. Since there are only O(n) such pairs
(x,y), this leads to an efficient algorithm for computing J@**.

Finally, we present an approximation algorithm that computes in O(nlogn) total time the
dilation of each path P;, as well as an approximation of (%in in Section @l The algorithm uses the
well-separated pair decomposition of [3] and a result of [I7], which states that this decomposition can
be used to reduce the problem of approximating the dilation of a Euclidean graph to the problem
of computing the shortest-path distances between O(n) pairs of vertices. This result, together
with the observation that for any two vertices = and y of C, the sequence dp,(z,y),...,0p, ,(z,y)
contains only two distinct values, leads to an O(nlogn)-time algorithm that approximates the
dilation of each path P; as well as the minimum dilation 523““.

2 Dilation-Minimal Edge Deletion in a Polygonal Cycle

In this section, we give an algorithm which given a polygonal cycle C, computes the edge whose
removal generates a path which has minimum dilation among all the paths generated by removing
an edge from C. The algorithm starts with removing a random edge from C' and computes the
dilation k of the generated path. Then it uses a decision algorithm which for each edge e in the
cycle C, decides whether the dilation of the path C'\ {e} is less than . Then it picks one of the
edges whose removal generates a path with dilation less than x and assigns the dilation of the path
to k. It repeats the procedure until no edge in the cycle generates a path with dilation less than x.

2.1 Estimating The Dilation of a Polygonal Path

Our algorithm for computing the edge of a polygonal cycle whose removal minimizes the dilation of
the resulting path uses as a subroutine parts of the algorithm of [I] that decides if the dilation of a

polygonal path is less than some given threshold x > 1. We describe those parts of this algorithm
which are relevant for us.

Let P = (po,...,pn—1) be a polygonal path whose n vertices are points in the plane and let
k > 1 be a real number. Without loss of generality we assume pg is the origin. The idea is to use a
lifting transformation that rephrases the decision problem, i.e., the problem of deciding if ép < k,
into a point-cone incidence-problem in R3.

We denote the first and last vertices of a polygonal path P by f(P) and I(P), respectively.
Thus, f(P) = pg and I(P) = p,—1. For each vertex p of P, we define the weight of p to be

wp(p) = dp(p, f(P))/k.

For each vertex p = (x,,yp) of P we define the point

hp(p) = (zp, yp, wp(p)) € R?

Let C denote the three-dimensional cone

C:={(z,y,2) € R®| z = /a2 + 32}.

For each vertex p of P we define the cone

Cp(p) :=C+ hp(p) ={c+ hp(p) | ceC}.

Note that we can reformulate the definition of Cp(p) as

o) = {(2.:2) | = wrlp) = le 0+ = |

and therefore Cp(p) is the graph of the bivariate function f,(q) = |pg| +wp(p) for ¢ € R2. If p and
q are vertices of P, then we say that p is before ¢ on P, if dp(p, f(P)) < dp(q, f(P)); this will be
denoted as p <p q. We then get the following lemma. (see Figure [for an illustration).

Lemma 1 For any two vertices p and q of P with p <p q, we have

op(p,q) < Kk if and only if hp(q) lies below Cp(p).

Proof. By straightforward algebraic manipulation, we have

op(p,q) <k <= dr(g.p) <K
lqp|
— dP(f(P)7Q)‘q_p’dP(f(P)7p) < K
. dp(f(ﬁp),q) <lapl + dp(f(KP),p)
= wpl(q) < lgp| +wp(p) = fp(q).

Figure 1: Hlustration of the lifting technique: solid segments are visible and dashed lines are outside
but behind the cones.

If X and Y are subsets of the vertex set of P, then we say that X is before Y on P, if
dp(z, f(P)) < dp(y, f(P)) for all x € X and all y € Y; this will be denoted as X <p Y. For any
subset X of the vertex set of P, we define

Cp(X):={Cp(p) | pc X}
and

he(X) = {he() | p € X},

The lower envelope of a set S of bi-variate functions is defined as the point-wise minimum of all
functions that belong to S. Namely, the lower envelope of the set S = {f1,..., f,} can be defined
as the following function:

L(S)(z,y) := min fi(z,y),

1<k<n

where

fk(x’y) =

— fe(z,y) if (x,y) belongs to the domain of f,
400 otherwise.

Lemma [[l immediately gives the following result.

Lemma 2 For any two subsets X and Y of the vertex set of P with X <p Y, we have

0p(X,Y) <k if and only if hp(Y) lies below L(Cp(X)).

The minimization diagram of Cp(X), i.e., the projection of the lower envelope £(Cp(X)) onto
the zy-plane, is the additively weighted Voronoi diagramﬂ Vp(X) of X with respect to the weight
function wp. If the point y of Y is located in the Voronoi region of the point = of X, then hp(y)
is below £(Cp(X)) if and only if hp(y) is below Cp(z).

This yields an efficient algorithm to verify if dp(X,Y) < k for two subsets X and Y of the
vertex set of P having the property that X <p Y: The Voronoi diagram Vp(X) can be computed
in O(|X|log |X]|) time, c.f. [I0]. Within the same time bound, this diagram can be preprocessed
into a linear size data structure that supports O(log|X|)-time point-location queries, c.f. [7, [3].
This structure can now be queried with each point y of Y to determine which point x of X contains
y in its Voronoi cell. Once this is known, the check if hp(y) is below Cp(x) can be performed in
O(1) time. The total running time of this algorithm is O((|X| + |Y]) log | X]).

2.2 The Decision Problem

Let C' be a polygonal cycle on a set of n vertices in the plane and let x > 1 be a real number. In
this section, we present an algorithm that decides for each edge e of C', whether or not the dilation
of the polygonal path C'\ {e} is less than k. We first describe the overall approach. Then, we give
two implementations that yield running times of O(nlog®n) and O(nlog?n), respectively.

If R=(rq,...1;) and @Q = (q1,...,q) are two polygonal subpaths of C' having the property
that g1 = f(Q) is equal to [(R) = rt in C, then we denote the concatenation of R and @ by R® Q.
Thus, R @ @ is the polygonal path (r1,...,7k,q2,...,q).

In order to facilitate a recursive approach, we will consider the following more general problem:
Assume that (the vertex set of) C'is split into two polygonal paths T' (the top) and B (the bottom),
where the two endpoints of 1" are the same as the two endpoints of B, such that ;7 < k. We want
to decide for each edge e of B, i.e., any edge e on the cycle C' with both endpoints in B, whether
or not the dilation of C'\ {e} is less than x. If we take T'= {p}, where p is an arbitrary vertex of
C, then we obtain the original problem.

Algorithm DilationDecision(T, B, k)
Input: Paths 7" and B and s > 1.
Output: yes or no for every edge of B.
if B consists of two vertices
then assign yes to the edge in B; return,;
[:= the first vertex of B in counterclockwise order along C;
r := the last vertex of B in counterclockwise order along C
m := the middle vertex of B;
B" := the part of the path B from r to m;
B! := the part of the path B from m to I;
if 5T69 Br < K
then DilationDecision(T ® B", B!, k);
else assign no to each edge e of B!
if ¢ BlaT < K
12. then DilationDecision(B' ® T, B", k);

© 0N Otk W

—_ =
)

t’s defined just like the usual Voronoi diagram, but each site has a weight, and the distance to a site is the usual
Euclidean distance plus the site weight [I0].

13. else assign no to each edge e of B";
14. return;

The details of the decision algorithm are presented in Algorithm [DzlafionDecisionl The correct-
ness of Algorithm [DilafzonDecisionl is obvious. We will show below that after a preprocessing step
taking O(nlog®n) expected time, we can decide in O(|B|logn) time if drepr < £ and dpigp < K,
where |B| denotes the number of vertices on B. The expected running time ¢(n) of the algorithm
can therefore be written as t(n) = O(nlog? n) + r(n) where the function r satisfies the recurrence

r(b) <2-7r(b/2) + O(blogn).

This implies that t(n) = O(nlog?n).

Figure Pl illustrates the recursion tree of Algorithm [DilatzonDecisionl The nodes of the tree are
labeled according to a breadth-first search (BFS) numbering where the first (left) child of a node
corresponds to the recursive call in Step 12 and the second (right) child corresponds to the recursive
call in Step 9. Later, we will refer to a recursive call corresponding to the node with BFS-number
as the i-th step of the recursion. For each node 7, the current top and bottom paths are denoted by
T; and Bj;, respectively. These paths can be computed as follows. Assume that the polygonal cycle
C' is given by the array C|0,...,n| and that B consists of b vertices. Then B; = C[0,...,b — 1]
and Ty = T. For i > 1, if B; = C[l,r], then By = C[l,l + |“5t]], Boiy1 := C[l + |5],7],
T5; = Bajy1 @ T;, and 1o 11 := T; ® Bo;. Observe that each top path Tj is the concatenation of T3
and O(logn) bottom paths.

T

6203/@\©

s

s GRFoM o
cfol

Figure 2: The recursion tree. Note that Ga; := Bojy11 and G411 := Bo;.

2.2.1 A first implementation.

We will show that after an O(nlog?n)-time preprocessing, we can decide if (i) érepr < & and
(i) dpigr < K in O(|B|log?n) time. Later, we will give a faster implementation. Since (ii) is
symmetric to (i), we only show how to decide whether or not (i) holds.

Suppose we have a polygonal path T’ with 7+ < k that is given as a list of k polygonal
paths (B],...,By;) such that f(Bj,;) = {(B]) in the cycle C, for 1 < i < k. Thus, we have
T' = B &...® Bj,. Given a new polygonal chain B’ with f(B’) = I(1") in C, we want to decide if
orep < K.

Observe that dpgp < k if and only if (a) 0y < K, (b) 0 < K, and (¢) dpgp (17, B") < k. We
are given that (a) holds. Using the algorithm of [I], we can decide in O(|B’|log |B’|) expected time
whether or not (b) holds. Thus, it remains to show how to verify whether or not (c¢) holds.

Obviously, d7vgp (T", B') < k if and only if d7gp/ (B, B') < k for each i with 1 <7 < k. Since
B! <pigp B', we know from Lemma Bl that d7v¢p5/ (B}, B') < & if and only if hpgp (B') lies below
L(Crep (B))).

Assume that for each path B!, we have the total accumulated scaled length

ti=3" dpy (UB)), F(B))/
j=1

and the additively weighted Voronoi diagram VB;(BZ{) that has been augmented with a data struc-
ture to support point-location queries in t;,. time per query. Recall that VBZI_(BZ() is the projection

of the lower envelope £(Cp/(B;)) onto the xy-plane. It is defined with respect to the weights

wp(p) = dp(p, f(B;))/k.

Since
wrrgp (p) = wp(p) + li
for all p € B!, we have
wrigp (p) —wrep (q) = wp(p) —wp(q)

for all p,q € B]. It follows that the diagram VBZI_(BZ{) is also the projection of the lower envelope
L(Crram (B).
The associated point-location structure of B] can therefore be used to determine for each point
b’ in B’, the point ¢ in B/ that contains ¥’ in its Voronoi cell in Vg p/(B). Once this is known
for each point &' in B’, we can check if hyigp (V') is below Crigp(t). To this end, we compute the
weights
wT/@B/(t) = wBl/_ (t) + gi—l

and
wT/@B/(b/) = wB/(b') + 4.

The overall running time of this approach (excluding the preprocessing time) is O(k|B’|toc)-

In our application, the relevant paths B] are the bottom paths B; that appear in the recursive
calls. As a consequence, k = O(logn), |T" ® B’| < n, and we can precompute the required
information in O(nlog®n) time by computing all the diagrams Vp,(B;) along with the point-
location data structures. Since t;,. = O(logn), it follows that the overall running time of this
approach (after O(nlog?n) preprocessing time) is O(|B’|log?n). With this implementation, Algo-
rithm [DilafionDecision] runs in O(nlog® n) expected time.

2.2.2 A faster implementation.

Consider the i-th node of the recursion tree (according to the BFS-numbering). This node represents
a recursive call DilationDecision whose second input parameter is the set B;. In this call, we split
B; (almost evenly) into Bg; and Ba;;1, and compute the diagrams Vp,,(Bo;) and Vp,,, , (B2i11)-
We then locate each point b of By; in Vp,, +1(BQZ-H) to determine which point ¢ of Bo; 1 contains b
in its Voronoi cell in Vp,, (Bai+1). We store t in a table 7;, associated with b under the key 2i + 1
that identifies the set Bg;+1. In the same way, we locate each point b of By in Vp,, (Bg;) and
store the corresponding point ¢t of Bg; in a table 7, associated with b under the key 2i.

Since we perform exactly one point-location query for each point b of By on each level of the
recursion tree, the table 7, has O(logn) entries. We can therefore use the construction of [IT]
to store 7, in a perfect-hash table of size O(logn) that supports O(1) access time. Note that
in the complexity model of [IT], it is assumed that the entries come from a finite universe and
the algorithm is able to randomly access each memory location in constant time. Recall that the
construction of [I1]] is randomized and builds the hash table in O(logn) expected time.

The total time we spend on each level of the recursion tree is O(nlogn), so the total expected
preprocessing time is O(nlog®n) and the total time we spend for answering point-location queries
is O(nlog®n).

In order to determine for a point &' of B’, where B’ C By, which point ¢ of B] contains b’ in
its Voronoi cell, we find the index j for which B] = B;. Then we retrieve the entry with the key j
from 7y. This is exactly the point ¢ of B; that contains b in its Voronoi cell in Vg, (B;).

It follows that t,. = O(1), so that the overall running time of this approach (after O(nlog?n)
preprocessing time) is O(|B’|logn). With this implementation, Algorithm [DiafionDecision] runs
in O(nlog?n) expected time.

2.3 The Optimization Algorithm

We now present our algorithm that computes, for a given polygonal cycle C' on a set of n points
in the plane, the value of 62" in O(nlog®n) expected time. Clarkson and Shor [5] used a similar
randomized approach to compute the diameter of a point set, see also [I9, page 157].

Step 1: Compute a random permutation of the edges of C. We denote the permutation by
€1,€9,...,€n.

Step 2: Use the algorithm of [I] to compute the dilation of the path C'\ {e;} and assign this value
to k.

Step 3: Run Algorithm [DilafionDecision]l and store with each edge e of C' a Boolean flag which is
true if and only if the dilation of the path C'\ {e} is less than x.

Step 4: For i = 2,3,...,n, do the following: If the flag stored with e; is true, then perform the
following Steps 4.1 and 4.2:

Step 4.1: Use the algorithm of [I] to compute the dilation of the path C'\ {e;} and assign this
value to k.

Step 4.2: Run Algorithm [DzlafzonDecisionl and store with each edge e of C' a Boolean flag which
is true if and only if the dilation of the path C'\ {e} is less than k.

Step 5: Return the value of k.

The correctness of the algorithm follows from the fact that, after Step 4,

: min
K= min 0p =0c7,
where P; is the polygonal path obtained by removing e; from C.

Clearly, Step 1 takes O(n) time. The algorithm of [I] and, therefore, Step 2, takes O(nlogn)
expected time. Each time we run Algorithm [DilafionDecision) we spend O(nlog? n) expected time.
Observe that we run this algorithm once in Step 3 and, moreover, in Step 4 each time the dilation
of P; is less than the current value of . In the latter case, we also spend O(nlogn) expected time
to compute the dilation of P;. Since the edges of C' are in random order, the values ép,,...,0p,
are in random order as well. At the start of the i-th iteration of Step 4, the value of x is equal to
mini<;j<;0p;. Thus, p, < & if and only if dp, is the minimum of the set {dp, | 1 < j <i}. It follows
that dp, < k with probability 1/i. Using the linearity of expectation, it follows that the expected
number of times that Steps 4.1 and 4.2 are performed is equal to Y , 1/i = O(logn). Thus, the
overall expected running time of our algorithm is O(n log®n).

Theorem 1 Given a polygonal cycle C on n vertices in the plane, we can compute (%in inO(n log® n)
expected time.

3 Dilation-Maximal Edge Deletion in a Polygonal Cycle

Let C = (po,...,Pn—-1,P0) be a polygonal cycle whose vertices py, ..., pn,—1 are points in the plane.
Recall from Section [l that P; (for 0 < ¢ < n) denotes the polygonal path obtained by removing
the edge (pi,pi+1) from C, dp,(z,y) denotes the length of the subpath of P; between x and y,
op,(z,y) = dp,(z,y)/|ry| denotes the dilation between x and y in P;, and dp, denotes the dilation
of P;. In this section, we give an algorithm that computes

0n™ = max dp,.
¢ 0<i<n = °

Let L be the total length of the edges of C. We define A(pg) := 0 and A(p;) := A(pi—1)+|pi—1pil
for 1 < i < n. Thus, A(p;) is the length of the path (py,...,p;) and the shortest-path distance
dc(pi, p;j) between p; and p; in the cycle C' is given by

dc(pi,pj) = min(|A(p;) — A(pj)], L — [A(pi) — A(py)])-

Consider two distinct vertices x and y of C. We obtain the largest dilation between x and y in
any path P;, by deleting an arbitrary edge on the shorter of the two paths in C' between x and y.
Thus, the following lemma holds.

Lemma 3 Let x and y be two distinct vertices of C'. Then

_ max(|A(x) - A, L - [Ax) —AW)) . L
0<ion Or(@,y) = |2y = 2|zy|”

The next lemma states that the closest pair in the vertex set of C' can be used to obtain a
2-approximation to 6.

10

Lemma 4 Let (p,q) be a closest pair in the vertex set of C'. Then

5max < 2 . 5 . .
¢ =2 max P (P q)

Proof. Let j be an index such that §3** = dp; and let x and y be two vertices of C' such that
op, = 6p;(z,y). Then
de (33‘, y)

L
lzy| '

S_

5ma)(—
¢ pq

By Lemma B, we have

L
—<2. op. .
gl = 2 e Op, (p.q)

Thus, by computing the closest pair (p,q) in the vertex set of C' and then using Lemma B to
compute maxo<i<n 0p,(p,q), we obtain a 2-approximation to 6Z3**. We now show that a simple
extension leads to an algorithm that computes the exact value of 5.

Let S be the set of all pairs (x,y) in the vertex set of C' for which = # y and |zy| < 2|pg|. The

following lemma states that it suffices to consider the elements of S to compute §5*.

Lemma 5 We have

0F*™ = max max op(z,y).
¢ (z,y)esS 0<i<n Z(’y)

Proof. 1t is clear that

Sax — max max p,(z,y) > max max 0p,(z,y).

xz,y vertices of C' 0<i<n (z,y)eS 0<i<n
Let j be an index such that 64" = dp; and let a and b be two vertices of C such that dp, = ép,(a,b).
If we can show that (a,b) € S (i.e., |ab| < 2|pql), then the proof is complete. By Lemma B we have

L
—— < op. .
2] = P, (P q)

It follows that

IN

2T Qax Op, (p,q)

IN

max max 0p, (x
xz,y vertices of C' 0<i<n Z(7y)
de (CL, b)

|ab]

S = 6p (a,b) =

L
|abl

This implies that |ab| < 2|pq].

11

The discussion above leads to the following algorithm for computing the value of §4**.

Step 1: Compute the total length L of the cycle C' and compute the values A(p;) (0 < i < n) as
defined above.

Step 2: Compute the closest pair (p,q) in the vertex set of C.
Step 3: Compute the set S of all pairs (x,y) in the vertex set of C' for which x # y and |zy| < 2|pq|.
Step 4: For each element (z,y) in S, compute
max(|A(z) — A(y)‘LL’ —1A@) — AW
Y

Step 5: Return the largest value computed in Step 4.

By Lemma Bl each value computed in Step 4 is equal to maxg<i<pn 0p,(z,y). By Lemma B
the largest of the values computed in Step 4 is equal to 64**. This proves the correctness of the
algorithm. To analyze the running time of the algorithm, it is clear that Step 1 takes O(n) time.
The closest-pair computation in Step 2 takes O(nlogn) time; see 20]. In [I6], it is shown that
the size of the set S is O(n). It is also shown there that if the points in the vertex set of C' are
stored in two lists X and Y, where the points in X are sorted by z-coordinates and the points in Y
are sorted by y-coordinates, and if there are cross-pointers between these two lists, then the set S
can be computed in O(n) time. Therefore, Step 3 takes O(nlogn) time. In Step 4, the algorithm
spends O(1) time for each element of S. Since the size of S is O(n), the total time for Step 4 is
O(n). Thus, the total time of the algorithm is O(nlogn).

If the cycle C' is a convex polygon, then we can improve the running time: In [I5], it is shown
that the closest pair can be computed in O(n) time. Since C' is a convex polygon, we can obtain
the lists X and Y in O(n) time. It follows that the entire algorithm runs in O(n) time.

The following observations lead to an alternative O(n)-time algorithm for the case when C'is a
convex polygon. The Delaunay triangulation DT of the vertex set of C' can be computed in O(n)
time, see [2]. This implies that the closest pair can be computed in the same time bound. We show
that DT can be used to compute the set S in O(n) time. A proof of the following lemma can be
found in [6].

Lemma 6 Consider the Delaunay triangulation DT of the vertex set of C, and let x and y be
two distinct vertices that are not connected by an edge in DT. Then there exists a path (v =
X0, X1, %2, ..., 2k =Yy) in DT, such that

1. for each i with 0 < i <k, |z;x;y1| < |zy| and
2. for each i with 0 < i <k, |zx;| < |zy|.

Let (p,q) be the closest pair in the vertex set of C' and let R := 2|pq|. Let DT’ be the subgraph
of DT consisting of all edges having length at most R. Lemma Bl implies that we obtain the set S
(i.e., all pairs of points whose distance is at most R) by performing a breadth-first search from each
vertex x of DT until we reach a vertex y such that |zy| > R. The total time for this is proportional
to the size of S, which we know to be O(n).

Theorem 2 Given a polygonal cycle C' on n wvertices in the plane, we can compute 55 in

O(nlogn) time. If C is a convex polygon, 05 can be computed in O(n) time.

12

4 Approximating the Dilation of All Paths P,

Consider again the polygonal cycle C' = (pg,...,pn—1,P0) Whose vertices are points in the plane.
Let € > 0 be a constant. In this section, we show that an approximation to the dilation of each
path P; (0 < i < n), as well as an approximation to S, can be computed in O(nlogn) total time.

Our algorithm uses the well-separated pair decomposition (WSPD) of [3]. We briefly review

(the planar version of) this decomposition here.

Definition 1 Let s > 0 be a real number, referred to as the separation ratio. We say that two point
sets A and B in the plane are well-separated with respect to s, if there are two disjoint disks D4
and Dp of the same radius, r, such that

(i) Da contains A and Dp contains B,

(ii) the distance between D4 and Dp is at least s - 7.

Definition 2 Let V be a set of n points in the plane and let s > 0 be a real number. A well-
separated pair decomposition (WSPD) for V' with respect to s is a collection {(A1, B1), ..., (Am, Bm)}
of pairs of non-empty subsets of V' such that

1. A; and B; are well-separated with respect to s, for alli=1,...,m.

2. for any two distinct points p and q of V', there is exactly one pair (A;, B;) in the collection,
such that (i) p € A; and q € B; or (ii) g € A; and p € B;.

The number of pairs, m, is called the size of the WSPD. Callahan and Kosaraju [3] show that any
set S admits a WSPD of size m = O(s?n).

Our algorithm use the following lemma from [I7], which states that the WSPD of the vertex
set of any Euclidean graph G can be used to approximate the dilation of G. The statement of the
lemma as we present it appears in Section 13.2.1 of [IJ].

Lemma 7 Let V be a set of n points in the plane and let
{Alv Bl}v {A27 B2}7 ERRE {Amv Bm}

be a WSPD for V' with separation ratio 4(2 + €)/e. For each j with 1 < j < m, let a; be an
arbitrary point in A;, and let b; be an arbitrary point in Bj. For any connected Euclidean graph
G with vertex set V, the following holds: For each j with 1 < j < m, let ég(a;,b;) be the dilation
between a; and b; in G, and let

t:= lgaénég(aj,bj).
Then

éa/(1+e€) <t <da,

where dg denotes the dilation of G.
Thus, in order to approximate the dilation of a Euclidean graph, it is sufficient to compute the

dilation between O(n) pairs of vertices. Moreover, the choice of these vertices depends only on the
vertex set of the graph, it does not depend on the edges of the graph.

13

In a preprocessing step, we use the algorithm of [3] to compute, in O(nlogn) time, a WSPD
{A;,B;}, 1 < j <m = 0(n), for the vertex set {po,...,pn—1} of the cycle C, with separation ratio
4(2+€)/e. For each j with 1 < j < m, we pick an arbitrary point a; in A;, and an arbitrary point
bj in Bj. Our algorithm will compute, for each 7 with 0 <4 < n, the value

t; = 1151%};153(%,1))').
Observe that, by Lemma [
op,/(1+¢€) <t;<dp,.

Lemma 8 Let t* := min(tg,t1,...,tn—1). Then
SEN/(1+€) <% < 5@
Proof. Let i be an index such that ¢* = ¢; and let j be an index such that 5231“ = dp;. Then
t<t; <op, = oa"

and .
6™ =6p; <dp, < (L+ et = (1 +e)t"

We remark that, by a similar argument, t** := max(¢g,t1,...,t,—1) can be shown to satisfy
0™ /(1 +€) <t < o™

In other words, the algorithm that will be presented below can also be used to compute an approx-
imation to ™ in O(nlogn) time. We have seen in Section B however, that the exact value of
0¢* can be computed within the same time bound.

As mentioned above, our algorithm computes ¢; for ¢ = 0,1,...,n — 1. The main idea is to
maintain, for the current value of 4, the m dilations dp,(aj,b;) (1 < j < m) in a balanced binary
search tree T. Observe that, for any fixed index j, the value of dp,(a;,b;) changes at most twice
when 4 is increased from 0 to n — 1. As a result, the total number of updates in T will be at
most 2m. We now present the details.

Let P denote the path (pg, p1,...,pn—1). Recall the relation <p of Section ZIl We may assume
without loss of generality that a; <p b; for each j with 1 < j < m.

In the preprocessing step, we compute, in O(n) time, the values A(p;) = dp(po,pi) (0 <i<n)
and the total length L of the cycle C. Observe that, for 0 < i < n, the distance dp,(a;, b;) between
a; and b; in the path P; satisfies

oy A(by) — Alay) ifi=n—1orp; <pajorb; <ppii,
dp(a;,b) = { L — (A(bj) — A(aj)) otherwise. @)

For each j, there are exactly two paths between a; and b; on the cycle C. Therefore for
0 <i < n, dp,(aj,b;) can have at most two different values. The value changes when the deleted
edge moves from one of the paths between a; and b; to the other path between them. So the value

14

Figure 3: The cycle C.

of dp,(a;,bj) changes when p; = a; or p; = b;. In the final part of the preprocessing step, we
compute, for each i with 0 < i < n, the set

Si={j|a; =p;orb; =p;},

which contains all the indices j, 1 < j < m, such that dp,(a;,b;) is different from dp, ,(a;,b;).
Obviously, all these sets can be computed in O(m) = O(n) time. After the preprocessing step, the
algorithm proceeds as follows.

Step 1: Initialize an empty balanced binary search tree T' (e.g., a red-black tree).

Step 2: For j =1,2,...,m, use ([l) to compute dp,(a;j,b;), compute D; := dp,(a;,b;) and insert
Dj into T'.

Step 3: Compute the maximum element ¢y in the tree T'.

Step 4: For i =1,2,...,n— 1, perform the following Steps 4.1-4.2. (Observe that, at this moment,
Dj = 5Pi71(aj7bj)7 1<j<m)

Step 4.1: For each element j in S;, delete D; from the tree 7', use () to compute dp,(a;,b;),
compute the new value D; := 6p,(aj,b;) and insert D; into 7.

Step 4.2: Compute the maximum element ¢; in the tree T'.

Step 5: Compute t* := ming<;<y, t;, and return the sequence ¢, t1,...,tp—1,t".

The correctness of the algorithm follows from the discussion above. We have seen already that
the preprocessing step takes O(nlogn) time. Steps 1-3 take O(mlogm) = O(nlogn) time. The
total time for Step 4 is proportional to

n—1

Z (1Si| + 1) logm < (2m + n)logm = O(nlogn).
i=1

15

Theorem 3 Given a polygonal cycle C = (py,...,Pn—1,P0) on n vertices in the plane and a con-
stant € > 0, in O(nlogn) time, we can compute a sequence tg,...,t,—1,t* of real numbers, such
that

op,/(14¢€) < t; < dp,

for eachi=0,1,...,n—1 and

5glin/(1 —|—€) < t* < 5g}1n‘

Note that all the results in this section can be easily generalized to any d-dimensional Euclidean
space.

5 Concluding Remarks

Recently, there has been a fair amount of work on the problem of computing the optimal dilation
of a given (geometric) graph. In this paper we considered a variation of the problem where we
are given a polygonal cycle and are supposed to choose one edge to remove such that the resulting
polygonal path gives the smallest (or the largest) possible dilation. We presented an O(nlog®n)
expected time algorithm which given a polygonal cycle C' in the plane, computes the edge whose
removal makes minimum increase in the dilation of the generated path. We also presented an
algorithm which compute a (1 — €)-approximation of 62" for any cycle C in R? in O(Eidnlog n)
time. In the case of maximizing the dilation we can compute the edge in O(nlogn) time and the
algorithm works for any dimension.

Acknowledgments

We would like to thank Jan Vahrenhold for fruitful discussions on the subject.

References

[1] P. K. Agarwal, R. Klein, C. Knauer, S. Langerman, P. Morin, M. Sharir, and M. Soss. Com-
puting the detour and spanning ratio of paths, trees, and cycles in 2D and 3D. Discrete &
Computational Geometry, 39(1):17-37, 2008.

[2] A. Aggarwal, L. J. Guibas, J. Saxe, and P. W. Shor. A linear-time algorithm for computing
the Voronoi diagram of a convex polygon. Discrete & Computational Geometry, 4:591-604,
1989.

[3] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point sets with
applications to k-nearest-neighbors and n-body potential fields. Journal of the ACM, 42:67—
90, 1995.

[4] O. Cheong, H. Haverkort, and M. Lee. Computing a minimum-dilation spanning tree is NP-
hard. Computationl Geometry: Theory € Applications, 41(3):188-205, 2008.

[5] K. L. Clarkson and P. W. Shor. Algorithms for diametral pairs and convex hulls that are op-
timal, randomized, and incremental. In SCG ’88: Proceedings of the fourth annual symposium
on Computational geometry, pages 12-17, New York, NY, USA, 1988. ACM Press.

16

[6]

[10]
[11]

[12]

M. T. Dickerson, R. L. Drysdale, and J. R. Sack. Simple algorithms for enumerating interpoint
distances and finding k nearest neighbors. International Journal of Computational Geometry
& Applications, 2:221-239, 1992.

H. Edelsbrunner, L. J. Guibas, and J. Stolfi. Optimal point location in a monotone subdivision.
SIAM Journal on Computing, 15(2):317-340, 1986.

D. Eppstein and K. A. Wortman. Minimum dilation stars. Computational Geometry: Theory
& Applications, 37(1):27-37, 2007.

M. Farshi, P. Giannopoulos, and J. Gudmundsson. Improving the stretch factor of a geometric
network by edge augmentation. SIAM Journal on Computing, 38(1):226-240, 2008.

S. J. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153-174, 1987.

M. L. Fredman, J. Komlos, and E. Szemeredi. Storing a sparse table with O(1) worst case
access time. Journal of the ACM, 31:538-544, 1984.

P. Giannopoulos, C. Knauer, and D. Marx. Minimum-dilation tour (and path) is NP-hard. In
EWCG ’07: Proceedings of the 23rd European Workshop on Computational Geometry, pages
18-21, 2007.

D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM Journal on Computing,
12:28-35, 1983.

R. Klein and M. Kutz. Computing geometric minimum-dilation graphs is np-hard. In M. Kauf-
mann and D. Wagner, editors, Graph Drawing, Karlsruhe, Germany, September 18-20, 2006,
pages 196-207. Springer, 2007.

D. T. Lee and F. P. Preparata. The all nearest-neighbor problem for convex polygons. Infor-
mation Processing Letters, 7:189-192, 1978.

H. P. Lenhof and M. Smid. Sequential and parallel algorithms for the k closest pairs problem.
International Journal of Computational Geometry & Applications, 5:273-288, 1995.

G. Narasimhan and M. Smid. Approximating the stretch factor of Euclidean graphs. SIAM
Journal on Computing, 30:978-989, 2000.

G. Narasimhan and M. Smid. Geometric Spanner Networks. Cambridge University Press,
Cambridge, UK, 2007.

S. Rajasekaran, P. M. Pardalos, J. H. Reif, and J. Rolim. Handbook of Randomized Computing
Volume 1. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001.

M. Smid. Closest-point problems in computational geometry. In J.-R. Sack and J. Urrutia,
editors, Handbook of Computational Geometry, pages 877-935. Elsevier Science, Amsterdam,
2000.

C. Wulff-Nilsen. Computing the dilation of edge-augmented graphs in metric spaces. In
EWCG ’08: Proceedings of the 24th Furopean Workshop on Computational Geometry, pages
123-126, 2008.

17

	Introduction
	Dilation-Minimal Edge Deletion in a Polygonal Cycle
	Estimating The Dilation of a Polygonal Path
	The Decision Problem
	A first implementation.
	A faster implementation.

	The Optimization Algorithm

	Dilation-Maximal Edge Deletion in a Polygonal Cycle
	Approximating the Dilation of All Paths Pi
	Concluding Remarks

