
MULTIDIMENSIONAL ONLINE ROBOT MOTION

JOSH BROWN KRAMER AND LUCAS SABALKA

Abstract. We consider three related problems of robot movement in arbitrary dimen-
sions: coverage, search, and navigation. For each problem, a spherical robot is asked to
accomplish a motion-related task in an unknown environment whose geometry is learned
by the robot during navigation. The robot is assumed to have tactile and global position-
ing sensors. We view these problems from the perspective of (non-linear) competitiveness
as defined by Gabriely and Rimon. We first show that in 3 dimensions and higher, there
is no upper bound on competitiveness: every online algorithm can do arbitrarily badly
compared to the optimal. We then modify the problems by assuming a fixed clearance
parameter. We are able to give optimally competitive algorithms under this assumption.

1. Introduction

This paper is about online sensor-based motion problems for robots in an unknown
bounded n-dimensional environment. Consider Bob, a spherical mobile robot with radius
r > 0 at starting point S in a space X ⊆ Rn, where X has finite diameter. Bob is equipped
with:

• a tactile sensor for feeling and tracing obstacle boundaries, and
• a precise global positioning sensor, which tells Bob its location using global coordi-

nates on X.
For our tasks, Bob will also be able to remember an amount of information proportional to
the size of the space, but a priori Bob has no other knowledge of its surroundings.

For any point p ∈ X and any fixed position for Bob, Bob is at p if p is the location of
Bob’s center, and Bob occupies p if p is within distance r of Bob’s center.

The three tasks we consider within this setup are:
• Cover : Describe an efficient way for Bob to move within X to occupy every point

in X that can be occupied, and return to the starting point. We denote this task
by COV ER, or COV ERn if n is known.
• Search: Given a target point T with unknown coordinates (which is recognizable

on contact), describe an efficient way for Bob to move within X from S to T . We
denote this task by SEARCH, or SEARCHn if n is known.
• Navigate: Given a target point T with known coordinates, describe an efficient way

for Bob to move within X from S to T . We denote this task by NAV , or NAVn if
n is known.

To refer to one of these three tasks without specifying which, we will write TASK, or
TASKn if n is explicit.

The purpose of this paper is first to show that if n > 2 then, in a precise sense, there
is no efficient algorithm to solve any of these problems. We then show that with a minor

1

ar
X

iv
:0

90
3.

46
96

v1
 [

cs
.C

G
]

 2
6

M
ar

 2
00

9

2 J. BROWN KRAMER AND L. SABALKA

modification to the problems, these tasks can be accomplished in an efficient manner, and
we give efficient solutions.

Online motion algorithms in general are discussed frequently in robotics and computa-
tional geometry, and have been a recent active area of research. There are many possible
references to algorithms in this area, to which we only name the most relevant to our
purposes. For more detailed overviews, see for instance one of [2, 8, 10, 11].

As might be expected, sensor-based motion planning arises in a number of applications.
Examples include area coverage problems like cleaning public places, navigation problems
like mail delivery in a city or moving packages in a factory, sample acquisition, and planetary
exploration; the Mars rover uses autonomous online navigation algorithms [14].

Results concerning online motion algorithms are almost always discussed in terms of the
sensors with which the robots are equipped. Often, but not always, robots are given visual
sensors to be able to detect (nearby) objects within a line of sight. However, problems re-
quiring only tactile sensors do occur in situations where vision-based sensors are unrealistic.
For instance, navigation is often desired in abstract spaces, like the configuration space of a
mechanical arm linkage, in which visual sensors, at least in their most literal interpretation,
do not make sense.

The motion problems listed above have been frequently studied, but almost invariably
in special instances. Some of the earliest work on efficient robot motion is that of Lumel-
sky and Stepanov [12]. That work resulted in the BUG algorithms, which solve the NAV2

problem for a (point) robot in the presence of arbitrary obstacles. The BUG1 algorithm,
described here in Section 3, was proven to run in time proportional to the lengths of perime-
ters of obstacles in X. However, in terms of the length of the optimal path, BUG1 is not
at all ‘competitive’: the path BUG1 takes can be arbitrarily long compared to an optimal
path. Thus, BUG1 is not competitive in the classical sense. Papadimitriou and Yannakakis
[13] provided the first competitive analysis of the NAV2 problem in specific instances. More
recently, Gabriely and Rimon [9] have given a modification of BUG1, called CBUG, which is
‘optimally’ competitive. We also describe the CBUG algorithm in Section 3. Gabriely and
Rimon generalized the definition of competitiveness to characterize in what sense CBUG
is optimally competitive – namely, CBUG is quadratically competitive. To analyze our
algorithms, we use the Gabriely-Rimon definition of competitiveness as presented here in
Section 2. Roughly, optimal competitiveness of an algorithm means that the path it gener-
ates has length, in the worst case, proportional to the optimal worst case length generated
among all online navigators over all possible environments. We quantify performance by
measuring relative to the best offline path (ie the path generated by a robot with complete
knowledge of X). As with most algorithms for motion planning, both the BUG1 and CBUG
algorithms are for 2-dimensional spaces.

For the SEARCH2 problem, a notable linearly competitive solution in a number of
environments was given by [1].

To the authors’ knowledge, there are very few papers dealing with higher-dimensional
sensor-based motion algorithms. There is the paper of Cox and Yap [7], which extends
the BUG algorithms to a 3-dimensional rod, and there are those papers using Choset and
Burdick’s Hierarchical Generalized Voronoi Graphs (HGVGs) [6] which work in higher di-
mensions but require visual sensors. Roughly, an HGVG is a way of creating a roadmap
along the lines of [4] in higher dimensions. These roadmaps are essentially a 1-dimensional

MULTIDIMENSIONAL ONLINE ROBOT MOTION 3

subspace of the navigable space (equidistant from n − 1 obstacles), which can be created
incrementally. These HGVGs provide a nonheuristic navigation algorithm which is com-
plete – that is, is guaranteed to work. However, Cox and Yap’s results only apply to their
particular problem, and Choset and Burdick assume visual sensors while not providing a
bound on competitiveness.

It is clear that, for most environments X of dimension n ≥ 3, the COV ERn task is
actually impossible to solve. For instance, assume that X has a large codimension 1 cube
as an obstacle. Then Bob cannot possibly occupy every point very near the cube in finite
time – to do so, Bob’s center would need to be at every point in a codimension-one cube
(of distance r from the original obstacle). Thus, some slight modification of COV ERn is
necessary.

Interestingly, for n ≥ 3 the optimal online distance for SEARCHn and NAVn can be
arbitrarily bad compared to the optimal offline distance. One result from this paper, to be
made precise via Theorem 5.4 and Corollary 5.5, is:

Theorem 1.1. If n ≥ 3 then every algorithm that solves either NAVn or SEARCHn has
no upper bound on competitiveness with respect to optimal length.

Thus, some slight modifications of the SEARCHn and NAVn tasks are also necessary.
We modify TASKn to allow for a small amount of error, herein called the clearance

parameter ε (see Section 4), which controls the narrowness of the paths we require Bob to
follow. We place no other constraints on our spaces X: we do not require the obstacles be
rectangles, polygons, convex, etc. Although we modify TASKn, our modifications can be
physically negligible, as ε can be as small as desired.

We prove:

Theorem 1.2 (c.f. Theorem 5.4). The modified NAVn and SEARCHn tasks have a uni-
versal lower bound on competitiveness with respect to optimal length lopt given by

lnopt
κn−2(r + ε)

,

where κ = 2
√

2rε+ ε2.

For small ε, the value κ is approximately 2
√

2rε.
We go on to present algorithms solving modified TASKn. Our algorithm solving modi-

fied COV ERn is called CBoxes, and our algorithm solving modified NAVn and modified
SEARCHn is called Boxes. Our algorithms are optimally competitive:

Theorem 1.3 (c.f. Theorems 7.1 and 7.2). The algorithm CBoxes solves the modified
COV ERn problem and is optimally competitive with an upper bound on competitiveness
with respect to optimal length lopt given by clopt + d, where c and d are constants depending
on r, n, and ε.

Theorem 1.4 (c.f. Theorems 8.1 and 8.2). The algorithm Boxes solves the modified NAVn
and SEARCHn problems and is optimally competitive with an upper bound on competitive-
ness with respect to optimal length lopt given by

c
lnopt
εn−1

+ d,

4 J. BROWN KRAMER AND L. SABALKA

where c is a constant depending on n and d is a constant depending on n and ε.

This paper is organized as follows. In Section 2, we define the notions of competitiveness
that Gabriely and Rimon use, modifying it slightly for our purposes. In Section 3, we
describe the CBUG algorithm. We modify the definition of the problems by introducing
clearance parameter in Section 4. In Section 5, we prove Theorem 1.2 by constructing spaces
realizing the given bounds. In Section 6, we define the CBoxes and Boxes algorithms, and
in Sections 7 and 8, we analyze the CBoxes and Boxes algorithms, respectively, proving
Theorems 1.3 and 1.4. In Section 9, we discuss some of the mathematical motivation
underlying the algorithms in this paper. Finally, in Section 10 we describe a number of
ways of improving the execution of the various algorithms.

A computer simulation of the algorithms contained herein is available online at
http://www.math.binghamton.edu/sabalka/robotmotion.

The second author would like to thank Elon Rimon and Misha Kapovich for many inter-
esting conversations on this material.

2. Competitiveness

Recall from the Introduction that Bob is a spherical mobile robot with the task of mov-
ing in an unknown environment X. We want to discuss how “good” a particular online
algorithm is for solving the given task. To do so, we present a notion of competitiveness
for online algorithms. The definition here is adapted from the generalized notion of com-
petitiveness appearing in [9], and allows for an arbitrary functional relationship between
an algorithm’s performance and the optimal performance, not just the traditional linear
dependence.

Let P be a task, NAVn for example. An instance of P is a situation in which the task
should be completed. For online navigation, the instances are given by tuples (X,S, T, r),
with X the space, S the start point, T the target point, and r the radius. We will denote
the set of all instances for a given task by I. A parameter is a function π : I → R. For
example, define topt : I → R to be such that topt(I) is the optimal time, over all algorithms,
to complete instance I. For any algorithm A which solves P , we wish to bound the time
required for A to complete an instance by a function function of some parameter of the
instance (typically, topt). To that end we introduce the following definitions.

Definition 2.1. Let A be an algorithm solving a task P and let π be a parameter. Denote
by tA the function which takes an instance of P and outputs the total execution time for A
on that instance. Define fA,π : R→ R to be the function given by

f(A,π)(x) = sup
I∈I
{tA(I) : π(I) ≤ x}.

Thus f(A,π)(x) tells us the most time A could take on an instance if π is no more than x.

Definition 2.2 (Competitiveness). Let P be a task. Let g : R→ R be a function. We say
that g is a universal asymptotic lower bound on competitiveness with respect to π if for every
algorithm A solving P , f(A,π) ∈ Ω(g). We will sometimes simply call g a universal lower
bound. An algorithm A solving task P is O(g)-competitive with respect to π if f(A,π) ∈ O(g).
We say that A is optimally competitive if there is g such that g is a universal lower bound
on competitiveness and A is O(g)-competitive.

MULTIDIMENSIONAL ONLINE ROBOT MOTION 5

This definition of competitiveness allows for competitiveness to be quadratic, logarithmic,
exponential, etc. For example, an algorithm A being (linearly) competitive in the traditional
sense is equivalent to being O(t)-competitive, which means tA ≤ c1topt + c0 for constants c0
and c1. As a linear polynomial clearly gives a universal lower bound for competitiveness, a
linearly competitive algorithm is always optimally competitive.

We now turn to our motion tasks. First, note that Bob’s position uniquely determines
and is uniquely determined by the coordinates of Bob’s center. We will consistently refer to
Bob’s position as a point via this identification. This allows us to talk about, for instance,
Bob traversing a path in X. The total execution time of an algorithm A solving TASK
may be broken up into physical travel time and onboard computation time. We will neglect
onboard computation time when measuring optimality of our algorithm. This is a defensible
assumption, as physical motion typically takes several orders of magnitude longer than
onboard computation. To simplify our analysis, we will assume that Bob always travels at
a constant speed. This correlates physical travel time with the length, lA, of the path Bob
travels in X while executing A, and we may replace tA with lA in our definitions above.
These simplifications allow us to compare our performance with that of an optimal offline
algorithm (for which computation time is not an issue) by comparing lengths of paths.

The optimal offline length, lopt, is a reasonable parameter through which to discuss com-
petitiveness. However, we will see that for dimension n ≥ 3 and any algorithm A that solves
NAVn or SEARCHn, we have l(A,lopt)(t) = ∞ for every t. Thus, bounding path length
requires more knowledge of the space than just the optimal path length. We will modify
lopt and TASK slightly (in Section 4) to obtain bounds on competitiveness.

Before we turn to our modification, we present what is known for the NAV2 problem,
which will serve as motivation for parts of our algorithms.

3. Solving NAV2: the CBUG Algorithm

Our algorithms build on ideas from an optimally competitive algorithm for the NAV2

task of navigating unknown 2-dimensional environments, called CBUG [9]. The basic CBUG
algorithm is itself a refinement of a classical but non-optimally-competitive algorithm, called
BUG1 [12]. In this section, we present the BUG1 and CBUG algorithms.

BUG1 is guaranteed to yield a solution - that is, Bob will move from S to T if possible -
but has no upper bound on competitiveness. The BUG1 algorithm is as follows:

BUG1(S, T)
While not at T :

– Move directly towards T .
– If an obstacle is encountered:

– Explore the obstacle via clockwise circumnavigation.
– Move to some point pmin on the obstacle closest to T .
– If Bob cannot move directly towards T from pmin:

– Return 0; Target unreachable.
Return 1; Target reached

6 J. BROWN KRAMER AND L. SABALKA

TS

Figure 1. In this instance of the NAV2 problem, the BUG1 algorithm will
take much longer to complete than the optimal offline solution. Instances
like this show that BUG1 is not O(g)-competitive for any g.

BUG1 runs in time proportional to twice the entire length lb of the boundaries of (an r-
neighborhood of) all obstacles (with an easy modification of the algorithm and slightly more
careful analysis, the constants of this bound can be improved; see [12]). However, lb can
be arbitrarily large, even when lopt is bounded. For example, consider the simple situation
where S and T are close together, but separated by an obstacle with large perimeter (see
Figure 1). One advantage of BUG1 is that only a finite amount of memory is required:
Bob must only remember the points T , pmin, and the first point encountered on the current
obstacle.

The CBUG algorithm solves the problem of unbounded competitiveness by introducing
a virtual obstacle into the environment. CBUG executes the BUG1 algorithm, but only
within an ellipse with foci S and T and of fixed area A0: Bob treats the ellipse as if it
were an obstacle, even though it does not exist. If BUG1 finds no solution within the given
ellipse, CBUG repeats the algorithm in an ellipse of progressively larger area. See Figure 2.

CBUG(S, T,A0)
For i = 0 to ∞:

– Execute BUG1(S, T) within ellipse with foci S and T and
area 2iA0.

– If Bob is at T :
– Return 1; Target reached.

– If Bob did not touch the ellipse while executing BUG1:
– Return 0; Target unreachable.

As the ellipses involved in CBUG are expanding in area, the virtual boundary must
eventually contain either a path from S to T or a real obstacle cutting T completely off

MULTIDIMENSIONAL ONLINE ROBOT MOTION 7

TS

Figure 2. The dashed line shows the path of a robot executing the BUG1
algorithm within a virtual bounding ellipse from the CBUG algorithm. The
ellipse prevents the robot from departing too long from the optimal path.

from S. In the former case, CBUG terminates at T . In the latter case, Bob will not
touch the virtual boundary, and again CBUG will terminate. Note that CBUG, like BUG1,
requires only constant memory: it only need remember the information S, T , A0, i, and the
point pmin closest to T on the current obstacle. Usually, we will also have Bob remember
the best path from the current point to pmin, still requiring only constant memory.

Gabriely and Rimon analyze the competitiveness of CBUG in the following two results:

Theorem 3.1. [9] The NAV2 problem has a quadratic universal lower bound, namely given
by

gr(x) :=
4π

6(1 + π)2r
x2 ∼ .122x2

r
.

In the next section we will provide a lower bound for competitiveness for TASK for
general n (see Theorem 5.4). We note that for large lopt, our lower bound for NAV2 is
tighter than the one in Theorem 3.1.

Theorem 3.2. [9] If the target T is reachable from S, CBUG solves NAV2 in time propor-
tional to the distance l, travelled by Bob, where

l ≤ 6π
2r
l2opt + dist(S, T) +

6A0

2r
,

where r is the robot’s radius. Thus, CBUG is optimally competitive.

Further improvements in terms of constants and average-case execution can be made by
slightly modifying the algorithm or allowing nonconstant memory; see [9] for more details.

It is not clear to the authors that the proof of Theorem 3.2 appearing in [9] (Lemmas 4.1-3
and Proposition 4.4) is correct. In particular, in the proof of Lemma 4.2 of [9], the length l

8 J. BROWN KRAMER AND L. SABALKA

of the path that Bob’s center traverses is implicitly related to the area A swept out by Bob
via the formula l ≤ A/(2r), where r is Bob’s radius. It does not seem to be apparent that
this identification holds without further argument. For instance, the r-neighborhood of a
fractal curve has finite area, even though a fractal curve has infinite length. What prevents
the path Bob’s center follows from being arbitrarily long with respect to the area of its
r-neighborhood? In higher dimensions, we can construct spaces which force Bob’s center to
travel an arbitrarily long distance while covering only a bounded volume. For example, fix
some constant k and takeX ⊂ R3 to be the r-neighborhood of the curve γ(t) = (t, sin(kt), 0),
with 0 ≤ t ≤ 1, with S and T on the curve at points γ(0) and γ(1), respectively. Notice
that for all k, X is a subset of the box B = [−r, 1 + r]× [r − 1, r + 1]× [−r, r]. Given the
vertical restriction, Bob’s center must have height 0. Furthermore, the only points in X
with height r are those directly above γ. Thus Bob’s center is forced to traverse the entirety
of γ. As k → ∞, the length of γ increases without bound, but the volume swept out by
Bob is bounded above by the volume of B. There could be such an example for dimension
n = 2 as well.

In Section 9, we will give an argument justifying the use of some linear relationship
between l and A/(2r) in dimension 2 in some cases. Our formula will be l ≤ cA/(2r) for
some constant c (with c much bigger than 1).

4. Modifying TASKn: Clearance Parameter

We now wish to analyze the TASKn problem for arbitrary n. As mentioned in the
Introduction, there can be no optimally competitive algorithm for the TASKn problem,
which we will prove in the next section. However, in the process, we will find bounds on
competitiveness for a slightly weaker problem, defined here.

It seems that tight corridors are problematic for online robot navigators. One way to
remove that problem is to assume that the robot has some clearance parameter.

4.1. Notation. We begin by introducing convenient notation to be used throughout the
remainder of the paper to discuss the notion of clearance.

Definition 4.1 (ρ-neighborhood). Let Y ⊆ Rn and let ρ > 0. Then the ρ-neighborhood of
Y is the union of all ρ-balls about points in Y :

Nρ(Y) = {x ∈ Rn : there exists y ∈ Y such that d(x, y) < ρ}.
Here d measures Euclidean distance.

Definition 4.2 (ρ-path). Let p be a path, and let ρ > 0. If the set Nρ(p) does not intersect
an obstacle of X then we call p a ρ-path in X.

Definition 4.3 (κ and r′). Let r be Bob’s radius and fix a constant ε ≥ 0. Define

κ = 2
√

2rε+ ε2

and
r′ = r + ε.

Notice that if there are two points in X of distance at most κ apart and such that a sphere
of radius r′ can occupy either point, then Bob can move along the straight line between
them.

MULTIDIMENSIONAL ONLINE ROBOT MOTION 9

4.2. Clearance and the Modified TASKn Problem.

Definition 4.4 (Modified TASK). Fix a constant ε > 0, called the clearance parameter.
We define the ε-modified versions of each task. For convenience, we refer to the ε-modified
version of TASK as modified TASK. The modified NAVn and SEARCHn problems are
to reach T from S if there is an r′-path, and if there is not then to either reach T from S
along an r-path or determine that there is no r′-path. The modified COV ERn problem is
to traverse a path such that Bob’s center comes within r′ of every point that is within r of
an r′-path from S (that is, Bob comes close to all points Bob can touch without getting too
close to an obstacle).

Note that it is possible for an r-path solving TASKn to exist that is much shorter than
every r′-path. In fact, a slight modification of the examples from section 5 shows that for
any algorithm A solving NAV or SEARCH, and length l, there are spaces with r′-paths
from S to T where the optimal path length is l and A’s path length is an arbitrarily large
multiple of l. Thus, it is impossible to measure competitiveness with respect to the length
of the optimal r-path, even for modified NAV or modified SEARCH. For this reason, we
modify lopt:

Definition 4.5 (Modified lopt). For each instance of modified NAV or modified SEARCH,
we modify the length lopt used to compute competitiveness to be the optimal offline path
length for a robot of radius r′ instead of radius r.

From here on, we discuss competitiveness of algorithms solving modified TASK with
respect to this modified parameter.

5. Universal Lower Bounds

For the modified COV ER problem, there is an obvious linear universal lower bound. In
this section we give much stronger explicit universal lower bounds for the modified NAV
and SEARCH problems. Note a universal lower bound for modified NAV is automatically
a universal lower bound for modified SEARCH, as SEARCH is the same problem but
with less information. Our universal lower bound will be constructed via spaces where the
extra knowledge of the exact location of T does not help Bob, effectively transforming an
instance of NAV into an instance of SEARCH. Moreover, given an algorithm which solves
SEARCH, one may always turn an instance of SEARCH into an instance of COV ER, by
moving the target T to the last place Bob searches. We exploit this fact to describe spaces
such that the optimal offline runtime is proportional to the side length of an n-cube, while
an online algorithm runs in time proportional to the n-volume of an n-cube.

Let TASKn be one of NAVn or SEARCHn, and suppose an algorithm A solves TASKn.
Let l0 and ε be given constants. To construct a universal lower bound, we will create a space
in which there is an r′-path from S to T of length lopt and the path prescribed by A has
length on the order of

lnopt

r′κn−2 . In particular, if n ≥ 3 then the length of path prescribed by
A goes to infinity as lopt is fixed and ε goes to 0, so no algorithm is competitive with respect
to lopt without modifying TASKn.

The spaces we construct will be ‘parallel corridor spaces’, PC(l0, ε, r, n). Each space
will consist of a number of floors, and each floor will consist of several corridors of length

10 J. BROWN KRAMER AND L. SABALKA

l0. These corridors will be squeezed as closely together as possible, overlapping to a great
extent but not overlapping so much that Bob can move directly from one to another. We will
create an instance of TASKn by placing S and T at opposite ends of the several corridors,
and then blocking all but one corridor, forcing Bob to explore every corridor to get from
one side to the other (that is, essentially treat the instance as one of COV ERn). For an
example throughout this construction, see Figures 3 and 4.

For n = 2, there is a similarity between our spaces and those of [3], which essentially
established a universal lower bound for (a different kind of) competitiveness for the NAV2

task when all obstacles are polygonal.

5.1. Constructing the Space. To begin constructing PC(l0, ε, r, n), we first construct a
finite cubical lattice L ⊂ Rn−2. We restrict the coordinates to be elements of the closed
interval [0, l0]. We will carefully choose a distance, λ, between adjacent points in L. Roughly,
λ is chosen to be as small as possible while still being larger than κ. Now we will define λ
more precisely.

Denote the number of values that fit into the interval [0, l0] and spaced at least distance
d apart by np(d). Then np(d) = bl0/dc + 1. If l0/κ ∈ N, then np(κ) = l0/κ + 1. In
this case, choose λ > κ so that np(λ) = l0/κ. If l0/κ /∈ N then choose λ > κ so that
np(λ) = np(κ) = bl0/κc+ 1 > l0/κ.

Extend L to a subset of Rn−1 by attaching an interval of length l0 to each point in L:
L × l0I ⊂ Rn−1, where I is the unit interval. The r′-neighborhood of each of these lines
is a corridor. Create a series of corridors in Rn by taking the r′ neighborhood of L × l0I:
set L′ := Nr′(L× l0I). Figure 4 shows a picture of L′ (missing caps on the ends, and with
extra black ‘flaps’) in the case n = 3.

Notice that L could have been chosen from a more dense packing (of the (n − 2)-cube
with side length l0 by spheres of radius λ) to fit in more corridors into L′ and thus obtain
better constants for the bound (see the Lattice Improvement, Section 10.1). However, this
does not affect the competitiveness class of our example.

The set L′ is already a collection of parallel corridors, but there are not enough of them.
Stack h = bl0/(2r′)c copies of L′ on top of one another. That is, place one copy of L′ at
height 0, one at height 2r′, one at height 2(2r′), etc., up to height h(2r′). Think of each
copy of L′ as a ‘floor’ of a building with h stories.

To be able to access any corridor from any other corridor, add a room at each end of the
collection of all corridors so that a robot of radius r′ can pass between floors by passing
through a room - i.e. both rooms have dimensions roughly (2r′ × (l0 + 2r′) × · · · × (l0 +
2r′) × (l′ + 2r′)), where l′ = 2r′h. Call one room the start room and the other the target
room.

At the end of all but one of the corridors, place obstacles that prevent passage from the
corridor to the target room. The choice of which corridor to leave open depends on the
algorithm, A, that we are building the space for. If all of the corridors were blocked, A
would visit every corridor in some order before terminating. Leave the last one unblocked.
We should carefully choose the size and location of the obstacles so that:

(1) they block a robot from exiting,
(2) they allow a robot to exit the chosen unblocked corridor, and

MULTIDIMENSIONAL ONLINE ROBOT MOTION 11

S

T

Figure 3. The space PC(8r′, ε, r, 2). The circle represents the robot, and
the dotted line indicates the optimal length path from S to T .

(3) they are small enough that a robot in one corridor cannot feel an obstacle in an
adjacent second corridor (and thus determine that it need not go down the second
corridor).

Say we wish to block a corridor C, whose axis of symmetry is x × l0I, where x ∈ Rn−2.
Let P ′ denote the set of points in C which are as close as possible to but not in the target
room. Then P ′ is a (n − 1)-ball orthogonal to x × l0I in Rn. Let P ⊂ P ′ denote those
points whose height (i.e. the value of the last coordinate, which is the coordinate that
was increased in the stacking phase, corresponding to the ‘floor’) differs from the height of
x by g or more, where g =

√
(r + ε)2 − ((κ+ λ)/4)2. Then P consists of two connected

components of distance 2g apart.
We claim P satisfies the three desired properties, all of which follow from the choice

that λ > κ. For, the connected components of P are distance 2g < 2
√

(r + ε)2 − (κ/2)2 =
2
√

(r + ε)2 − ((r + ε)2 − r2) = 2r apart, which blocks a robot of radius r from passing, so
(1) is satisfied. Let C1 and C2 be intersecting corridors. Their axes of symmetry are at the
same height, z. Notice that the difference, in absolute value, between z and the height of a
point in C1 ∩ C2 is at most

√
(r + ε)2 − (λ/2)2 < g. Thus the unblocked corridor has had

no obstacles placed in it, so (2) is satisfied. Furthermore, the same calculation shows that
a robot can only feel elements of height strictly less than g in adjacent corridors. Thus (3)
is satisfied.

Adding the obstacles P to all but one corridor, we have now finished constructing the
space PC(l0, ε, r, n).

We create an instance of TASKn by placing the start point S in the center of the start
room, and placing the target point T in the center of the target room.

Example 5.1. Consider when n = 2. In this case, L is a subset of R0. That is, L is a
point. Since L is a point, L × l0I is a line segment of length l0. If we think of the line
segment as sitting horizontally in the Euclidean plane, then taking the r′-neighborhood of
the line segment yields: two half-circles, one on the left (concave right) and one on the
right (concave left), connected by horizontal line segments of length l0. For the sake of this
example, assume l0 = h(2r′) for some integer h. Then, taking h copies of this corridor and

12 J. BROWN KRAMER AND L. SABALKA

Figure 4. The corridors within a set L′ when n = 3. Notice that exactly
one of them (the middle one) is unblocked; Bob cannot pass through the
other corridors because of the black obstacle ‘flaps’.

stacking them on top of one another, we have a series of horizontal line segments spaced
at distance 2r′ from each other, with ‘caps’ on the left and right ends. To create the space
PC(l0, ε, r, 2), on each end we replace the caps with a box of width 2r′ and height l0. We
declare the left-hand box to be the start box, putting S in its center, and we declare the
right-hand box to be the target box, putting T in its center. Finally, we place obstacle
‘flaps’ in all but one of the corridors on the far right-hand side. See Figure 3.

Example 5.2. If n = 3 then L is a set of equally spaced points on a line segment of length
l0. The resulting set L′ is as shown in Figure 4, plus hemishperical ‘caps’ on the end. We
say that two corridors are adjacent if the distance between the corresponding points in L is
λ. Notice that if λ were allowed to be smaller than κ then the pinching between adjacent
corridors would be less and a robot of radius r could pass directly from one corridor to
another without passing through the start room.

5.2. Analysis of the Space. We now begin to analyze this space. First, we prove the
following.

Lemma 5.3. Fix a space PC = PC(l0, ε, r, n). To get between adjacent corridors in PC,
Bob’s center must pass through the start room.

Proof. Let C1 and C2 be two adjacent corridors in PC, with center lines l1 and l2. For
convenience, we will assume that l1 and l2 are axis parallel, and 0 on all but the first
2 coordinates. Let CS be the set of points in C1 ∪ C2 where Bob’s center can be. Let
CSi = Ci ∩ CS, where i = 1, 2. We want to show that there is no path from CS1 to CS2

in CS. Suppose there were. Then since CSi is connected, and there is a path from l1 to
l2 through CS1 ∪ CS2. In particular, Bob can be on a point, p, equidistant from l1 and l2.
WLOG, the third coordinate of p is nonnegative. But then consider the point pr you get by
adding r to the third coordinate of p. Its distance from l1 is at least

√
(κ/2)2 + r2 > r+ ε,

so p′ /∈ CS1. Similarly, p′ /∈ CS2. But this contradicts that Bob can occupy the point p. �

We are now ready to prove our universal lower bound. We have been careful to keep
track of the effect that ε has on the complexity of the problem.

MULTIDIMENSIONAL ONLINE ROBOT MOTION 13

Theorem 5.4. The modified NAVn task and the modified SEARCHn task both have an
asymptotic universal lower bound on competitiveness given by

lnopt.

Moreover, for large enough lopt we have that for every navigation algorithm A, there is a
space X with an r′-path from S to T of length at most lopt and

lA(X) ≥ cn
lnopt

κn−2r′
,

where cn is a constant depending only on n.

Together with the additional mild assumption that ε < r, ‘large enough’ depends solely
on n and r.

When n ≥ 3, by allowing ε to go to 0 we obtain greater and greater lower bounds on
online path length independent of lopt. Thus,

Corollary 5.5. If n ≥ 3 then every algorithm that solves the (unmodified) NAVn problem
or the (unmodified) SEARCHn problem is not O(f)-competitive for any f : R→ R.

Proof of Theorem 5.4. To obtain our lower bound, we examine optimal path length on
parallel corridor spaces PC(l0, ε, r, n).

In such a space, one way to get from S to T is to travel from S directly to the unobstructed
corridor, travel along the unobstructed corridor to the target room, then travel directly to
T . The length lopt is therefore at most the length of a corridor (l0) plus the maximal distance
from S to a corridor (which is at most

√
n− 1l0/2 + r′) and from a corridor to T (which is

also at most
√
n− 1l0/2 + r′). Thus,

lopt ≤ (1 +
√
n− 1)l0 + 2r′,

and so

(1) l0 ≥
lopt − 2r′

1 +
√
n− 1

.

The number of corridors per floor in PC(l0, ε, r, n) is at least(
l0
κ

)n−2

,

so the total number of corridors is at least(
l0
κ

)n−2 ⌊ l0
2r′

⌋
.

Let A be an algorithm solving TASKn. If all of the corridors in our space were blocked,
A would have Bob visit each corridor in some order. Let the last-visited corridor be the
one unblocked. Then Bob travels down each blocked corridor at least twice, each time a
distance of at least (l0 − r′). Bob travels the unblocked corridor at least once. Thus, any
online algorithm in PC(l0, ε, r, n) will have path length at least

(2) 2

((
l0
κ

)n−2 ⌊ l0
2r′

⌋
− 1

)
(l0 − r′) + l0.

14 J. BROWN KRAMER AND L. SABALKA

Combining (1) and (2), we have the desired result. �

We note the particular case n = 2. Letting ε→ 0, we see that this distance is quadratic
in lopt with a leading coefficient of 1/(4r) = .25/r. Thus for large lopt, our example forces
paths more than twice as long as those forced by the examples of [9] (see Theorem 3.2).

6. The Algorithms

In this section, we present the CBoxes algorithm for solving the COVER problem and the
Boxes algorithm for solving the NAV and SEARCH problems. Both algorithms have the
same structure, and rely on only a few main ingredients. The first ingredient is to subdivide
the space into a cubical lattice, discretizing the problem. We break the space up into cubes,
or ‘boxes’, so that two points in a given cube are at most ε apart. The second ingredient,
for Boxes, is to restrict movement to an ellipsoid, and progressively increase the volume of
the ellipsoid. This is an important ingredient for obtaining upper bounds on complexity.
Our virtual bounding ellipsoid is a direct generalization of the virtual ellipses of Gabriely
and Rimon [9]. The final main ingredient is to explore unobstructed cubes by performing a
depth-first search of the space1. We will analyze these algorithms in the next section.

6.1. Colors. To begin, we introduce some terminology to make visualization of the algo-
rithm’s execution easier and to formalize some aspects of the algorithm. When our algo-
rithms are being run, there are a few types of cubes that are encountered. We describe and
associate a color to each type of cube:

• White: Unexplored;
• Yellow: Bob’s center can be at the center of the cube;
• Red: Too close to an obstacle: the center of a robot of radius r + ε cannot be

anywhere in the cube;
• Pink: outside of the virtual boundary.

As our algorithms run, they change White cubes into Yellow, Red, or Pink cubes, and (when
increasing the size of the virtual boundary) Pink cubes back to White cubes.

6.2. The CBoxes Algorithm. We are ready to define the CBoxes algorithm and its com-
panion algorithm, CGraphTraverse. The CBoxes algorithm is our solution to the COVER
problem (hence the ‘C’). The CGraphTraverse companion algorithm implements the depth-
first search described above.

CBoxesε
– Break X into a grid of axis-parallel cubes (‘boxes’) with side

length l = min{ε/2, ε/
√
n}. All cubes begin colored White.

– Travel in a straight line from S to the center of the current
cube, C. If obstacle is encountered, stop (no r′-paths exist).

– Color C Yellow.
– Explore X using CGraphTraverse(C).

1To be precise, a depth-first search of a dynamically generated spanning tree of the 1-skeleton of the dual
of the cubical lattice.

MULTIDIMENSIONAL ONLINE ROBOT MOTION 15

CGraphTraverse(C)
– Let Adjacent be the set of cubes sharing an n − 1 dimen-

sional face with C.
– While there are White cubes in Adjacent,

– Pick White D ∈ Adjacent.
– Move in a straight line toward the center of D.
– If we encounter an obstacle in the process

– Color D Red.
– Else

– Color D Yellow.
– CGraphTraverse(D).

– Travel back to the center of C.

6.3. The Boxes Algorithm. The Boxes algorithm solves both the SEARCH and NAV
problems, with only a minor modification between the two (for the SEARCH problem,
we use a virtual sphere instead of a virtual ellipsoid). The basic algorithm does not rely
on the location of T . However, we will offer improvements in Section 10 which will po-
tentially greatly improve the average-case runtime of Boxes when solving NAV problems.
The improvements will come largely from the choice of the cube D in the GraphTraverse
algorithm. The similarities between Boxes and CBoxes will be apparent. As with CBoxes,
the Boxes algorithm has a companion algorithm, GraphTraverse, which implements the
depth-first-search portion of the algorithm.

If at any time the algorithm stops without reaching T , then T is unreachable – there is
no r′-path from S to T .

Boxesε
– Break X into a grid of axis-parallel cubes (‘boxes’) with side

length l = min{ε/2, ε/
√
n}. All cubes begin colored White.

– Travel in a straight line from S to the center of the current
cube, C. If an obstacle is encountered, stop.

– Define T ′ to be T if solving modified NAVn, or S if solving
modified SEARCHn. Define a0 = d(S, T ′) + l, and set
a = a0.

– While not in the same cube as T
– Define E to be the solid ellipsoid defined by {p :
d(S, p) + d(p, T ′) ≤ a}.

– Color Pink all cubes that are completely outside of E .
– Explore X using GraphTraverse(C,T).
– If there is no cube adjacent to a Pink cube which is

explored while executing GraphTraverse, stop.
– If S is surrounded by points within Red cubes, stop.
– Set a = a× 2.
– Color all Pink cubes White.

– Travel in a straight line to T . If an obstacle is encountered,
stop.

16 J. BROWN KRAMER AND L. SABALKA

GraphTraverse(C,T)
– If T ∈ C Return.
– Let Adjacent be the set of cubes sharing an (n − 1)-

dimensional face with C.
– While there are White cubes in Adjacent,

– Pick White D ∈ Adjacent.
– Move in a straight line toward the center of D.
– If we encounter an obstacle in the process

– The obstacle cannot be virtual, so color D Red.
– Else

– Color D Yellow.
– GraphTraverse(D,T).
– If T is in the current cube, Return.

– Travel back to the center of C.
– Return

7. Analysis of CBoxes

In this section, we prove that CBoxes works, and analyze its competitiveness. To do so,
observe that our algorithm performs a depth-first search of a particular graph G0, as follows.
The space X is broken into a grid of axis-parallel cubes with side length l = min{ε/2, ε/

√
n}.

Let G be the graph whose vertex set is the set of centers of cubes, where there is a straight
edge between two centers if they share an (n− 1)-dimensional face. Let O denote the set of
edges of G for which there does not exist an r′-path between the centers of the corresponding
cubes. Let C0 denote the cube containing Bob’s initial position S. Then G0 is the connected
component of G \ O containing the center of C0.

Theorem 7.1. The CBoxes algorithm solves the modified COV ERn problem by effectively
performing a depth-first search of G0 along a subtree of G.

Proof. We first claim that the COV ERn problem is solved by having Bob visit every vertex
of G0.

Since l ≤ ε/
√
n, the maximum distance between two points in a cube is at most ε. This

implies that if the center of a robot of radius r′ = r + ε can be SOMEWHERE in a cube
without the robot intersecting some obstacle then Bob’s center can be ANYWHERE in
that same cube. Our proof is based on this fact.

Consider a point x ∈ X which Bob is required to come close to by modified COV ERn.
Then there is an r′-path from S to a point p with d(x, p) ≤ r. Let C1, C2, . . . , Ck be the
sequence of cubes that this path passes through, so S is in cube C1 and p is in cube Ck.
Notice that Ci and Ci+1 can be taken to share an (n− 1)-dimensional face. Then Bob can
pass freely from the center of Ci to the center of Ci+1, so the centers of C1 and Ck are in
the same connected component G0 of G. Let pk denote the center of Ck. Since d(x, p) ≤ r
and d(p, pk) ≤ ε/2, we have d(x, pk) ≤ r + ε/2 < r + ε. Thus, every point which is required
to be explored would be explored if Bob visits every vertex of G0.

That CBoxes has Bob visit every vertex of G0 essentially follows from the definition of
the CBoxes and CGraphTraverse algorithms. The first step of CBoxes is to move from S

MULTIDIMENSIONAL ONLINE ROBOT MOTION 17

straight to the center of C0, which is possible if a robot of radius r′ can occupy S - that is, if
any r′-paths exist. Then, at each subsequent step of the algorithm, Bob moves along an edge
e of G. The only time these algorithms do not finish traversing e is if in moving from a cube
C to an adjacent cube D, Bob runs into an obstacle. In this case, CGraphTraverse(C) has
Bob return to C, never to visit D again. This is OK, since Bob need only visit those cubes
that can contain the center of a radius r + ε sphere. We’ll see that in these circumstances,
a sphere of radius r+ ε cannot have its center at any point in D, so e ∈ O: let d be a point
in D and let c be Bob’s center upon hitting an obstacle point, o. Notice that the distance
from c to o is r. The distance from c to the center of D is at most l, which is at most
ε/2. The distance from d to the center of D is at most ε/2. By the triangle inequality, the
distance from d to o is at most r + ε.

Finally, Bob only moves to unexplored adjacent cubes, making Bob’s path a tree. This
proves the lemma.

�

The CBoxes algorithm does solve the modified COV ER problem, but unfortunately does
not necessarily do so competitively. The problem comes from spaces which have a bottleneck ;
we say a space has a bottleneck if there are non-obstacle points within distance r′ of an
r-path from S that are not within distance r′ of an r′-path from S. These arise, for instance,
from corridors of diameter between 2r and 2r′. If there is a bottleneck, a radius r robot
might, for example, start in a very small room and unwittingly travel through a corridor
of radius less than 2r′ into a very big room. Modified COV ER only requires coverage of
the small room, so a robot that covers the large room is not optimal. We see two ways of
alleviating this situation. The first is to provide Bob with a myopic visual sensor, able to
detect bottlenecks: that is, able to detect all obstacle points within distance ε or so. To
keep with the non-visual emphasis of this paper, we choose to analyze the second solution,
by restricting our spaces to have no bottlenecks.

Theorem 7.2. Assume ε < 2r. For a given space X without bottlenecks, let lopt be the
length of an optimal path solving modified COV ERn. Then there exist constants c(n, r, ε)
and d(n, r, ε) such that the length of the path generated by CBoxesε is at most c(n, r, ε)lopt+
d(n, r, ε).

For fixed n, r, and ε, this is a linear upper bound, making CBoxesε optimally competitive:

Corollary 7.3. When restricted to spaces without bottlenecks, the CBoxesε algorithm is
optimally competitive for solving the modified COV ERn problem.

Proof of Theorem 7.2. By Lemma 7.1, most of the CBoxes algorithm is in a depth-first
search of a subtree of G. The number of edges in a tree is the number of vertices minus
1, and Bob travels on each edge exactly twice. The length of each edge is l. Let o be the
optimal r′-path that solves COV ER.

We claim that the number, c, of cubes that o passes through is at most 3n(lopt/l+ 1). To
see this, first consider a path of length l (the width of a box). The number of cubes that
this path passes through is at most the maximum number of cubes that intersect an l-ball.
Projecting this l-ball onto any dimension, we see that it intersects at most 3 cubes (in that
dimension). Thus the ball is bounded by a bounding box, three cubes on a side, so a path
of length l intersects at most 3n cubes (In fact, the actual maximum is 3 × 2n−1). Now,

18 J. BROWN KRAMER AND L. SABALKA

break o into several paths of length l and one of length at most l. If lopt = 0, there is one
such sub-path, and otherwise there are dlopt/le sub-paths. At any rate, the number of sub
paths is at most lopt/l + 1, and each one intersects at most 3n cubes, proving the claim.

Now, we claim that the number of cubes whose centers CBoxes visits or tries to visit is
O(c). Let C be such a cube. Then Bob’s center comes within l < ε < r′ of the center of
C. Since there are no bottlenecks, C’s center is within r′ of a point p on an r′-path. Since
o solves COV ER, o contains a point q within r′ of p. Let D be the cube containing q.
By the triangle inequality, C is contained in the radius ε/2 + l + r′ + r′ + ε/2 ≤ 3.5ε + 2r
ball centered at D. If V (3.5ε + 2r) is the volume of the n-sphere of radius 3.5ε + 2r, then
there are at most V (3.5ε + 2r)/ln cubes in this sphere. This is certainly no more than
[(3.5ε + 2r)/l]n. Hence, the number of cubes visited successfully or unsuccessfully by Bob
is at most c[(3.5ε+ 2r)/l]n.

The length of Bob’s path is at most 2l times the number of Boxes Bob visits or tries to
visit. This is at most 2lc[(3.5ε+ 2r)/l]n ≤ 2l3n(lopt/l + 1)[(3.5ε+ 2r)/l]n.

�

8. Analysis of Boxes

Theorem 8.1. If there is an (r+ ε)-path, p, from S to T , then Boxesε(S, T) will move Bob
from S to T .

Proof. If there is an r′-path from S to T then the analysis from Theorem 7.1 guarantees
that there is a path moving directly between centers of adjacent cubes from S to T . Given
a large enough bounding ellipsoid, Bob will find this path. �

We now compute an upper bound on complexity for Boxes. First, though, note that
Gabriely and Rimon use ellipses as the virtual boundary obstacles. In fact, for the NAV
problem, the (rotationally symmetric) ellipsoid is the optimal shape in general, as an ellip-
soid is precisely the locus of points along paths from S to T of a given length, which will
play a roll in the proof below.

Theorem 8.2. Let lopt be the length of the optimal path from S to T for a robot of radius
r + ε. Then the length of the path generated by Boxesε is at most

cn(lopt)n
(

1
ε

)n−1

+
dn
ε

+ ε

where cn = 16·32n−1

2n−1 for n = 2, 3 and cn = 16nn(n−1)/2

2n−1 for n > 3, and dn = 2 ∗ 6n for n = 2, 3
and dn =

√
n ∗ 6n for n > 3.

Corollary 8.3. For a fixed ε, the Boxesε algorithm is optimally competitive when solving
both the modified SEARCHn and modified NAVn problems.

Proof. As is the case with the CBoxes algorithm, the Boxes algorithm has Bob traverse a
subtree of the graph G defined in Section 7. The number of edges in a tree is the number
of vertices minus 1, and Bob travels on each edge at most twice. Furthermore, when Bob
makes a false start down a blocked edge to some cube, Bob never attempts to move to that
cube again (as it will be colored Red). Thus the path of Boxes during any iteration is at
most 2l times the number of cubes that intersect or are contained in E . For an easy and

MULTIDIMENSIONAL ONLINE ROBOT MOTION 19

succinct upper bound on the number of such cubes, we note that the ellipsoid is contained in
the hypercube of volume (2a)n centered at the barycenter of the ellipsoid. This hypercube
intersects at most (2a/l + 2)n < (4a/l)n cubes in the partition of X.

Suppose Boxes has terminated after iteration i, with a = 2ia0. If i > 0, then a is finally
large enough that GraphTraverse finds its way to T , while the previous bounding ellipsoid
is not large enough. In particular, lopt > a/2 = 2i−1a0, since otherwise the optimal path
would be entirely within the previous bounding ellipsoid, and hence Boxes would have found
a path between the centers of White cubes in that iteration. Thus the total number of edges
that Boxes traverses is at most

i∑
j=0

(
4 · 2ja0

l

)n
=

(
4a0

l

)n i∑
j=0

2jn

=
(

4a0

l

)n (2i+1)n − 1
2n − 1

<

(
4
l

)n (2i+1a0)n

2n − 1

<
1

2n − 1

(
16lopt
l

)n
.

If i = 0, then of course lopt ≥ d(S, T), so we still have lopt > a0/2 unless possibly when
d(S, T) ≤ l. If d(S, T) ≤ l, a = a0 ≤ 2l. In this case, the total number of edges Boxes
traverses is at most (

2 · a
l

+ 2
)n
≤ 6n.

Each edge has length l. Remembering that we have to move to and from the centers of the
first and last cubes, we may need to travel an additional length

√
nl ≤ ε. Noting that l is

defined in terms of ε gives an upper bound on the total distance traveled while executing
Boxes:

l

2n − 1

(
16lopt
l

)n
+ 6nl + ε ≤ cn(lopt)n

(
1
ε

)n−1

+
dn
ε

+ ε,

where cn and dn are the constants in the statement of the theorem.
�

9. Motivations and Observations

We wish to comment on the motivations and observations for the various algorithms
above.

The key idea for CBoxes and Boxes is to consider the tasks from a coarse-geometric
viewpoint. The introduction of the clearance parameter ε and the modification of the tasks
allow us to approximately, or coarsely, achieve the initial goals. The introduction of the grid
of cubes is to have Bob discretely sample the unknown environment. Indeed, the ability to
navigate around an obstacle in dimension greater than 3 cannot be accomplished by simple
clockwise traversal of an object – a robot cannot touch every point on the boundary of an

20 J. BROWN KRAMER AND L. SABALKA

Figure 5. On the left is a spherical obstacle. The central figure shows which
cubes in the given cube decomposition of the surrounding space intersect
the spherical obstacle. On the right is the shadow of the appropriate Rips
complex, which is essentially the approximation of the obstacle our algorithm
uses.

n > 1 dimensional obstacle in finite time – so some discretization is necessary (as is having
a nonconstant amount of memory).

In terms of obstacle boundaries, the discretization we invoke should be familiar to, for
instance, image analysts, graphics programmers, or anyone modelling 3-dimensional objects.
We use the discrete sampling of the space to form a mesh of points near an object, and
approximate the object using this mesh. In mathematical terms, we are essentially taking
the shadow of the ε-Rips complex of centers of cubes which are within r of an obstacle.
The d-Rips complex of a set of points V with known distances between the points is the
abstract simplicial complex such that there is a simplex with vertices {vα} ⊂ V if and
only if the maximal distance between points in {vα} is at most d. The shadow of the Rips
complex is the projection of the Rips complex into Rn, where a simplex with vertices {vα}
is mapped to the convex hull of the points {vα}. Thus, the shadow of the Rips complex can
be thought of as a local convex hull of grid points near obstacles. Although Bob does not
actually compute the shadow of the Rips complex when executing our algorithms, this was
a motivation for our algorithm.

In fact, we believe it is possible to eliminate dependence on a particular decomposition
of X into cubes, allowing motion in arbitrary directions and allowing arbitrary points of
contact with obstacles. Such a modification could require computation of the Rips complex
and its shadow.

We also wish to mention an interesting result of Caraballo related to navigation problems.
Caraballo’s result states in the case of Rn that:

Theorem 9.1. [5] Let C be a compact subset of Rn. For any point q ∈ X and for almost
every r > 0:

V oln−1((d−1
C (r)) ∩Bn(q, 2r)) ≤ 4n+1rn−1,

where dC(x) := d(x,C) and Bn(q, 2r) is the n-ball of radius 2r about q.

Let us reinterpret Caraballo’s result:

Corollary 9.2. Let X ⊂ Rn be a space to be explored. Let ∆ denote the boundary of the
set of all points in X of distance at most r from an obstacle point of X. For almost all r,

MULTIDIMENSIONAL ONLINE ROBOT MOTION 21

(1) The volume of ∆ is finite.
(2) There is a uniform bound K(r) on the volume of ∆∩B(q, 2r) for any point q ∈ X.

For an example of a surprising implication of Caraballo’s Theorem, consider a fractal
curve C ⊂ R2. Let X consist of all points within r+ ε of C, and let ∆ denote the boundary
of the set of all points in X of distance at most r from its boundary (that is, points of
distance ε from C). If ε = 0, then ∆ = C and ∆ has infinite length. But Caraballo’s
theorem says that for almost all other ε, the length of ∆ is finite!

The importance of Caraballo’s Theorem is in the uniform control on how much a robot is
meant to explore given a space X. Although this control on volume proves nothing about
an algorithm’s runtime in higher dimensions, it suggests that our tasks are at least close to
solvable.

In environments with finitely many obstacle points, Caraballo’s Theorem has more di-
rectly applicable consequences. We claim that, in such environments and for n = 2 in
particular, Caraballo’s Theorem justifies the quadratic competitiveness of the CBUG algo-
rithm (see Theorem 3.2 and the following discussion), as follows.

Corollary 9.3. Fix n = 2 and an environment X with finitely many obstacle points. For
every r > 0, there exists some constant k = k(r) such that, if Bob traverses some path γ
of finite length l by moving along the boundary of an obstacle, then l is at most k ·A/(2r),
where A is the area swept out by Bob while traversing γ.

Proof. Consider the function f : R → R ∪ {∞} defined so that f(t) is the 1-volume of the
boundary of the t-neighborhood of the obstacles of X. By Caraballo’s result, for almost all
t, f(t) is finite with an explicit upper bound. As there are finitely many obstacle points in
X, it is a small exercise to see that f varies continuously with t. Thus, Caraballo’s result
shows that f(t) is everywhere finite with an explicit upper bound. If we cover γ with N balls
of radius r/2, then Caraballo’s result tells us that, since balls of radius r/2 are contained
in balls of radius 2r,

l ≤ N ·K(r).
We now choose a particular covering of γ by balls of radius r/2. Take the lattice of points

in R2 such that each coordinate of each point is an integer multiple of r/(2
√

2). Note the
maximal distance from any point in R2 to a lattice point is r/4. Place a ball of radius r/2
about each lattice point, so that every point in R2 is in some ball. Now, keep only those
balls which intersect γ. Let N denote the number of such balls.

Each of the balls in our chosen covering has diameter r and contains a point of γ, so is com-
pletely contained in the r-neighborhood of γ. Also, any given point of the r-neighborhood
of γ is contained in at most 4 balls, by the choices made in placing the balls. Thus, dividing
the sum of the volumes of the N balls by 4 gives a lower bound on A:

N · V ol2(B(r/2))/4 ≤ A.
Combining the two above calculations, we obtain:

l

26r
=

l

K(r)
≤ N ≤ 4

V ol2(B(r/2))
A =

24

πr2
A.

Solving for l, we have:

l ≤ 2048
π

1
2r
A.

22 J. BROWN KRAMER AND L. SABALKA

This provides the desired k.
�

Note Bob always follows a 1-dimensional path, so Caraballo’s result will not help us
estimate lengths of paths when n > 2, even for nice values of r and finitely many obstacle
points. However, we note there are statements of similar results for higher values of n
and finitely many obstacle points, estimating the (n − 1)-volume of the boundary of the
neighborhood of obstacle points.

For finite numbers of obstacle points, ∆ consists of arcs of circles - i.e. ∆ is a smooth
curve along which a robot can roll. The Caraballo result says that ∆ has finite length, but
it is important to note this does not take into account time taken for a robot to change
directions. That is, it is assumed that a robot can turn instantaneously. If turning time
is taken into account, then there is probably no upper bound on runtime for an algorithm
tracing ∆.

10. Observations and Improvements

We are able to make a number of improvements to the algorithms described.

10.1. Sampling Improvement for COV ER, SEARCH, and NAV . For this paper, we
have chosen to discretely sample the unknown environment X via the centers of a grid of
cubes. These centers form a lattice (in fact, a cubical lattice: they are the vertices of the
dual cubical tiling). Let the diameter of a lattice denote the maximum distance between
points in a primitive cell of the lattice – that is, a fundamental domain of the quotient of
Rn by the translational symmetries of the lattice. The only mathematical properties of the
lattice we used were that every point in Rn was within r of a point of the lattice, and that
the diameter was at most ε. In fact, other lattices would work. One should be able to choose
a more efficient lattice structure to sample the space with fewer lattice points. This problem
is closely related to that of sphere-packing. Duals of lattices associated to optimal sphere-
packing seem to reduce the number of lattice points per volume needed. In particular, using
the duals of the lattices associated with Gauss’s hexagonal sphere-packing in dimension 2
or close packings in dimension 3 should yield better results in those dimensions. Indeed, if
one could find a good way of encoding it, even a good irregular sphere-packing would yield
a better sampling of X.

10.2. Taking Diagonals Improvement for COV ER, SEARCH and NAV . Our com-
plexity estimates in part relied on the distances between centers cubes sharing a codimension-
1 face. However, one can obtain similar estimates even if one allows Bob to travel from
the center of one cube to the center of any other adjacent cube, sharing a face of arbitrary
codimension. This may worsen the complexity estimates, but should improve average-case
runtime by a factor of up to

√
n.

10.3. Noticing T Improvement for SEARCH. While trying to solve the SEARCHn

problem, it will occasionally happen that Bob finds out where T is but cannot move its center
directly to T because of nearby obstacles (for instance, when ε < (

√
2−1)r and T is close to

the center of a gap in obstacles slightly smaller than Bob). Whenever T is discovered, the
Boxes algorithm should begin to treat SEARCHn as if it were a NAVn problem, and use

MULTIDIMENSIONAL ONLINE ROBOT MOTION 23

the improvements below for choosing the cube D referenced in the GraphTraverse algorithm
and travelling expediently to T .

10.4. Maximal Coloring Improvement for COV ER, SEARCH and NAV . One
straightforward improvement to the algorithms is to take full advantage of knowing a point
on the boundary of an obstacle. Currently, if Bob runs into an obstacle, only the cube D
that Bob was trying to get to is colored Red. But Bob knows that many other cubes should
also be colored Red. The Maximal Coloring Improvement is, whenever an obstacle point
is encountered, to color all cubes Red that have all corner points within distance r′ of the
given obstacle point. As a cube is convex, this is equivalent to saying a robot of radius r′

with center in the cube will intersect the obstacle point.
If we are solving SEARCH or NAV and we know T is in a Red cube, stop. T cannot

be reached.
This improvement will cause many White and Pink cubes to be colored Red, and occa-

sionally will cause a Yellow cube to be colored Red. To take this into account, Bob needs to
check and see if the Yellow cube C ′ colored Red is directly between the cube CS containing
S and the current cube C in the spanning tree generated by the CBoxes and Boxes algo-
rithms. If C ′ is between CS and C, then Bob should immediately return to the cube before
C ′, ignoring any White neighbors of cubes between C ′ and C. Either these neighbors will
be explored via some other route, or they are not reachable by a robot of radius r′ and so
should not be explored.

10.5. Gray Improvement for NAV . For the modified NAVn problem, another improve-
ment may be made by adding a new color. As written, GraphTraverse will explore every
possible White cube, even if exploration would give Bob no new information on how to get
to T . For instance, consider a space with a very large sphere about S as an obstacle sepa-
rating S from T . Place a hole in the sphere so that a robot of radius r + ε can fit through.
Imagine that Bob has explored the entire inner boundary of the sphere, and finally reaches
the hole. Clearly, Bob should exit the sphere, as exploring any more boxes inside the sphere
would just require backtracking, and Bob knows it. This knowledge should be incorporated
into the algorithm, and can be as follows. We create a new color designation:

• Gray: Never to be explored.
Bob doesn’t know what’s in a Gray cube, but Bob will never go into one. If there is ever a
connected component Z of the union of all White cubes that doesn’t contain T , color every
cube in Z Gray. Any path through centers of cubes to T through Z can be replaced by a
path not through Z (eventually, entirely through Yellow cubes).

When combined with the Pink color designation for the Boxes algorithm, note that which
cubes are White and which are Gray should be recomputed by Boxes between executions
of GraphTraverse.

10.6. Greedy Improvement for NAV . Coloring cubes Gray can potentially save Bob
unnecessary exploration time by helping decide which cube D to explore next while execut-
ing the GraphTraverse algorithm. In fact, there is an even more efficient way of choosing
which cube D to explore in the GraphTraverse algorithm. At every step, choose D as fol-
lows. If there is a path from the current cube C through centers of cubes to T such that all
cubes on the path are colored White except possibly at the endpoints, then find a shortest

24 J. BROWN KRAMER AND L. SABALKA

such path γ. Choose D to be the next cube along γ from C. If there is no path from C
though centers of White cubes to T , there is no need to explore any adjacent unexplored
cubes. In fact, with the Gray Improvement, there can be no adjacent White cubes: all adja-
cent unexplored cubes can be colored Gray. In this situation, GraphTraverse will have Bob
back up to the last cube which is not surrounded by non-White cubes. If ever there does
not exist a path from a previously explored Yellow cube through White cubes to T , stop:
no path exists from S to T for a robot of radius r + ε. In other words, choose D greedily,
and this is guaranteed to work. Note this way of choosing D does not actually require the
introduction of the color Gray, and this improvement supersedes the Gray Improvement.

We note that this improvement can in particular be applied to Boxesε when in 2-
dimensional environments. Compared to CBUG, Boxes has two drawbacks: the require-
ment of nonconstant memory, and the introduction of the clearance parameter ε, particularly
in the dependence on ε in the upper bound on competitiveness. However, both algorithms
are optimally competitive with respect to modified lopt, and in many environments the
Greedy Improvement will help Boxes by always proceeding towards the target instead of
exploring the entirety of an obstacle.

10.7. Wide Open Spaces Improvement for COV ER, SEARCH and NAV . Cur-
rently, our algorithms use very small cubes to explore X. If X has a large open area to
explore, this can be wasteful. Just as the Maximal Coloring Improvement takes advantage
of where obstacles are, we should also take advantage of where obstacles are not. We can
do this with the following observation. Let N denote the r′-neighborhood of the center of
a White cube C. If N is contained in the union of r-neighborhoods of all (nearby) centers
of Yellow cubes, then we know even without visiting C that C should be colored Yellow (or
some color designating that the cube need not be visited).

If the cubes which are visited are chosen carefully, this can greatly reduce the number
of cubes which need to be explored. We note, however, that this improvement is mostly
unnecessary when using the following Subdivision Improvement, which is similar in essence.

10.8. Subdivision Improvement for COV ER, SEARCH and NAV . Our algorithm
as stated subdivides the ambient space into cubes which are as small as necessary to prove
our theorems. But boxes of side length less than ε/

√
n can be too small in large, sparsely

obstructed environments. The only time it was necessary for us to use such small cubes
was when proving our algorithm successfully executes in task instances which require Bob
to pass through tight corridors, of diameter greater than r + ε but not by much. We may
search for such tight spaces using a much coarser exploration grid (i.e. much larger boxes),
and only subdivide one of these larger boxes into smaller boxes when necessary.

We present here the precise subdivision algorithm for NAV . The other algorithms are
similar.

Begin by breaking X into a grid of axis-parallel cubes of side length l′ on the order of
r, so that the centers of adjacent cubes (sharing a face with arbitrary codimension) are no
more than 2r apart – say, l′ := r/(2

√
n). Start with a fixed-radius bounding ellipsoid and

execute Boxes with the following changes. When an obstacle point, p, is encountered, color
cubes Red like in the Maximal Coloring Improvement. Subdivide a non-Red cube into 3n

subcubes if its side length is greater than l and it intersects the r′ ball centered at p. Color
each of the newly created cubes as appropriate: White by default, Red if all corners are

MULTIDIMENSIONAL ONLINE ROBOT MOTION 25

within r′ of the obstacle point, Pink if entirely outside of the virtual bounding ellipsoid,
and Yellow when the center has previously been visited. Subdivided cubes are adjacent to
any cube with which they share any portion of a face. If execution stops without reaching
T , color every Yellow cube White and restart with the new set of cubes. Continue until no
new subdivisions are created. If at this point T has not been reached, expand the bounding
ellipsoid and repeat.

Proof of correctness. Suppose the ellipsoid is large enough to contain an r′ path, ρ, from
S to T . Then we claim that the algorithm finds T before expanding the ellipsoid again.
Suppose not. Then the algorithm goes through an iteration without finding T and without
subdividing a cube. Since ρ is an r′ path, it never enters a Red cube. Thus ρ either never
leaves Yellow cubes or it enters a White cube, W , adjacent to a Yellow cube, Y .

In the first case, Bob visited the center of the cube C containing T but was unable to
move straight from the center to T , so Bob must have hit an obstacle point, p. The r′

neighborhood of p contains Bob’s center and thus intersects C. Since ρ also intersects C, C
is not entirely contained in the r′ neighborhood of p. Thus C should have been subdivided,
and we have reached a contradiction.

In the second case, Bob attempted to move from the center of Y to the center of W but
encountered an obstacle point. Similar to the reasoning in the previous paragraph, either
Y or W should have been subdivided. �

The Subdivision Improvement means that, for the vast majority of the time, our al-
gorithms will quickly move about in large steps. Although we give no analysis here, the
length of the path travelled using the Subdivision Improvement can be made to be at most
a constant times the length of the path travelled without the improvement by limiting the
number of times the algorithm can restart within each ellipsoid. Thus, the upper bound on
competitiveness with the Subdivision Improvement is in the same complexity class as the
basic algorithm. In typical cases, with the Subdivision Improvement our algorithms should
not only run faster but need far less memory to execute.

References

[1] Ricardo A. Baeza-Yates, Joseph C. Culberson, and Gregory J. E. Rawlins. Searching in the plane.
Inform. and Comput., 106(2):234–252, 1993.

[2] Piotr Berman. On-line searching and navigation. In Online algorithms (Schloss Dagstuhl, 1996), volume
1442 of Lecture Notes in Comput. Sci., pages 232–241. Springer, Berlin, 1998.

[3] Avrim Blum, Prabhakar Raghavan, and Baruch Schieber. Navigating in unfamiliar geometric terrain.
SIAM J. Comput., 26(1):110–137, February 1997.

[4] John Canny. The complexity of robot motion planning. The ACM Distinguished Dissertation Series. The
MIT Press, 1988.

[5] David G. Caraballo. Areas of level sets of distance functions induced by asymmetric norms. Pacific J.
Math., 218(1):37–52, 2005.

[6] Howie Choset and Joel Burdick. Sensor-based exploration: the Hierarchical Generalized Voronoi Graph.
International Journal of Robotics Research, 19(2):96–125, February 2000.

[7] James Cox and Chee-Keng Yap. On-line motion planning: the case of a planar rod. Ann. Math. Artif.
Intell., 3(1):1–20, 1991.

[8] Amos Fiat and Gerhard J. Woeginger, editors. Online algorithms: the state of the art, volume 1442 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998. Papers from the Workshop on the
Competitive Analysis of On-line Algorithms held in Schloss Dagstuhl, June 1996.

26 J. BROWN KRAMER AND L. SABALKA

[9] Yoav Gabriely and Elon Rimon. Cbug: A quadratically competitive mobile robot navigation algorithm.
Preprint, January 2005.

[10] J. C. Latombe. Robot Motion Planning. Kluwer Academic, Boston, MA, 1991.
[11] Steve Lavalle. Planning Algorithms. Cambridge University Press, 2006.
[12] Vladimir J. Lumelsky and Alexander A. Stepanov. Path-planning strategies for a point mobile automa-

ton moving amidst unknown obstacles of arbitrary shape. Algorithmica, 2(4):403–430, 1987. Special
issue on robotics.

[13] C. H. Papadimitriou and M. Yannakakis. Shortest paths without a map. Theoretical Computer Science,
84:127–150, 1991.

[14] C. N. Shen and G. Nagy. Autonomous navigation to provide long distance surface traverses for Mars
rover sample return mission. Proc. IEEE Symp. on Inelligent Control, pages 362–367, 1989.

Department of Mathematics and Computer Science, Illinois Wesleyan University, Bloomington IL

61701

E-mail address: jbrownkr@iwu.edu

Department of Mathematical Sciences, Binghamton University, Binghamton NY 13902-6000

http://www.math.binghamton.edu/sabalka

E-mail address: sabalka@math.binghamton.edu

http://www.math.binghamton.edu/sabalka

	1. Introduction
	2. Competitiveness
	3. Solving NAV2: the CBUG Algorithm
	4. Modifying TASKn: Clearance Parameter
	4.1. Notation
	4.2. Clearance and the Modified TASKn Problem

	5. Universal Lower Bounds
	5.1. Constructing the Space
	5.2. Analysis of the Space

	6. The Algorithms
	6.1. Colors
	6.2. The CBoxes Algorithm
	6.3. The Boxes Algorithm

	7. Analysis of CBoxes
	8. Analysis of Boxes
	9. Motivations and Observations
	10. Observations and Improvements
	10.1. Sampling Improvement for COVER, SEARCH, and NAV
	10.2. Taking Diagonals Improvement for COVER, SEARCH and NAV
	10.3. Noticing T Improvement for SEARCH
	10.4. Maximal Coloring Improvement for COVER, SEARCH and NAV
	10.5. Gray Improvement for NAV
	10.6. Greedy Improvement for NAV
	10.7. Wide Open Spaces Improvement for COVER, SEARCH and NAV
	10.8. Subdivision Improvement for COVER, SEARCH and NAV

	References

