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Abstract
Reverse nearest neighbor queries are defined as followsn@ivinput point seP, and a query
pointg, find all the pointg in P whose nearest pointiR U {¢} \ {p} is ¢. We give a data structure
to answer reverse nearest neighbor queries in fixed-dimealdtuclidean space. Our data structure
usesO(n) space, its preprocessing timed$n logn), and its query time i®(log n).

1 Introduction

Given a setP of n points inR?, a well-known problem in computational geometry is neanesghbor
searching: preproced3such that, for any query poigt a point inP that is closest tq can be reported
efficiently. This problem has been studied extensivelyhis paper, we consider the related problem of
reverse nearest neighbor searchjmghich has attracted some attention recently.

The reverse nearest neighbor searching problem is theviallp Given a query poing, we want
to report all the points irP that haveg as one of their nearest neighbors. More formally, we want to
find the pointsp € P such that for all pointg’ € P\ {p}, the distancepy’| is larger or equal to the
distancelpg|.

The earliest work on reverse nearest neighbor searching ko and Muthukrishnari [11]. They
motivate this problem by applications in databases. Thmir@ach is based on R-Trees, so it is unlikely
to give a good worst-case time bound. Subsequently, thesevearest neighbor searching problem
has attracted some attention in the database communhitZ[3.31 15[ 16, 18, 19, 20].

The only previous work on reverse nearest neighbor seaychirere worst-case time bounds are
given is the work by Maheshwari et al. [14]. They give a datacitire for the two-dimensional case,
usingO(n) space, withO(nlog n) preprocessing time, ar@d(log n) query time. Their approach is to
show that the arrangement of the largest empty circles ihis data points has linear size, and then
they answer queries by doing point location in this arrang@m

In this paper, we extend the result of Maheshwari et al. [@4rbitrary fixed dimension. We give
a data structure for reverse nearest neighbor searchii®f,iwhered = O(1), using the Euclidean
distance. Our data structure has sizé1), with preprocessing timé&(nlogn), and with query time
O(logn). Itis perhaps surprising that we can match the bounds fdntbelimensional case in arbitrary
fixed dimension. Fonearest neighbor queriethis does not seem to be possible: The bounds for nearest
neighbor searching in higher dimension depend on the cotiyplef the Voronoi diagram, which is
O(n!4/21) in d-dimensional space.

Our approach is similar to some previous work on approxinvat®noi diagrams([2, /9, 10]: the
space is partitioned using a compressed quadtree, eacbf ¢bls quadtree containing a small set of
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candidate points. Queries are answered by finding the cefdizong the query point, and checking all
the candidate points in this cell. Interestingly, this agmh allows to answer reverse nearest neighbor
gueries efficiently anéxactly while it only seems to give approximations for nearest Inieay search-
ing.

Our model of computation is the real-RAM model, with someitioldal operations that are common
in quadtree algorithms, such as the floor function, the itlwarlog,, and the bitwisexoRr. In particular,
we need to be able to find in constant time the first binary digithich two numbers differ. This allows,
for instance, to find in constant time the smallest quadtoeetiat contains two given points. For more
details on this issue, we refer to the lecture notes of H&ePE], and to previous work related to

quadtrees [4,18].

2 Compressed quadtrees

In this section, we describe compressed quadtrees, a wallrkdata structure in computational geom-
etry. A more detailed presentation can be found in Har-Peledture notes [9], in the article on skip
quadtrees by Eppstein, Goodrich, and Sun [8], or in thelartig Bern, Eppstein and Teng| [4]. We first
describe quadtrees, and then we describe their compresssdn:

We consider quadtrees Ik, whered = O(1). We denote by, the hypercubé—1, 1]%; the leaves
of a quadtree will form a partition off,.

A quadtree boxs either H,., or is obtained by partitioning a quadtree bBxinto 2¢ equal sized
hypercubes—these hypercubes are calledjtfairantsof H. A quadtree is a data structure that stores
quadtree boxes in a hierarchical manner. Each nodéa quadtree stores a quadtree litfx), and
pointers to its parent and its children. We a&(l’) thecell of nodev. In this paper, the cell of the root
of a quadtree is always the bd¥,.. Each node’ either is a leaf, or hag? children that store the?
quadrants of (v). With this definition, the cells of the leaves of a quadtremnfa partition ofH,..

Let S denote a set of» quadtree boxes. We can construct the smallest quadtreeewlodes store
all boxes inS' as follows. We start by constructing the rootSIifc {H, }, then we are done. Otherwise,
we construct th@? children of the root. We consider the subsgtc S (resp.Ss, Ss, . . .) of the boxes
in S contained in the first quadrant (resp. second, third,...g.cdhstruct recursively the quadtree, by
taking the first (resp. second, third, ...) child as the rogt @sing the set of boxes; (resp.Ss, Ss,...).

The above construction results in a quadtree that storghealboxes inS. Even though it is the
smallest such quadtree, its size can be arbitrarily largernvghcontains very small boxes. To remedy
this, we use &ompressed quadtree/hich allows to bypass long chains of internal nodes.

In order to reduce the size of the data structure, we allowdifferent kinds of nodes in a compressed
guadtree. Arordinary nodestores a quadtree box as before.cémpressed node, however, stores
the differenced \ H' of two quadtree boxeé#/ and H’'. We still call this difference the cell(v).
Compressed nodes are always leaves of the compressedeguadtr

As in a quadtree, the cells of the children of a ned®rm a partition ofC(v). But two cases are
now possible: either these cells are the quadrantyof, or v has two children, one of them storing a
quadtree boX¥{ C C(v), and the other storing(v) \ H.

The construction of a compressed quadtree that storeediokes inS is analogous to the construc-

tion of the ordinary quadtree, with the following differencAssume we are processing an internal node
v. Let H denote the smallest quadtree box containing the boxédliat are strictly contained i6(v).
If H = C(v), then we proceed exactly as we did for the ordinary quadtneeconstruc? children
corresponding to the quadrantsif). Otherwisey has two children, one stord$, and the other is a
compressed node that sto®s’) \ H. Intuitively, this construction of a compressed node aflas to
“zoom in” when all the boxes id(v) are within a small area, and avoids a long chain of interndkeso
(See Figuréll.)

A direct implementation of the quadtree construction thatjust described would lead t0(m?)
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Figure 1: (a) A set of quadtree boxes. (b) The quadtree sttiigse quadtree boxes. (¢) The compressed
guadtree storing the same set of quadtree boxes. The tvgcorethe left side correspond to compressed
nodes.

construction time and(m) query time, since a quadtree may have linear depth. Howiermpossi-
ble to achieveD(mlog m) construction time and (log m) query time using different algorithms for
constructing and querying a compressed quadtree. One suskraction is presented in Har-Peled’s
lecture notes [9]. The idea is first to find a quadtree Bgihat contains a constant fraction of the input
boxessS, which can be done in linear time by choosing the center antlbagertices of an irregular,
constant-size grid. Then one computes recursively a caapdequadtree for the s&f, of the boxes

in S that are contained i6y, and forS,,; = S\ Si,. Finally, these two quadtrees are merged in linear
time, essentially by hanging the quadtreeSgf at a leaf ofS,,;.

The quadtree can be queried(tlog m) time by constructing &inger treeover the quadtree, which
is an auxiliary data structure to allow faster search. (HEgproach is also presented in Har Peled’s
notes [9].) We first find a cell of the quadtree such that thereebrooted at the corresponding node
contains a constant fraction of the boxesSn This node is called aeparatorand can be found in
linear time by traversing the quadtree. This constructforepeated recursively on the forest obtained
by removing this node. The construction allows to answerexrygin O(log m) time, as this tree has
O(log m) depth. So we have the following bounds for constructing aretyjng a quadtree:

Lemmal. LetS be a set ofn quadtree boxes contained Hi.. We can construct in tim@(m logm) a
compressed quadtreég, such that each box i is the cell of a node of . This compressed quadtrge
has sizeD(m). After O(mlogm) preprocessing time, we can find for any query pgirt H, the leaf
of T whose cell containg in time O(log m).

Note that a query point might lie on the boundaries of sevegli$. In this case, we break the tie
arbitrarily, and we return only one cell containing

3 Datastructurefor reverse nearest neighbor queries

In this section, we describe the construction of our datactire and how we answer reverse nearest
neighbor queries. This data structure is a compressedrgeaditith a set of candidate points stored at
each node. To answer a query, we locate the leaf of the cosgutepiadiree whose cell contains the
query point, and we check all the candidate points in thi§ tba reverse nearest-neighbors are among
these points. We start with some notation.

Our input point set is denoted by = {p1,...,p,}, with n > 2. We still work in R, where
d = O(1), and soP C R?. Theempty ballb; is the largest ball centered @t < P that does not contain
any other point ofP in its interior. In other words, the boundary of the emptyl bahtered ap goes
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Figure 2: Notation.

through the nearest point toin P \ {p}. In this paper, we only consider closed ballsps@s a reverse
nearest neighbor of a query poipif and only if g € b;.

Let Hp be a smallest axis-alignettddimensional hypercube containing the input pointRBewith-
out loss of generality, we assume ti&p = [—1/2v/d, 1/2v/d]%; then any empty ball is contained in
H, = [-1,1]%. Whenv is an ordinary node, we denote bft) the side length of the quadtree b6 ).

We first compute the set of all the largest empty ballsforThis can be done i®(n logn) time
using Vaidya'’s all-nearest neighbors algoritim|[17]. Weate byr; the radius ob;. For eachh;, we
compute the quadtree boxes with side lengtf2in, 4r;) that overlap;. (See Figuré]2.) Our model of
computation allows us to do this i@(1) time. There are at mogt' such boxes; we denote them by
hl,je{l,...,2¢}

Using LemmadlL, we construct iff(nlog n) time a compressed quadtrgeof sizeO(n) such that
each boxh! appears ir7. For each node of T, if the corresponding cell(v) is k!, we storep; as a
candidate point for. Storing these candidate points can be done during thercotish of the quadtree
within the same time bound. Notice that we may store severalidate points for a given node

These sets of candidate points are not sufficient for ourgaarpso we will add some other points.
For each ordinary (non-compressed) nogdere store the pointg; such that; > s(v)/4 andb; overlaps
C(v); this list of candidate points is denoted Byr). In order to analyze our algorithm, we need the
following lemma, which is proved in Sectignh 4.

Lemma 2. For any ordinary nodev, the cardinality of the set of candidate poinf§v) stored atv
isO(1).

We construct the list€(-) by traversing7™ recursively, starting from the root. Assume thas the
current ordinary node. The poings such thati] = C(v) for some;j have already been stored:atBy
our construction, they are the pointsin £(v) such thats(v)/4 < r; < s(v)/2. So we need the other
candidate pointgy, such that, > s(v)/2. These points can be found £(’), wherev/ is the parent
of v. So we insert inC(v) all the pointsp, € L£(v') such that overlapsC(v), which completes the
construction ofZ(v). By Lemmd2, this can be done (1) time per node, and thus overall, computing
the lists of candidate points for ordinary nodes takgs) time.

If v is a compressed node, andis its parent, we just sei(v) = L(v'). We complete the construc-
tion of our data structure by handling all the compressedagaod

Given a query point, we answer reverse nearest-neighbor queries as follows. ¢f H,., then
we return(), because we saw earlier that all empty balls aré/jn Otherwise, we find the leaf such
thatq € C(v), which can be done i (logn) time by Lemmadll. For each poipt € £(v), we check
whetherp; is a reverse nearest neighbor, that is, we check whethéds;. If this is the case, we repapt.

We still need to argue that we answered the query correctssufe thap,, is a reverse nearest
neighbor ofg, and the leaf’ containingg is an ordinary node. Ag < by, we havey € hj, for somey,
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and since the side length bg is less thantry, we haves(v) < 4r,. Sinceby containsg, it overlaps
C(v), so by definition of£(v), we havep;, € L(v), and thug, was reported. I is a compressed node,
then the same proof works if we replaedy its parent/, sinceL(v) = L(V/').

The discussion above proves the main result of this paper:

Theorem 3. Let P be a set ofx points inR?. We assume that = O(1). Then we can construct in
timeO(n log n) a data structure of siz€(n) that answers reverse nearest-neighbor queried ffog n)
time. The number of reverse nearest neighbor3(is).

The fact that the number of reverse nearest neighbapglis was known before: In fixed dimension,
the in-degree of the vertices of the nearest neighbor giapbunded by a constant.

4 Proof of LemmalZ

In this section, we prove Lemnia 2, which was needed to eshatilie time bounds in Theordmh 3. We
start with a packing lemma.

Lemmad4. Letb be a ball with radius-. Thenb intersects at most x 5¢ empty balls with radius larger
or equal tor.

Proof. Whenz,y € RY, we denote byzy| the Euclidean distance betweerandy, and we denote by
7y the line segment connecting them.

We denote by the center ob, and we denote by the ball with center and radiu2r. We first
bound the number of empty balls with radisr whose center is contained h Let B denote this set
of balls, and letC' denote the set of their centers. Any two pointirare at distance at leastfrom
each other. Hence, the balls with radiy® and with centers il are disjoint. As they are all contained
in the bally” with centerc and radiusr /2, the sum of their volumes is at most the volumé’afHence,
we have|C| < 5%, and thug B| < 5¢.

We now consider the empty balls with radixsr that intersech, and whose centers are nottin
We denote byB’ the set of these balls, and we denote(lythe set of their centers. Lét (resp.b,) be
a ball in B’ with radiusr; (resp.r2) and center; (resp.cs). (See Figuré]3.) Without loss of generality,

Figure 3: Proof of Lemmil4.

we assume that, < ro.
Let ¢, be the point ofcez such thated,| = |eei|. Letry, = ry — |cad|, and letd,, denote the ball
with centerc), and radius,. As b, C by, we know that), does not contaim; in its interior, and thus



rh < |eidy|. As bl intersectsh, we have|cd,| < r + . It implies that|cd,| — r < |e1dh|. Since
lech| = 2r, it follows that|cd, | < 2|c1d)|.

Let ¢/ (resp.cy) denote the projection af; (resp.cz2) onto the unit sphere centered at. In other
words, ¢/ = ¢+ (1/]cc1|)(e1 — ¢). Then it follows from the previous paragraph théfcy| > 1/2.
Hence, the spheres with radiig4 and centered at the projections ontof the points inC” are disjoint.
As these spheres are contained in the sphere with radilisentered at, we havelC’| < 5¢, and thus
|B'| < 5. O

Now we prove Lemma&l2: For any ordinary nodethe number of candidate points storedfv)
is O(1). We assume that; € L(v). By definition, we must have; > s(v)/4, andb; overlapsC(v).
AsC(v) can be covered b@ (1) balls with radiuss(v) /4, Lemmé& 4 implies that there can be oxily1)
such candidate points.

5 Concluding remarks

Our approach does not only give a data structure to answersewnearest neighbor queries, it also yields
areverse Voronoi diagrama spatial subdivision with linear complexity such thatthin each cell, the
set of reverse nearest neighbors is fixed. To achieve thispn&ruct, within the cell of each leaf of our
guadtree, the arrangement of the empty balls of the camdmtants. As there is only a constant number
of candidates per cell, each such arrangement has constaplexity, so overall we get a subdivision
of linear size.

The time bounds of our data structure can be improved in thel &M model of computation,
when the coordinates of the input points &flog n)-bits integers. In this case, Chan showed that the
all-nearest neighbors computation and the compressedrgaambnstruction can be done in linear time,
S0 our data structure can be built in linear time as well. Thgng the shuffle-and-sort approach of
Chan [5], combined with van Emde Boas trees, the compressadtrge in our data structure can be
queried inO(loglogn) time. So overall, we can construct in linear time a data strecfor reverse
nearest neighbors with query tiniglog logn).

The most natural extension to this problem would be to hadiferent metrics. Our approach
applies directly to any norm dk?, with d = O(1), as its unit ball can be madat after changing the
coordinate system: we just need to apply an affine map suchhihaohn ellipsoid of the unit ball of
this norm becomes a Euclidean ball. The time bounds and sgage remain the same.

Another possible extension would be to make our algorithmadyic. The main difficulty is that it
seems that we would need to maintain the empty balls, whidnmeaintaining all nearest neighbors.
The result of Maheshwari et al. [14], combined with the datacture of Chan for dynamic nearest
neighbors[[7], gives polylogarithmic update time and quémye in R2. In higher dimension, these
bounds would be considerably worse, if one uses the bestrkulata structures for dynamic nearest
neighbors([1, B].

Finally, it would be interesting to find the dependency of thme bounds on the dimensiah We did
not deal with this issue, because one would first have to fisditfpendency for constructing compressed
quadtrees, which is not the focus of this paper.
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