
ar
X

iv
:0

90
5.

44
41

v3
  [

cs
.C

G
]  

1 
S

ep
 2

01
0

Reverse nearest neighbor queries in fixed dimension∗

Otfried Cheong1 Antoine Vigneron2 Juyoung Yon1

October 21, 2018

Abstract
Reverse nearest neighbor queries are defined as follows: Given an input point setP , and a query

pointq, find all the pointsp in P whose nearest point inP ∪ {q} \ {p} is q. We give a data structure
to answer reverse nearest neighbor queries in fixed-dimensional Euclidean space. Our data structure
usesO(n) space, its preprocessing time isO(n log n), and its query time isO(log n).

1 Introduction

Given a setP of n points inRd, a well-known problem in computational geometry is nearestneighbor
searching: preprocessP such that, for any query pointq, a point inP that is closest toq can be reported
efficiently. This problem has been studied extensively; in this paper, we consider the related problem of
reverse nearest neighbor searching, which has attracted some attention recently.

The reverse nearest neighbor searching problem is the following. Given a query pointq, we want
to report all the points inP that haveq as one of their nearest neighbors. More formally, we want to
find the pointsp ∈ P such that for all pointsp′ ∈ P \ {p}, the distance|pp′| is larger or equal to the
distance|pq|.

The earliest work on reverse nearest neighbor searching is by Korn and Muthukrishnan [11]. They
motivate this problem by applications in databases. Their approach is based on R-Trees, so it is unlikely
to give a good worst-case time bound. Subsequently, the reverse nearest neighbor searching problem
has attracted some attention in the database community [3, 12, 13, 15, 16, 18, 19, 20].

The only previous work on reverse nearest neighbor searching where worst-case time bounds are
given is the work by Maheshwari et al. [14]. They give a data structure for the two-dimensional case,
usingO(n) space, withO(n log n) preprocessing time, andO(log n) query time. Their approach is to
show that the arrangement of the largest empty circles centered at data points has linear size, and then
they answer queries by doing point location in this arrangement.

In this paper, we extend the result of Maheshwari et al. [14] to arbitrary fixed dimension. We give
a data structure for reverse nearest neighbor searching inR

d, whered = O(1), using the Euclidean
distance. Our data structure has sizeO(n), with preprocessing timeO(n log n), and with query time
O(log n). It is perhaps surprising that we can match the bounds for thetwo-dimensional case in arbitrary
fixed dimension. Fornearest neighbor queries, this does not seem to be possible: The bounds for nearest
neighbor searching in higher dimension depend on the complexity of the Voronoi diagram, which is
Θ(n⌈d/2⌉) in d-dimensional space.

Our approach is similar to some previous work on approximateVoronoi diagrams [2, 9, 10]: the
space is partitioned using a compressed quadtree, each cellof this quadtree containing a small set of
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1Dept. of Computer Science, Korea Advanced Institute of Science and Technology, Gwahangno 335, Daejeon 305-701,
South Korea. Email: otfried@kaist.edu, yeon-ju-young@kaist.ac.kr.
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candidate points. Queries are answered by finding the cell containing the query point, and checking all
the candidate points in this cell. Interestingly, this approach allows to answer reverse nearest neighbor
queries efficiently andexactly, while it only seems to give approximations for nearest neighbor search-
ing.

Our model of computation is the real-RAM model, with some additional operations that are common
in quadtree algorithms, such as the floor function, the logarithm log2, and the bitwiseXOR. In particular,
we need to be able to find in constant time the first binary digitat which two numbers differ. This allows,
for instance, to find in constant time the smallest quadtree box that contains two given points. For more
details on this issue, we refer to the lecture notes of Har-Peled [9], and to previous work related to
quadtrees [4, 8].

2 Compressed quadtrees

In this section, we describe compressed quadtrees, a well known data structure in computational geom-
etry. A more detailed presentation can be found in Har-Peled’s lecture notes [9], in the article on skip
quadtrees by Eppstein, Goodrich, and Sun [8], or in the article by Bern, Eppstein and Teng [4]. We first
describe quadtrees, and then we describe their compressed version.

We consider quadtrees inRd, whered = O(1). We denote byHr the hypercube[−1, 1]d; the leaves
of a quadtree will form a partition ofHr.

A quadtree boxis eitherHr, or is obtained by partitioning a quadtree boxH into 2d equal sized
hypercubes—these hypercubes are called thequadrantsof H. A quadtree is a data structure that stores
quadtree boxes in a hierarchical manner. Each nodeν of a quadtree stores a quadtree boxC(ν), and
pointers to its parent and its children. We callC(ν) thecell of nodeν. In this paper, the cell of the root
of a quadtree is always the boxHr. Each nodeν either is a leaf, or has2d children that store the2d

quadrants ofC(ν). With this definition, the cells of the leaves of a quadtree form a partition ofHr.
Let S denote a set ofm quadtree boxes. We can construct the smallest quadtree whose nodes store

all boxes inS as follows. We start by constructing the root. IfS ⊂ {Hr}, then we are done. Otherwise,
we construct the2d children of the root. We consider the subsetS1 ⊂ S (resp.S2, S3, . . . ) of the boxes
in S contained in the first quadrant (resp. second, third,. . . ). We construct recursively the quadtree, by
taking the first (resp. second, third, . . . ) child as the root and using the set of boxesS1 (resp.S2, S3, . . . ).

The above construction results in a quadtree that stores allthe boxes inS. Even though it is the
smallest such quadtree, its size can be arbitrarily large whenS contains very small boxes. To remedy
this, we use acompressed quadtree, which allows to bypass long chains of internal nodes.

In order to reduce the size of the data structure, we allow twodifferent kinds of nodes in a compressed
quadtree. Anordinary nodestores a quadtree box as before. Acompressed nodeν, however, stores
the differenceH \ H ′ of two quadtree boxesH andH ′. We still call this difference the cellC(ν).
Compressed nodes are always leaves of the compressed quadtree.

As in a quadtree, the cells of the children of a nodeν form a partition ofC(ν). But two cases are
now possible: either these cells are the quadrants ofC(ν), or ν has two children, one of them storing a
quadtree boxH ⊂ C(ν), and the other storingC(ν) \H.

The construction of a compressed quadtree that stores all the boxes inS is analogous to the construc-
tion of the ordinary quadtree, with the following difference. Assume we are processing an internal node
ν. LetH denote the smallest quadtree box containing the boxes inS that are strictly contained inC(ν).
If H = C(ν), then we proceed exactly as we did for the ordinary quadtree:we construct2d children
corresponding to the quadrants ofC(ν). Otherwise,ν has two children, one storesH, and the other is a
compressed node that storesC(ν) \H. Intuitively, this construction of a compressed node allows us to
“zoom in” when all the boxes inC(ν) are within a small area, and avoids a long chain of internal nodes.
(See Figure 1.)

A direct implementation of the quadtree construction that we just described would lead toO(m2)
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(a) (c)(b)

Figure 1: (a) A set of quadtree boxes. (b) The quadtree storing these quadtree boxes. (c) The compressed
quadtree storing the same set of quadtree boxes. The two cells on the left side correspond to compressed
nodes.

construction time andO(m) query time, since a quadtree may have linear depth. However,it is possi-
ble to achieveO(m logm) construction time andO(logm) query time using different algorithms for
constructing and querying a compressed quadtree. One such construction is presented in Har-Peled’s
lecture notes [9]. The idea is first to find a quadtree boxC0 that contains a constant fraction of the input
boxesS, which can be done in linear time by choosing the center amongthe vertices of an irregular,
constant-size grid. Then one computes recursively a compressed quadtree for the setSin of the boxes
in S that are contained inC0, and forSout = S \ Sin. Finally, these two quadtrees are merged in linear
time, essentially by hanging the quadtree ofSin at a leaf ofSout.

The quadtree can be queried inO(logm) time by constructing afinger treeover the quadtree, which
is an auxiliary data structure to allow faster search. (Thisapproach is also presented in Har Peled’s
notes [9].) We first find a cell of the quadtree such that the subtree rooted at the corresponding node
contains a constant fraction of the boxes inS. This node is called aseparatorand can be found in
linear time by traversing the quadtree. This construction is repeated recursively on the forest obtained
by removing this node. The construction allows to answer a query in O(logm) time, as this tree has
O(logm) depth. So we have the following bounds for constructing and querying a quadtree:

Lemma 1. LetS be a set ofm quadtree boxes contained inHr. We can construct in timeO(m logm) a
compressed quadtreeT , such that each box inS is the cell of a node ofT . This compressed quadtreeT
has sizeO(m). AfterO(m logm) preprocessing time, we can find for any query pointq ∈ Hr the leaf
of T whose cell containsq in timeO(logm).

Note that a query point might lie on the boundaries of severalcells. In this case, we break the tie
arbitrarily, and we return only one cell containingq.

3 Data structure for reverse nearest neighbor queries

In this section, we describe the construction of our data structure and how we answer reverse nearest
neighbor queries. This data structure is a compressed quadtree, with a set of candidate points stored at
each node. To answer a query, we locate the leaf of the compressed quadtree whose cell contains the
query point, and we check all the candidate points in this leaf; the reverse nearest-neighbors are among
these points. We start with some notation.

Our input point set is denoted byP = {p1, . . . , pn}, with n > 2. We still work in R
d, where

d = O(1), and soP ⊂ R
d. Theempty ballbi is the largest ball centered atpi ∈ P that does not contain

any other point ofP in its interior. In other words, the boundary of the empty ball centered atp goes
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Figure 2: Notation.

through the nearest point top in P \ {p}. In this paper, we only consider closed balls, sopi is a reverse
nearest neighbor of a query pointq if and only if q ∈ bi.

Let HP be a smallest axis-alignedd-dimensional hypercube containing the input point setP . With-
out loss of generality, we assume thatHP = [−1/2

√
d, 1/2

√
d]d; then any empty ball is contained in

Hr = [−1, 1]d. Whenν is an ordinary node, we denote bys(ν) the side length of the quadtree boxC(ν).
We first compute the set of all the largest empty balls forP . This can be done inO(n log n) time

using Vaidya’s all-nearest neighbors algorithm [17]. We denote byri the radius ofbi. For eachbi, we
compute the quadtree boxes with side length in[2ri, 4ri) that overlapbi. (See Figure 2.) Our model of
computation allows us to do this inO(1) time. There are at most2d such boxes; we denote them by
hji , j ∈ {1, . . . , 2d}.

Using Lemma 1, we construct inO(n log n) time a compressed quadtreeT of sizeO(n) such that
each boxhji appears inT . For each nodeν of T , if the corresponding cellC(ν) is hji , we storepi as a
candidate point forν. Storing these candidate points can be done during the construction of the quadtree
within the same time bound. Notice that we may store several candidate points for a given nodeν.

These sets of candidate points are not sufficient for our purpose, so we will add some other points.
For each ordinary (non-compressed) nodeν, we store the pointspi such thatri > s(ν)/4 andbi overlaps
C(ν); this list of candidate points is denoted byL(ν). In order to analyze our algorithm, we need the
following lemma, which is proved in Section 4.

Lemma 2. For any ordinary nodeν, the cardinality of the set of candidate pointsL(ν) stored atν
isO(1).

We construct the listsL(·) by traversingT recursively, starting from the root. Assume thatν is the
current ordinary node. The pointspi such thathji = C(ν) for somej have already been stored atν. By
our construction, they are the pointspi in L(ν) such thats(ν)/4 < ri 6 s(ν)/2. So we need the other
candidate pointspk, such thatrk > s(ν)/2. These points can be found inL(ν ′), whereν ′ is the parent
of ν. So we insert inL(ν) all the pointspk ∈ L(ν ′) such thatbk overlapsC(ν), which completes the
construction ofL(ν). By Lemma 2, this can be done inO(1) time per node, and thus overall, computing
the lists of candidate points for ordinary nodes takesO(n) time.

If ν is a compressed node, andν ′ is its parent, we just setL(ν) = L(ν ′). We complete the construc-
tion of our data structure by handling all the compressed nodes.

Given a query pointq, we answer reverse nearest-neighbor queries as follows. Ifq /∈ Hr, then
we return∅, because we saw earlier that all empty balls are inHr. Otherwise, we find the leafν such
thatq ∈ C(ν), which can be done inO(log n) time by Lemma 1. For each pointpi ∈ L(ν), we check
whetherpi is a reverse nearest neighbor, that is, we check whetherq ∈ bi. If this is the case, we reportpi.

We still need to argue that we answered the query correctly. Assume thatpk is a reverse nearest
neighbor ofq, and the leafν containingq is an ordinary node. Asq ∈ bk, we haveq ∈ hjk for somej,
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and since the side length ofhjk is less than4rk, we haves(ν) < 4rk. Sincebk containsq, it overlaps
C(ν), so by definition ofL(ν), we havepk ∈ L(ν), and thuspk was reported. Ifν is a compressed node,
then the same proof works if we replaceν by its parentν ′, sinceL(ν) = L(ν ′).

The discussion above proves the main result of this paper:

Theorem 3. Let P be a set ofn points inRd. We assume thatd = O(1). Then we can construct in
timeO(n log n) a data structure of sizeO(n) that answers reverse nearest-neighbor queries inO(log n)
time. The number of reverse nearest neighbors isO(1).

The fact that the number of reverse nearest neighbors isO(1) was known before: In fixed dimension,
the in-degree of the vertices of the nearest neighbor graph is bounded by a constant.

4 Proof of Lemma 2

In this section, we prove Lemma 2, which was needed to establish the time bounds in Theorem 3. We
start with a packing lemma.

Lemma 4. Letb be a ball with radiusr. Thenb intersects at most2× 5d empty balls with radius larger
or equal tor.

Proof. Whenx, y ∈ R
d, we denote by|xy| the Euclidean distance betweenx andy, and we denote by

xy the line segment connecting them.
We denote byc the center ofb, and we denote byb′ the ball with centerc and radius2r. We first

bound the number of empty balls with radius> r whose center is contained inb′. LetB denote this set
of balls, and letC denote the set of their centers. Any two points inC are at distance at leastr from
each other. Hence, the balls with radiusr/2 and with centers inC are disjoint. As they are all contained
in the ballb′′ with centerc and radius5r/2, the sum of their volumes is at most the volume ofb′′. Hence,
we have|C| 6 5d, and thus|B| 6 5d.

We now consider the empty balls with radius> r that intersectb, and whose centers are not inb′.
We denote byB′ the set of these balls, and we denote byC ′ the set of their centers. Letb1 (resp.b2) be
a ball inB′ with radiusr1 (resp.r2) and centerc1 (resp.c2). (See Figure 3.) Without loss of generality,

b b
′

b1

b2 b
′

2

c

c1

c2 c
′

2

r

r

r1

r2 r
′

2

Figure 3: Proof of Lemma 4.

we assume thatr1 6 r2.
Let c′

2
be the point ofcc2 such that|cc′

2
| = |cc1|. Let r′

2
= r2 − |c2c′2|, and letb′

2
denote the ball

with centerc′
2

and radiusr′
2
. As b′

2
⊂ b2, we know thatb′

2
does not containc1 in its interior, and thus
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r′
2
6 |c1c′2|. As b′

2
intersectsb, we have|cc′

2
| 6 r + r′

2
. It implies that|cc′

2
| − r 6 |c1c′2|. Since

|cc′
2
| > 2r, it follows that|cc′

2
| 6 2|c1c′2|.

Let c′′
1

(resp.c′′
2
) denote the projection ofc1 (resp.c2) onto the unit sphereu centered atc. In other

words,c′′
1
= c + (1/|cc1|)(c1 − c). Then it follows from the previous paragraph that|c′′

1
c′′
2
| > 1/2.

Hence, the spheres with radius1/4 and centered at the projections ontou of the points inC ′ are disjoint.
As these spheres are contained in the sphere with radius5/4 centered atc, we have|C ′| 6 5d, and thus
|B′| 6 5d.

Now we prove Lemma 2: For any ordinary nodeν, the number of candidate points stored inL(ν)
is O(1). We assume thatpi ∈ L(ν). By definition, we must haveri > s(ν)/4, andbi overlapsC(ν).
As C(ν) can be covered byO(1) balls with radiuss(ν)/4, Lemma 4 implies that there can be onlyO(1)
such candidate points.

5 Concluding remarks

Our approach does not only give a data structure to answer reverse nearest neighbor queries, it also yields
a reverse Voronoi diagram: a spatial subdivision with linear complexity such that, within each cell, the
set of reverse nearest neighbors is fixed. To achieve this, weconstruct, within the cell of each leaf of our
quadtree, the arrangement of the empty balls of the candidate points. As there is only a constant number
of candidates per cell, each such arrangement has constant complexity, so overall we get a subdivision
of linear size.

The time bounds of our data structure can be improved in the word RAM model of computation,
when the coordinates of the input points areO(log n)-bits integers. In this case, Chan showed that the
all-nearest neighbors computation and the compressed quadtree construction can be done in linear time,
so our data structure can be built in linear time as well. Thenusing the shuffle-and-sort approach of
Chan [5], combined with van Emde Boas trees, the compressed quadtree in our data structure can be
queried inO(log log n) time. So overall, we can construct in linear time a data structure for reverse
nearest neighbors with query timeO(log log n).

The most natural extension to this problem would be to handledifferent metrics. Our approach
applies directly to any norm ofRd, with d = O(1), as its unit ball can be madefat after changing the
coordinate system: we just need to apply an affine map such that the John ellipsoid of the unit ball of
this norm becomes a Euclidean ball. The time bounds and spaceusage remain the same.

Another possible extension would be to make our algorithm dynamic. The main difficulty is that it
seems that we would need to maintain the empty balls, which means maintaining all nearest neighbors.
The result of Maheshwari et al. [14], combined with the data structure of Chan for dynamic nearest
neighbors [7], gives polylogarithmic update time and querytime in R

2. In higher dimension, these
bounds would be considerably worse, if one uses the best known data structures for dynamic nearest
neighbors [1, 6].

Finally, it would be interesting to find the dependency of ourtime bounds on the dimensiond. We did
not deal with this issue, because one would first have to find this dependency for constructing compressed
quadtrees, which is not the focus of this paper.
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