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ABSTRACT

Let R and B be sets of red and blue points in the plane in general position. We study the
problem of computing a k-level binary space partition (BSP) tree to classify/separate R
and B, such that the tree defines a linear decision at each internal node and each leaf
of the tree corresponds to a (convex) cell of the partition that contains only red or only
blue points. Specifically, we show that a 2-level tree can be computed, if one exists, in
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time O(n2). We show that a minimum-level (3 ≤ k ≤ logn) tree can be computed in
time nO(logn). In the special case of axis-parallel partitions, we show that 2-level and

3-level trees can be computed in time O(n), while a minimum-level tree can be computed
in time O(n5).

Keywords: Red-blue separation; binary space partitions; classification; decision trees;
machine learning.

1. Introduction

Consider a set of n points in the plane in general position. Each point is either

“red” or “blue”. Let R denote the set of red points and let B denote the set of blue

points. We study the separability of R and B by a k-level binary space partition

tree. Specifically, a binary space partition tree T is a rooted tree; each node of T

corresponds to a (convex, polygonal) region of the plane, with each nonleaf node

having an associated partition line, which partitions its corresponding region into

the two regions corresponding to its children. The root of T is associated with the

entire plane; the root node is at level (or depth) 0. The children of the root node are

at level 1; in general, nodes at level i are connected to the root by a (unique) path

in T of length i (i.e., having i edges). A k-level tree binary space partition tree T

has nodes at levels {0, 1, . . . , k}. The regions associated with the leaves of T form a

partition of the plane into convex polygons.

We say that R and B are separated by a k-level binary space partition tree, T ,

if each region associated with the leaves of T is monochromatic (i.e., contains only

points of R or only points of B). The separating k-level tree T corresponds to a

recursive partitioning of the plane into disjoint convex regions using (up to) 2k − 1

separating straight cuts. Such a tree T of height k (i.e., with k levels) can be used as

a classification tree for red/blue points; we can classify, in time O(k), a new point

as “red” or “blue” based on the color associated with the cell (corresponding to a

leaf in the tree) in which it is located. See Figure 1.

Related work. Separability of point sets is fundamental to classification, clustering,

and machine learning. The separating k-level tree generalizes simple separability

criteria that have been previously studied. The most basic separability criteria for

R and B is that of linear separability, which corresponds to a separating 1-level

B1
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B2B1 R2
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Fig. 1. A separating 2-level tree.
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tree: There exists a line separating R and B. Linear separability can be decided

in linear time.13 For sets R and B that are not linearly separable, generalizations

include the following separability criteria: A strip (two parallel lines, partitioning

the plane into three regions), a wedge (two rays with common origin, partitioning

the plane into two regions), a double wedge (two intersecting lines), or three parallel

lines. All of these criteria can be decided, and corresponding partitions computed,

in optimal Θ(n logn) time.1,2,11,12 (Note that if R and B are strip separable, then

they are also wedge separable.) Strip, wedge, double-wedge, or three parallel lines

separability criteria are special cases of separability by a 2-level tree.

Separability by multiple parallel lines is a special case of separability by a k-level

tree; in particular, m = 2k − 1 parallel lines can be a associated with a (height-

balanced) k-level tree. The minimum number of parallel lines needed to separate

R and B can be computed in O(n2 logn) time.2 If R and B are the vertices of a

regular n-gon, ⌊n/2⌋ is a tight upper bound for the number of parallel lines, and,

given the minimum number of separating lines, their common orientation can be

computed in O(n logn) time.3

Other separability criteria have also been studied. Given any disjoint point sets,

R and B, there always exists a separating polygonal chain, which can be computed

in O(n log n) time. Computing a minimum-link separating polygonal chain that

turns alternatively left and right by a constant angle α ≥ π/2 can be done in

O(n logn) time.11 Separability by m parallel lines is a special case of separability

by a monotone m-link polygonal chain. The problem of determining a minimum-

link separating polygonal chain of R and B is NP-complete.9 Edelsbrunner and

Preparata8 solved, in time O(n log n), the special case of computing a minimum-

edge convex polygon separating R and B (if a convex separator exists); their time

bound was shown to be optimal in Arkin et al.1

Our motivation is to consider natural generalizations of previously studied sep-

aration and classification problems and, in particular, to consider classifiers that

are very fast at query time. The speed of classification of a point with respect to a

k-level classification tree is proportional to k; thus, we are motivated to determine

classification trees having the minimum number of levels.

Outline of the paper. We initiate the study of separability by k-level trees by con-

sidering first the special case of k = 2, separability by a 2-level tree. Section 2 is

devoted to a special case of 2-level separability, that of separability by a zigzag,

which corresponds to 2-level tree partitioning such that monochromatic cells of the

same color are adjacent (Figure 2). In Section 3 we study the general version of 2-

level tree separability, including the generalizations to three or four distinct colors

of point sets (instead of just two, red and blue). In Section 4 we consider k-level tree

separability and possible configurations of points with O(log n)-level trees. Section 5

is devoted to separability by k-level trees whose partitioning cuts are axis-parallel.

(Such trees and partitions are closely related to kd-tree data structures, which are

useful for various types of range queries; see de Berg et al.,4 chapter 5.)
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2. Zigzag Separability

In this section we consider the zigzag separability problem: Determine whether the

sets R and B are separable by a zigzag Z = (ℓ1, s, ℓ2), that is a simple, nonconvex

3-link polygonal chain formed by two rays ℓ1, ℓ2 and a segment s joining the origins

of the rays (Figure 2). Let ℓs be the line containing the segment s, and let ℓ′1 (ℓ′2) be

the line containing the ray ℓ1 (ℓ2). Let CH(X) denote the convex hull of a point set

X . We can assume that the simpler known special cases of separability have already

been tested; specifically, we assume that R and B are not separable by a line, strip,

wedge, or convex polygonal chain, each of which can be decided in O(n log n) time.

Thus, under this condition, the following lemma is straightforward.

B1
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....
....
....
....
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Fig. 2. A separating zigzag.

Lemma 1. Let R and B be zigzag separable but not separable by a convex polygon.

Then, CH(R) contains at least one blue point, and CH(B) contains at least one

red point.

There are three types of zigzags depending on the values of the angles α and β

formed by ℓs and ℓ1, and by ℓs and ℓ2, respectively (Figure 3). A separating zigzag

Z = (ℓ1, s, ℓ2) defines four wedges that partition R into R1 and R2, and B into B1

and B2, all four subsets are non-empty, since R and B are not wedge separable.

Since separating zigzags are not necessarily unique, we make the choice spe-

cific by considering two optimal separating zigzags: Either a zigzag maximizing

min{α, β}, called the most convex separating zigzag (approximating linear separa-

bility), or a zigzag that minimizes max{α, β} (approximating separability by three

parallel lines).

Lemma 2. Let Z = (ℓ1, s, ℓ2) be the most convex separating zigzag for R and

B. Then each of the two rays, and the segment of Z pass through two points of

different colors. Moreover, either ℓ′1 is an inner common tangent line of CH(R2)

and CH(B), or ℓ′2 is an inner common tangent line of CH(B2) and CH(R).

Proof. The key idea is to stretch the separating zigzag until each part of the

structure touches two points of different colors. Moreover, for each of the types of

zigzag in Figure 3, either ℓ′2 intersects ℓ1 or ℓ′1 intersects ℓ2. In the first case ℓ′1 is an
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Fig. 3. (a) 0 < α, β < π/2, (b) 0 < α < π/2, π/2 ≤ β < π, and (c) π/2 ≤ α, β < π.

inner common tangent line of CH(R2) and CH(B), and in the second case ℓ′2 is an

inner common tangent line of CH(B2) and CH(R). Notice that both statements

hold if ℓ′1 and ℓ′2 are parallel.

Let IX,Y be the number of intersections between pairs of edges of the convex

hulls of two point sets X and Y .

Lemma 3. Let R and B be zigzag separable. Then IR,B ∈ {0, 2, 4, 6}.

Proof. Because the convex hulls are closed Jordan curves, IR,B is even. If CH(R)

and CH(B) are nested polygons, IR,B = 0 (Figure 4(a)). Assume that IR,B ≥ 2.

By Lemma 2, either CH(B) intersects CH(R1) but not CH(R2), or CH(R) in-

tersects CH(B1) but not CH(B2). Moreover, CH(R1) and CH(B) are wedge

separable; thus, IR1,B ≤ 4. Analogously, IB1,R ≤ 4 (Figures 4 and 5). Since

CH(R) = CH(R1∪R2), there are two bridge-edges between CH(R1) and CH(R2).

An analogous statement holds for CH(B1) and CH(B2). Hence, IR,B ≤ 4 + 2 = 6,

corresponding to the at most six alternations of colors in CH(B ∪R) (Figure 5).

Let RI (BI) be the subset of red (blue) interior points of CH(B) (CH(R)). By

Lemma 1, |RI | ≥ 1 and |BI | ≥ 1. If IR,B = 6, let R′
1, R

′
2, and R′

3 (B′
1, B

′
2, and B′

3)

be the three disjoint subsets of red points (blue points) that are not contained in

CH(B) (CH(R)) defined according to the 6 intersections of the edges of CH(B)

and CH(R). These eight subsets and their respective convex hulls can be computed

in O(n logn) time (Figure 5).

Lemma 4. Let Z = (ℓ1, s, ℓ2) be the most convex separating zigzag of R and B.

Then ℓs is a supporting line of some of the following eight convex polygons: CH(RI),

CH(BI), CH(R′
1), CH(R′

2), CH(R′
3), CH(B′

1), CH(B′
2), and CH(B′

3).

Proof. We first prove that either RI is separable from B by the wedge (ℓs, ℓ2), or

BI is separable from R by the wedge (ℓ1, ℓs), and both cases do not always occur

(Figures 4(a) and 4(c)). By Lemma 2, if R2 and B are line separable, then R1 is
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Fig. 4. (a) IR,B = 0, (b) IR,B = 2, and (c) IR,B = 4.
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3
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3

Fig. 5. Subsets of red and blue points for IR,B = 6.

separable from B by the wedge (ℓs, ℓ2), and so RI ⊆ R1 is separable from B by the

same wedge. By analogous reasoning, if B2 and R are line separable, then BI and

R are wedge separable.

If IR,B ∈ {0, 2, 4}, then ℓs is a supporting line of CH(RI), because, otherwise,

there are not red points inside CH(B) and then B is wedge separable from R, since

Z is the most convex separating zigzag. Analogously, if B2 and R are line separable

and IR,B ∈ {0, 2, 4}, then ℓs is a supporting line of CH(BI).

Assume that IR,B = 6 and recall the second statement of Lemma 2. Let firstly

assume that R2 is line separable from B, and ℓs is not a supporting line of CH(RI).

One of the subsets R′
1, R

′
2, R

′
3 has to be R2 (say, R′

3 = R2) because, by convexity

of CH(B), ℓ′1 does not separate two of these subsets from CH(B). Thus, R′
1 and

R′
2 are contained in R1 and, since ℓs is not a supporting line of CH(RI), then

ℓs is a supporting line of either CH(R′
1) or CH(R′

2) (Figure 5). We can proceed

analogously, if we assume that B2 and R are line separable, IR,B = 6, and ℓs is not

a supporting line of CH(BI).

Lemma 4 provides the key tool to design the following O(n log n) time algorithm

for computing a separating zigzag Z = (ℓ1, s, ℓ2) for R and B (if it exists). The

algorithm looks for ℓs and checks the linear separability of CH(R2) and CH(B1)

by ℓ′1 and the linear separability of CH(R1) and CH(B2) by ℓ′2. There are a linear

number of candidates ℓs that are supporting lines of the eight convex polygons

above.

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

12
.2

2:
14

3-
16

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SE

V
IL

L
E

 o
n 

01
/2

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



September 11, 2012 9:30 WSPC/Guidelines S0218195912500021

Separability of Point Sets by k-Level Linear Classification Trees 149

Zigzag-algorithm

Input: Point sets R (red) and B (blue)

Output: A separating zigzag Z = (ℓ1, s, ℓ2), or report that none exists

(1) Compute CH(R), CH(B), RI , BI , CH(RI), CH(BI), and IB,R. Check whether

IR,B ∈ {0, 2, 4, 6}, and compute the intersecting edges of CH(R) and CH(B).

Check that CH(RI) or CH(BI) is monochromatic. For RI = {r1} and

BI = {b1}, do as follows: If r1 ∈ CH(R) and b1 ∈ CH(B), then R and B

are zigzag separable as shows Figure 6(a) and it is easy to see how to compute

the separating zigzag. Analogously if r1 ∈ CH(R) and b1 is interior to CH(B)

or vice versa (Figure 6(b)). From now on, assume that |RI | ≥ 2 or |BI | ≥ 2.

r1

b1

b1

r1

(a) (b)

Fig. 6. Zigzag separability with |RI | = 1 and |BI | = 1.

(2) Let P be any of the polygons: CH(RI), CH(BI), CH(R′
1), CH(R′

2), CH(R′
3),

CH(B′
1), CH(B′

2), or CH(B′
3), with their interior points. Do the following:

(a) Sort the points in (R∪B)−P by a counterclockwise rotational sweep over

P with an oriented supporting line ℓs according to Lemma 4.

(b) Do a second rotational sweep over P . Each time ℓs encounters a red or

blue point of (R ∪B)−P , maintain and update the convex hulls CH(R2),

CH(B1) (CH(R1), CH(B2)) of the red and blue points on the left (right)

side of ℓs in O(log n) time.14 In O(log n) time, check the linear separability

between CH(R2) and CH(B1), and between CH(R1) and CH(B2), and

compute their respective inner common tangent lines (Figure 7). In the

affirmative case, a separating zigzag is found.

Analysis of the algorithm. Each step can be done in O(n logn) time. In step 2, a

rotational sweep is done over eight different convex polygons, spending O(n log n)

time on each.

To prove the Ω(n logn) time lower bound for deciding the zigzag separability,

we reduce the strip separability problem1 to the zigzag separability problem. The

reader is referred to Arkin et al.1 for the construction of the reduction. We place

red and blue points on two concentric circles with appropriate radii. A modification

from the construction in Arkin et al.1 is needed: We place blue points around the

smaller, unit-radius circle and red points around a larger circle of radius d > 1,

and two additional red points, r1 and r2, as in Figure 8. (Specifically, radius d is
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Fig. 7. Supporting lines between monochromatic convex hulls.
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..........
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b1

b2

ǫ
a

2a d

ǫ

r1

r2

Fig. 8. Construction for the lower bound for zigzag separability.

selected so that a gap of size ǫ between two consecutive blue points on the unit circle

determines a line, ℓ, through these two points, and a line, ℓ′, through the symmetric

pair of blue points, such that ℓ and ℓ′ pass through the corresponding red points on

the circle of radius d (Figure 8). Letting a denote the distance from the origin to ℓ

or ℓ′, an appropriate choice of d is d = 2a/ǫ =
√
4−ǫ2

ǫ
.) Additionally, we place two

blue points, b1 and b2, far enough away from the larger circle, at positions indicated

in Figure 8. Now it is clear that there exists a separating zigzag of the sets of red

and blue points if and only if the same sets of red and blue points without b1 and

b2 are strip separable. The last statement is reduced to determining whether there

exist two consecutive blue points in the first quadrant of the smallest circle, such

that their Euclidean distance is greater than a given ǫ > 0, specified in the input of

the problem.

Theorem 1. Computing a separating zigzag for R and B requires Θ(n logn) time.

Remark. An O(n3 logn) time algorithm for determining the separability of R and

B by a monotone (with respect to some direction) (k ≤ 7)-polygonal chain is as

follows: A mid-segment of the polygonal chain is defined by a line ℓ going through

two points. Then, we apply an O(n logn) time algorithm for the line, wedge or

zigzag separability of the point subsets on both sides of ℓ.
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3. Separability by a 2-Level Tree

We turn now to the problem of computing a separating 2-level tree T = (ℓ1, ℓ0, ℓ2)

for R and B, where ℓ0, ℓ1, and ℓ2 are the oriented line, the ray on the left side of ℓ0,

and the ray on the right side of ℓ0, respectively (recall Figure 1). Let ℓ′1 (ℓ′2) be the

line containing ℓ1 (ℓ2). Denote by m(ℓ) the slope of ℓ. Let p (q) be the intersection

point of ℓ0 and ℓ1 (ℓ2). T splits the plane into four convex regions. Recall that R

and B are separated by a 2-level tree if there exists a partition of R ∪ B into four

monochromatic subsets and a 2-level tree, T , whose partition of the plane respects

the partition of R ∪B.

Criteria. The following criteria provide a systematic classification of possible

separating 2-level trees: (1) m(ℓ0) > 0, m(ℓ0) < 0, or ℓ0 is horizontal or vertical. (2)

Relative position of p and q along ℓ0: p � q or q � p. (3) Slopes of ℓ1 and ℓ2 with

respect to ℓ0. (4) Different color assignments to the convex regions.

Classification. We do case analysis according to the following classification cri-

teria: (1) The slope of ℓ0: We only consider the m(ℓ0) ≥ 0 case; the case in which

m(ℓ0) < 0 can be analyzed by rotating the configuration by 90 degrees and applying

the corresponding m(ℓ0) > 0 case. The first row of Figure 9 illustrates all possible

cases for m(ℓ0) ≥ 0 according to the different relative positions of the rays ℓ1 and

ℓ2. (2) The relative position of p and q: We only study the case q � p. By apply-

ing symmetry with respect to a vertical line, followed by a 90-degree rotation, we

obtain the case p � q; this is seen by comparing the second row with the first row

in Figure 9. (3) If two regions that are consecutive (in the order in which the circle

at infinity meets the regions) have the same color, the configuration corresponds

to one of the following special cases: Linear, zigzag (p 6= q), or wedge separability

(p = q), each of which can be solved in Θ(n logn) time.1,11,12 Thus, we assume that

the colors alternate, ℓ0 has nonnegative slope, and q � p.

For an easier analysis of the point configurations for the design of algorithms,

we expand the four cases for q � p in the first row of Figure 9 (from left to right)

into the seven cases in Figure 10 as follows: The first case is just the case (a) of

Figure 10; the second case is expanded into the cases (b) and (c) in Figure 10

according to the slope of ℓ1; the third case is expanded into the cases (d) and (e)
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Fig. 9. m(ℓ0) > 0.
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Fig. 10. Configurations for m(ℓ0) > 0 and q � p.

in Figure 10 according to the slope of ℓ2; and, finally, the fourth case is expanded

into the cases (f) and (g) in Figure 10 according to whether ℓ′1 intersects ℓ2 (case

(f)) or ℓ′2 intersects ℓ1 (case (g)).

Then, these seven cases in Figure 10 can be reduced by applying symmetries to

only four essential cases in Figure 11 as follows: Case (d) is obtained from case (b)

by a 180-degree rotation; case (e) is obtained from case (c) by a 180-degree rotation;

and case (g), where ℓ′2 intersect ℓ1, is obtained from case (f), where ℓ′1 intersect ℓ2,

by a 180-degree rotation. Thus, we only consider the four types (1), (2), (3), and

(4) of 2-level trees in Figure 11 with a concrete assignment of colors. For types (2),

(3), and (4), the line ℓ′1 always intersects ℓ2.

(2)

....................

p

q

p

q

B1
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R1
ℓ1

ℓ0
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p

B1

ℓ0

q

B2R1ℓ1
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B1 ℓ1
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R2

ℓ2 (4)

....................

(3)

...

...

...
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......................

(1)

ℓ1

R2

p

q

B1 B2

R1
ℓ0

ℓ2
...
...
...
...
...
.

......................

Fig. 11. The 4 types of 2-level trees, up to symmetry.

We design algorithms for the types of 2-level trees T = (ℓ1, ℓ0, ℓ2) illustrated in

Figure 11. From now on, we assume that R and B are not separable by a line, wedge,

strip, zigzag, or convex polygonal chain. The following lemma is straightforward.

Lemma 5. If R and B are separable by a 2-level tree, then IR,B ∈ {0, 2, 4, 6}.

The next lemma will allow us to restrict our attention to supporting lines that

separate the relevant convex hulls.
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Lemma 6. If R and B are separable by a 2-level tree T = (ℓ0, ℓ1, ℓ2), then it holds

that: (i) ℓ0 is a supporting line of CH(R1) or CH(R2), and (ii) ℓ′1 (ℓ′2) is a common

supporting line of CH(R1) and CH(B1) (CH(R2) and CH(B2)).

Proof. Consider any 2-level tree, among the cases shown in Figure 11. Rotate

ℓ0 counterclockwise, about pivot p, until it encounters a point r from CH(R1)

or CH(R2); say, r ∈ CH(R1). Then rotate ℓ0 counterclockwise about pivot r (or

consecutive points in CH(R1)) until it encounters either a point of CH(R2) or a blue

point that would pass into the convex region containing R1 if we were to continue

rotating. This process can modify the partition into B1 and B2, but maintains the

property of being a separating 2-level tree. Once ℓ0 is fixed, the lines ℓ′1 and ℓ′2
are rotated in a similar manner, with p and q sliding along ℓ0, until they become

supporting lines.

3.1. Algorithms

The overall strategy of the algorithms is as follows: Compute a line that classi-

fies/separates one of the point sets (say, R) into subsets R1 and R2, and then use

this classification to look for a classification of B into subsets B1 and B2 according

to a 2-level tree. Below, we present an optimal O(n log n) time algorithm for 2-level

trees of type (1), which is the easy case, since we know that a horizontal line (for

which there is a linear number of candidates) will give the classifications of one of

the point sets (say, R). Then, in the following subsection, we address trees of types

(2), (3), and (4), showing that all such separating 2-level trees can be computed in

time O(n2).

3.1.1. Type (1)

If there exists a 2-level tree of type (1), then there exists a horizontal line between

two consecutive (in y-coordinate) red points, ri and ri+1 that classifies correctly R

into R1 and R2, according to the classification by a separating 2-level tree. (Recall,

by the general position assumption, there are no two points (red or blue) with the

same y-coordinate.) Let hi be the horizontal line through ri. Let R
u
i be the set of

red points that are on or above hi; let R
d
i be the red points that are on or below hi.

Blue points are classified as being “left” or “right” according to whether they

lie left or right of ℓ0 (which is, of course, unknown to us at the beginning of the

algorithm). Additionally, blue points are classified as being above hi, below hi+1,

or in the middle between hi and hi+1. Thus, the blue points are partitioned into

the subsets Blu
i and Bru

i above hi, the subsets Bld
i+1 and Brd

i+1 below hi+1, and the

subsets Blm
i and Brm

i of the blue points, Bm
i , that lie between hi and hi+1. (Here,

superscripts indicate “up” (u), “down” (d), “left” (l), “right” (r), and “middle”

(m).) Let ai = |Blm
i |+ |Brm

i |; then, a1 + · · ·+ an−1 ≤ n. Refer to Figure 12.

The algorithm can be viewed as a sweep line algorithm, sweeping a horizontal

line from top to bottom, processing the data at the events when the line passes
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ℓ0

ℓ2

q

.............................................................

..............................................................

hi

hi+1

Ru

i

Blu

i
Bru

i

Blm

i Brm

i

Bld

i+1
Brd

i+1
Rd

i+1

Fig. 12. Subsets in a 2-level tree of type (1).

through a red point; at the event that the line passes through red point ri, we

consider the partition of the plane by the two horizontal lines hi and hi+1, passing

through ri and ri+1, respectively. Initially (at iteration i = 1), all blue points above

h1 are classified left/right according to being left/right of the vertical line through

r1. Then, as i increases (and hi sweeps downward), blue points that enter the region

above hi are reclassified according to being left/right of the vertical line through ri.

(Once a blue point is swept over and is above hi, its classification as left/right is

never changed.) A similar sweep process, with a horizontal line from bottom to top,

allows us to classify blue points below each horizontal line hi as being left/right of

the vertical line through ri. By the specification of the type (1) case, we know that,

if a 2-level tree of type (1) exists with a corresponding horizontal line hi supporting

R1, then each blue point of Blu
i (resp., Bru

i ) must lie left of (resp., right of) every

vertical line through a red point at or above the blue point, and, symmetrically,

each blue point of Bld
i+1 (resp., Brd

i+1) must lie left of (resp., right of) every vertical

line through a red point at or below the blue point.

Type (1)-algorithm

Input: Point sets R (red) and B (blue)

Output: A separating 2-level tree T = (ℓ1, ℓ0, ℓ2) of type (1), or report that

none exists

(1) In O(n logn) time compute the sequences (r1, r2, . . . , rn) and (b1, b2, . . . , bn) of

the red and blue points, respectively, sorted by decreasing y-coordinate.

(2) For i = 1 to n−1, consider horizontal partitioning lines hi, and do the following:

(a) Maintain the sets Ru
i , R

d
i+1, B

lu
i , Bru

i , Bld
i+1, B

rd
i+1, B

m
i , and their convex

hulls. This takes overall time O(n log n): With each increment of i, we up-

date two red points and ai blue points; thus, overall we have maintained

seven convex hulls, through a sequence of O(n) updates (insertions and

deletions), with each update done in O(log n) time.5 (Recall from the dis-

cussion above, O(n logn)-time sweeps from top to bottom and from bottom

to top suffice to classify blue points as left/right, thereby allowing us to dis-

tinguish points of Blu
i from points of Bru

i and points of Bld
i+1 from points

of Brd
i+1.)

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

12
.2

2:
14

3-
16

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SE

V
IL

L
E

 o
n 

01
/2

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



September 11, 2012 9:30 WSPC/Guidelines S0218195912500021

Separability of Point Sets by k-Level Linear Classification Trees 155

(b) Determine line separability of the following pairs of convex hulls, in time

O(log n) per check:14 (i) CH(Ru
i ) and CH(Blu

i ), CH(Ru
i ) and CH(Bru

i );

(ii) CH(Rd
i+1) and CH(Bld

i+1), CH(Rd
i+1) and CH(Brd

i+1); and, (iii)

CH(Ru
i )∪CH(Blu

i ) ∪CH(Bld
i+1) and CH(Rd

i+1)∪CH(Bru
i )∪CH(Brd

i+1).

(Note that these conditions are necessary but not sufficient for the existence

of a separating 2-level tree of type (1).)

(c) Determine a line ℓ0 (if it exists) separating CH(Ru
i ) ∪ CH(Blu

i ) ∪

CH(Bld
i+1)∪CH(Blm

i ) from CH(Rd
i+1)∪CH(Bru

i )∪CH(Brd
i+1)∪CH(Brm

i ).

To do this efficiently, we appeal to Lemma 6, which tells us that ℓ0 is a sup-

porting line of CH(R1) (i.e., the current CH(Ru
i )) or of CH(R2) (i.e., the

current CH(Rd
i+1)). Consider an oriented supporting line, ℓ, of CH(Ru

i ).

In O(ai logn) time do the following. (1) Sort the points of Bm
i according to

a rotating sweep of ℓ around CH(Ru
i ) (keeping ℓ in contact with CH(Ru

i )).

(2) Do a rotating sweep with ℓ in contact with CH(Ru
i ), maintaining the

convex hull, CH(Blm
i ), of blue points that are left of ℓ and between hi

and hi+1. If, at some stage of this sweep, the line ℓ is found to separate

CH(Blu
i ) and CH(Bld

i+1) from CH(Rd
i+1), CH(Bru

i ), and CH(Brd
i+1), then

we have identified a candidate ℓ0 and a corresponding classification of blue

points Bm
i into Blm

i and Brm
i .

(d) Determine lines separators ℓ1 and ℓ2 (if they exist), as follows. Since line ℓ′1
must separate CH(Ru

i ) from CH(Blu
i )∪CH(Blm

i )∪CH(Bld
i+1), we compute

the inner common tangent lines, and the intersections of them with ℓ0,

obtaining an interval [a, b] on ℓ0, such that p ∈ [a, b]. Similarly, line ℓ′2
must separate CH(Rd

i+1) from CH(Bru
i )∪CH(Brm

i )∪CH(Brd
i+1), and we

compute an interval [c, d] of intersection points ℓ′2 ∩ ℓ0 on ℓ0, such that q ∈

[c, d]. If there exists a point p in [a, b] that lies at or above (in y-coordinate)

a point q in [c, d], then we have discovered separators ℓ1 and ℓ2, and we

report the separating 2-level tree T given by the separators ℓ0, ℓ1, and ℓ2,

with corresponding sets R1 = Ru
i , R2 = Rd

i+1, B1 = Blu
i ∪Bld

i+1 ∪Blm
i , and

B2 = Bru
i ∪Brd

i+1 ∪Brm
i .

Analysis of the algorithm. The overall running time of the algorithm is O(n log n),

since the convex hulls can be maintained in logarithmic time per point swept over,

and separability of pairs of convex hulls can be determined in time O(log n).

3.1.2. Types (2), (3) and (4)

Let (b1, . . . , bn) be the sequence of blue points sorted by increasing x-coordinate.

Let f1 and f2 be vertical lines through b1 and bn respectively. Let R′′
1 (R′′

2 ) be the

set of red points of R1 (R2) between f1 and f2. Since R and B are not wedge or

strip separable, then B1 6= ∅, B2 6= ∅, and either R′′
1 6= ∅ or R′′

2 6= ∅ (Figure 13).

Since the line ℓ′1 always intersects ℓ2, we assume that there is at least one blue point

of B2 inside the wedge with origin p and defining rays (rightward from p) along ℓ0
and ℓ′1, since otherwise R and B are zigzag separable.
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b1

ℓ1

ℓ0

ℓ2

.........................................................

.........................................................

B2B1

p

q

R1

R2

bn

R′′

1

R′′

2

ℓ

Fig. 13. First and last blue points, b1 and bn, and line ℓ separating R1 and R2.

The following lemma is immediate:

Lemma 7. If R and B are separable by a 2-level tree, then one of the following

cases holds: (i) b1 ∈ B1, bn ∈ B2; (ii) b1 ∈ B2, bn ∈ B1; (iii) b1, bn ∈ B2; (iv)

b1, bn ∈ B1.

The next lemma allows us to restrict the set of lines defining a 2-level tree.

Lemma 8. If R and B are separable by a 2-level tree T , then for any point b ∈ B2

there is a line ℓ through b that separates R into R1 and R2 according to the separation

by T .

Proof. Consider any 2-level tree, T = (ℓ1, ℓ0, ℓ2), among the cases shown in Fig-

ure 11. Take a line ℓ through q and rotate ℓ from ℓ2 to ℓ0. During the rotation, ℓ

passes through all of the points in B2 and separates R into R1 and R2 according to

the separation by T .

We provide an algorithm for computing a 2-level tree T of type (2), (3), or (4)

for R and B based on Lemmas 5, 6, 7, and 8.

First we show how to compute a point b ∈ B2 in order to apply Lemma 8 to get

the classification of R into R1 and R2 produced by T . By Lemma 7 we get a point

b ∈ B2 if either b1 ∈ B2 or bn ∈ B2.

Let b1, bn ∈ B1. If T is of type (2) or (4), R and B are zigzag separable, as

illustrated in Figure 14(a). If T is of type (3) we compute a point in B2 as follows:

Consider a configuration of red and blue points as in Figure 14(b). Sort the red

points by increasing x-coordinate and extend a vertical red ray pointing downward

from each red point. There is at least one red point r ∈ R1 inside CH(B); otherwise,

R and B are zigzag separable. Thus, the downwards red ray from r intersects an

edge of CH(B), and at least one endpoint of the edge must lie in B2, since the

ray does not intersect CH(B1). This endpoint is the desired point b ∈ B2, and is

obtained in time O(n log n).

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

12
.2

2:
14

3-
16

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SE

V
IL

L
E

 o
n 

01
/2

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



September 11, 2012 9:30 WSPC/Guidelines S0218195912500021

Separability of Point Sets by k-Level Linear Classification Trees 157

ℓ1
ℓ0
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p

Fig. 14. Illustration for searching for separating 2-level trees of types (2), (3), or (4). Here,
b1, bn ∈ B1.

Types-(2)-(3)-(4)-algorithm

Input: Point sets R (red) and B (blue)

Output: All of the separating 2-level trees T of types (2), (3) or (4) for R and B

(1) In O(n2) time construct the arrangement, A, of the lines dual to the points in

R ∪B.

(2) In O(n log n) time do the following: (i) Check that IR,B ∈ {0, 2, 4, 6}; (ii) check

that R and B are not wedge, strip, or zigzag separable; and, (iii) compute a

point b ∈ B2 according to Lemma 7 and the discussion above. Let ℓ be a directed

line through b. Sort the red points according to a rotational sweep with ℓ.

(3) Do a rotational sweep with ℓ, stopping each time ℓ encounters a red point;

these events result in O(n) corresponding partitions {R1, R2} of R. Maintain

CH(R1), CH(R2), and the directed supporting line, ℓR, between them, such

that CH(R1) is in ℓ−R (the left half-plane) and CH(R2) is in ℓ+R (the right half-

plane). For each partition {R1, R2}, determine whether there exists a bipartition

{B1, B2} of B corresponding to a separating 2-level tree T for R and B in O(n)

time as follows:

(a) In O(n) time, utilize the arrangement A to obtain the clockwise order of

the blue points with respect to CH(R1) (and separately with respect to

CH(R2)). (The ordered sequence of red points that are vertices of CH(R1)

correspond to a sequence of dual red lines in A; we traverse these lines, in

the order given by A, discovering the order in which dual blue lines cross

them, thereby obtaining the rotational order of the blue points with respect

to CH(R1).) Also check that CH(R1) and CH(R2) contain no blue points.

Noting that all of the blue points in ℓ+R have to belong to B2, let b′1 be

the first blue point in ℓ+R according to the clockwise rotation order. Denote

by (b′1, b
′
2, . . . , b

′
n) such an ordering (refer to Figure 15). It holds that b′1

belongs to B2, and b′n belongs B1. Let ℓn be the directed supporting line of

CH(R1) through b′n, and let ℓ−n (ℓ+n ) be the left (right) half-plane defined

by ℓn. Obviously, R1 is contained in ℓ+n .
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(b) Starting at b′n and following the order above, in O(n) time compute

the location of the blue points in ℓ+n or ℓ−n . Let b′i be the last blue

point in ℓ+n ∩ ℓ−R. If there exists an appropriate bipartition {B1, B2}, then

{b′i, b
′
i−1, . . . , b

′
1} ⊆ B2.

(c) Let B1 = {b′n, . . . , b
′
i+1} and B2 = {b′i, b

′
i−1, . . . , b

′
1}. By construction, R1

and B1 are line separable by ℓn. In O(n) time, check if R2 and B2 are line

separable, and if R1 ∪B1 is line separable from R2 ∪B2. Otherwise, there

does not exist a separating 2-level tree for the bipartition {R1, R2}. In the

affirmative case, construct a separating 2-level tree T for R and B.

B1
B2

CH(R1)

ℓn

ℓ+
nℓ−n

b′n

CH(R2)

b′1

.......................

ℓR

ℓ+

R

ℓ−
R

...................

.................................

......................................

................................

.................................

........................ .....
.....

....
.....

....
.

...................................................................

Fig. 15. Illustrating step 3 of the algorithm for a 2-level tree of type (2).

Theorem 2. Computing all of the separating 2-level trees for R and B can be done

in O(n2) time and space.

Proof. The algorithm above spends O(n2) time and space constructing the dual

arrangement A. For each partition {R1, R2} of R, the algorithm decides whether

there exists a separating 2-level tree and computes it in O(n) time. Lemma 8 ensures

the existence of an appropriate bipartition of R at some step, if there exists a sepa-

rating 2-level tree for R and B. By Lemma 6 we can assume that ℓ is a supporting

line of CH(R1) and proceed analogously for ℓ being a supporting line of CH(R2).

By the same lemma we can assume that ℓn is a supporting line of CH(R1) and

CH(B1).

Remark. It is easy to see that all of the combinatorially different 2-level trees for

a set of n red and blue points in R
d can be computed in O(nd+1) time. For d = 2,

the above theorem shows that an improved time bound of O(n2) is possible. It

remains an open problem to determine if a separating 2-level tree for R and B can

be computed in o(n2) time.
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3.2. Three or four colored point sets

The 2-level tree problem for point sets having three or four distinct colors can be

solved as follows. The four colors case can be solved in O(n) time by checking the

linear separability between pairs of point sets. The three colors case, with point sets

R, B and G, can be viewed either as a zigzag of R and G ∪ B, or as a separation

with a 2-level tree of R and G ∪B restricted to have linear separability between G

and B (Figure 16). But, in both cases, we have as additional information the linear

separability of G and B, which can be checked in advance in O(n) time. We use

this information to compute the corresponding 2-level tree. Thus, this problem can

be solved in O(n log n) time. This time bound is optimal, as can be seen from the

zigzag separability for R, B and G, with an easy adaptation of the lower bound

construction in Theorem 1.

R1

R2

B

G

Y

R

BG

R1

R2

B

G

Fig. 16. 2-level trees for three and four colored point sets.

Theorem 3. A separating 2-level tree for three-colored sets of n points can be

computed in O(n log n) time, which is worst-case optimal. For four-colored sets of

n points a 2-level tree can be computed in O(n) time.

4. k-Level Trees

We now consider separating (k ≥ 3)-level trees for R and B. A separating O(log n)-

level tree for R and B can be computed as follows: Appealing to the Ham-Sandwich

theorem, we can compute a line that gives an equitable bipartition B1∪R1, B2∪R2

of B ∪ R, then proceed recursively on each part until we obtain monochromatic

subsets. In the end, we obtain a k-level tree for n ≤ 2k points.

Note that a k-level tree produces a subdivision of the plane into monochromatic

convex cells, each one bounded by at most k lines. We can use a dynamic program-

ming algorithm to compute a minimum-level tree for R and B in (quasi-polynomial)

nO(logn) time. In particular, a subproblem is specified by a convex polygon P hav-

ing at most k = O(log n) sides, each defined by one of the
(

n

2

)

lines determined by

point pairs of R ∪ B. The optimization for a subproblem selects among the ≤
(

n

2

)

possible cuts, ℓ, and recursively solves the minimum-level tree problem on each side

of ℓ.

Theorem 4. A separating k-level tree for R and B exists with k ≤ ⌈logn⌉. Fur-

thermore, a minimum-level tree can be computed in nO(log n) time.
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On the other hand, there exist configurations of points for which the depth k∗ of

a minimum-level tree is Ω(logn). In particular, let S be a set of n points in general

position. Replace each point pi ∈ S by a structure of four (very close) points, two

red and two blue, as in Figure 17, obtaining the sets R and B of 2n red and 2n blue

points, respectively. Any k-level tree for R and B has to separate each pair of red

and blue points of the pi structure and must, therefore, have k = Ω(logn) levels.

j

pi

pi

p1 p2 pn

pi

6

O(log n)

Fig. 17. An example (left) of a configuration of R ∪B requiring an Ω(logn)-level separating tree.

It is unlikely that a substantially more efficient algorithm exists for computing

separating k-level trees in general. In fact, in related work, Grigni et al.10 considered

the problem of designing a near-optimal linear decision tree T to classify two given

point sets R and B in R
n, so that T defines a linear decision at each internal node,

such that for each leaf v of T , either only red or only blue points lead the algorithm

to v. The authors considered two measures of such a classifier, the number of internal

nodes and the depth of the tree, and prove a very strong negative result on high-

dimensional classification trees: Unless NP=ZPP, no polynomial-time algorithm for

optimizing the depth of a classifier can have approximation ratio better than any

fixed constant. Further, Das and Goodrich7 showed that the following problem is

NP-complete: Given a set S of n points in R
3, partitioned into two concept classes,

red and blue, decide if there exists a decision tree T with at most k nodes that

separates the red points from the blue points.

5. Separability with Axis-Parallel Partitions

In this section, we consider k-level trees defined by axis-parallel lines. First we show

how to compute a 2-level tree as in Figure 18(a). We consider the case in which

ℓ0 is vertical and ℓ1, ℓ2 are horizontal; other cases, which also depend on the color

assigned to the rectangles produced by the 2-level tree structure, can be handle

analogously. A key observation is that, if there exists a separating 2-level tree, then

during a sweep with a vertical line ℓ from left to right the sets of red and blue points

on the left of ℓ must be separable by a horizontal line at least until the moment

when ℓ reaches ℓ0. This observation is utilized in the following O(n) time algorithm.

Axis-parallel 2-level tree algorithm. Let T (n) denote the running time for an input

of size n. First, compute (in O(n) time6) the median M of the x-coordinates of the

points. Let ℓ be the vertical line throughM . LetR1 and B1 (resp., R2 and B2) be the
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B1
B2

ℓ0............................................................................................................................
...
...
...
...
...
...
...
...
...
...
...
...

ℓ1

ℓ2

R1

R2

(a) (b)

p

q

ℓ0

............................................................................................................................

...

...

...

...

...

...

...

...

...

...

...

...

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

(c)

ℓ0
............................................................................................................................
...
...
...
...
...
...
...
...
...
...
...
...

ℓ1

ℓ2

ℓ3

ℓ5

ℓ4

ℓ6

Fig. 18. (a) Axis-parallel 2-level tree, (b) and (c) axis-parallel 3-level trees.

subsets of red and blue points on the left (resp., right) side of ℓ. Check, in time O(n),

whether R1 and B1 (resp., R2 and B2) are line separable with a horizontal line. If

the two answers are negative, the algorithm concludes that there is no separating 2-

level tree. If the two answers are positive, the algorithm concludes with a separating

2-level tree, with ℓ0 = ℓ. Otherwise, assume that the positive answer is on the left

of ℓ; compute and store the y-interval of horizontal separators for points (R1, B1)

left of ℓ. Now, proceed recursively, in time T (n/2), for the n/2 points on the right

of ℓ. Specifically, we compute the median M ′ of the x-coordinates of the points

in R2 ∪ B2, and determine the y-interval of horizontal separators (if any exist)

for the red and blue points of R2 ∪ B2 on each side of a vertical line, ℓ′, through

M ′, intersecting the y-interval for points in R2 ∪B2 left of ℓ′ with the y-interval for

points (R1∪B1) left of ℓ. The recursive search continues, either on the left or on the

right of each successive median vertical line, according to the existence of horizontal

separators (recursing on the side that has no separator). The search concludes when

we discover a vertical separator such that there either exist horizontal separators on

both sides (yielding the desired 2-level separating tree), or we discover that there is

no possible horizontal separator on both sides (showing that no 2-level separating

tree exists). The running time, T (n), satisfies T (n) = T (n/2)+O(n), implying that

T (n) = O(n).

Theorem 5. A separating axis-parallel 2-level tree for R and B can be computed

in O(n) time.

A crossing 2-level tree is a 2-level tree for R and B defined by two axis-parallel

perpendicular lines (p = q). A separating crossing 2-level tree is also a separating

horizontal/vertical double-wedge for R and B. In Arkin et al.,1 the authors showed

an Ω(n logn) time lower bound for the horizontal/vertical double-wedge separability

problem; this lower bound applies also to the crossing 2-level tree problem. An

O(n logn) time algorithm for the separability by a crossing 2-level tree can be

obtained by first sorting the points of R∪B by both x- and y-coordinate and then

applying an easy modification of the linear-time algorithm above.
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Axis-parallel 3-level tree algorithm. A key observation is that if there exists a 3-level

tree for R and B with a configuration as in Figure 18(b), then for any vertical line

ℓ0 crossing the axis-parallel bounding box of R ∪ B, either (i) the subset of points

of R ∪ B on the left of ℓ0 is separable by a 2-level tree or (ii) the subset of points

of R ∪B on the right of ℓ0 is separable by a 2-level tree.

Thus, analogous to the search described above for the 2-level tree problem, we

can do a binary search for a possible vertical line ℓ0 such that both subsets of

points of R ∪B on the left and on the right of ℓ0 are separable by a 2-level tree, or

the conclusion that no such ℓ0 exists. The result is an O(n log n) time algorithm.

(Other configurations, as in Figure 18(c), can be handled analogously.) We now

show, however, that there is a linear-time algorithm for the axis-parallel 3-level

tree problem.

Consider the case in Figure 18(b); other cases are similar. In O(n) we compute

the vertical line ℓ′3 containing the ray ℓ3 using the median technique above such

that the points on the left of ℓ′3 are separable by a horizontal line (say, ℓ′1); we

also compute a vertical interval I1 where this horizontal line ℓ′1 can be located.

Then we proceed analogously (using the median technique) with the points on

the right of the computed ℓ′3 until we find a vertical line ℓ′4 containing a ray ℓ4
such that the points between ℓ′3 and ℓ′4 are monochromatic, spending O(n) time

in this second process. Then we proceed analogously with the points on the right

of ℓ′4 until we find a vertical line ℓ0 such that the points between ℓ′4 and ℓ0 are

separable by a horizontal line located in the computed vertical interval I1; again

we spend O(n) time in this third process. Thus, the computation of the line ℓ0
and the 2-level tree on the left of ℓ0 takes O(n) time. Similarly, in additional O(n)

time we check that the points on the right of the computed ℓ0 are separable by a

2-level tree.

Notice that depending on the vertical/horizontal choices for ℓ0, ℓ1, ℓ2, ℓ3, ℓ4,

ℓ5, ℓ6, and the colors assigned to each region, the number of different types of

axis-parallel 3-level trees is 22
3−1. So the overall algorithm takes O(n) time.

Theorem 6. A separating axis-parallel 3-level tree for R and B can be computed

in O(n) time.

Remark. The linear-time method for determining the existence of an axis-parallel

3-level tree implies that, using the binary search previously discussed, we can solve

the 4-level tree problem in time O(n log n), and, more generally, the k-level tree

problem in time O(n logk−3 n), for fixed k, with a huge dependence on k hidden

in the big-Oh notation. In fact, the linear-time method we gave for 3-level trees

can be extended to 4 or more levels, yielding a linear-time method for any fixed k;

however, the dependence on k reflects the fact that there are 22
k−1 k-level trees,

leading to a very high (O(22
k

n)) time bound in terms of n and k. Below, we obtain

polynomial time in both n and k for computing a minimum-level axis-parallel tree,

using dynamic programming.
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Minimum-level axis-parallel tree algorithm. The general problem consists of comput-

ing a minimum-level axis-parallel tree for points R and B, in general position. We

can assume that each of the horizontal/vertical lines defining the tree pass through

the input points, R ∪ B; we consider a point p that lies on a horizontal (resp.,

vertical) line ℓ to lie in the (closed) region to the left (resp., below) ℓ.

Our algorithm employs dynamic programming. Let x1 < x2 < · · · < xn denote

the x-coordinates of the n input points R ∪ B, indexed in sorted order; similarly,

let y1 < y2 < · · · < yn denote the y-coordinates. A subproblem is specified by a

rectangle, R = (xi, xj ] × (yk, yl]. Thus, there are O(n4) subproblems. The value

of a subproblem R, f(R), is the minimum number of levels in an axis-parallel

classification tree of the points of R∪B within R. If R is monochromatic (i.e., has

points only of R or only of B within it), f(R) = 0; this forms the base case for the

dynamic programming recursion. In general, for subproblem R we have

f(R) =

{

0 if R is monochromatic

1 + minℓ max{f(R≤ℓ), f(R>ℓ)} otherwise,

where the minimization is over all horizontal/vertical cuts ℓ that pass through

points of R ∪ B and intersect R, and R≤ℓ (resp., R>ℓ) denotes the subrectangle

of R that is on or below/left (resp., strictly above/right) horizontal/vertical line ℓ.

The algorithm tabulates the values f(R) in order of increasing values of j − i and

l−k, in the standard way. Since there are O(n) candidate cuts ℓ to consider for each

R, the overall running time is O(n5), using a table of size O(n4). We thus conclude

with the following theorem.

Theorem 7. A minimum-level separating axis-parallel tree for R and B can be

computed in O(n5) time, using O(n4) space.

Remark. A minimum-level separating tree using only vertical (or only horizontal)

lines can easily be computed in O(n log n) time by considering color transitions in

the x-sorted (y-sorted) list of points R ∪B.

6. Conclusion

We have initiated a study of k-level linear classification trees. Table 1 summarizes

the time and space complexities of the algorithms presented. (As we remarked after

Theorem 6, we note that the method we presented for axis-parallel 2- and 3-level

trees can be extended to yield a linear (in n) time algorithm for any constant

number, k, of levels, but the dependence on k is prohibitive (O(22
k

n)).)

In future work, we hope to consider other k-level trees defined by cuts other than

lines or hyperplanes, e.g., circles or axis-aligned boxes; see Figure 19. Multilevel trees

based on separation by circles or axis-aligned boxes have potential applications in

bounding volume hierarchies, which are useful for intersection detection and shape

approximation.

In
t. 

J.
 C

om
pu

t. 
G

eo
m

. A
pp

l. 
20

12
.2

2:
14

3-
16

5.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
SE

V
IL

L
E

 o
n 

01
/2

5/
16

. F
or

 p
er

so
na

l u
se

 o
nl

y.



September 11, 2012 9:30 WSPC/Guidelines S0218195912500021

164 E. M. Arkin et al.

Table 1. Summary of the time and space complexities.

Classification trees Time Space

Zigzag Θ(n logn) O(n)

2-level tree O(n2) O(n2)

Minimum-level tree (3 ≤ k ≤ logn) nO(logn) nO(logn)

Axis-parallel 2-level tree O(n) O(n)

Axis-parallel 3-level tree O(n) O(n)

Minimum-level axis-parallel tree O(n5) O(n4)

c0 c1

c2

(b)(a)

B1

B2

...

...

...

...

...

...

...

...

...

...

...

...

... ................................................................................

........................................

R1

R2

s0

s1

s2

R1

B1

R2

B2

Fig. 19. Example of 2-level trees based on (a) axis-aligned boxes and (b) circles.
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